Global Embeddings, Local Signals: Zero-Shot Sentiment Analysis of Transport Complaints
Abstract
1. Introduction
- Zero-shot learning. The model is used exactly as released; complaint embeddings are compared to handcrafted semantic anchors and class decisions are made through nearest prototype matching. No task-specific weights are introduced or updated.
- Lightweight supervised learning (frozen encoder + linear probe). The model remains frozen, yet a single-layer logistic classifier is trained on top of the complaint embeddings to learn optimal decision boundaries from labelled data. Only this shallow head (≈0.1% of the backbone parameters) is updated.
- RQ 1. How accurately do universal embedding models classify passenger complaints across the three facets (service aspect, latent frustration, explicit request) in a strictly zero-shot setting, with no fine-tuning and no additional classification head?
- RQ 2. How much additional accuracy can be gained by training a lightweight supervised multi-faceted classifier (e.g., linear probe) on top of the same frozen embeddings?
2. Related Work
2.1. The Concept of Fine-Grained Sentiment Analysis
2.2. Fine-Grained Sentiment Analysis for Public Sector Applications
2.3. Embedding-Based Approaches to Fine-Grained Sentiment Analysis
3. Materials and Methods
3.1. Complaint Dataset
3.2. Universal Embeddings
3.3. Zero-Shot Classification
3.3.1. Zero-Shot Classification Workflow
3.3.2. Anchor Construction
3.3.3. Input Text Formatting
3.4. Lightweight Supervised Classification
3.4.1. Lightweight Classification Workflow
3.4.2. Input Text Formatting in Lightweight Classification
4. Results and Analysis
4.1. Service Aspect Classification
4.2. Frustration and Request Detection
4.3. Priority Level Identification
5. Discussion
5.1. Key Findings and Implications
- RQ 1: Zero-shot capability of universal embeddings. With correct input formatting, the best encoder achieves approximately 77% accuracy for Aspect classification, 74% for Frustration detection, and 80% for Request detection in a pure zero-shot setting. Thus, universal embeddings alone can reach ~75–80% accuracy on multilingual complaints.
- RQ 2: Benefit of a lightweight head. Adding a single logistic-regression head raises performance by 12–30 pp, bringing all encoders to 89% accuracy for Aspect, 83–87 for the binary facets, and 72% accuracy on priority levels, while adding negligible computational cost.
5.2. Rationale for Avoiding Full Supervised Fine-Tuning
5.3. Limitations
- Narrow domain and language scope. The dataset is restricted to bus service complaints in Russian and Kazakh, so the results may not generalize to other domains or languages.
- Hand-crafted anchors. Anchor lists were created manually, which may introduce author bias; automatic anchor generation warrants further investigation.
- Global cosine threshold. A single mean similarity threshold is applied to the binary facets. This heuristic can drift under domain shift or when new encoders with different distance scales are used. In particular, if the dataset contains many poorly separable examples, the mean similarity rises, the global cut-off shifts upward, and the entire decision pipeline becomes unstable.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Cross-Validation Performance for Aspect Classification
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.980 | 0.735 | 0.840 | 68 | 0.971 | 0.971 | 0.971 |
Condition | 151 | 0.417 | 0.669 | 0.514 | 151 | 0.713 | 0.788 | 0.748 |
Information | 65 | 0.516 | 0.754 | 0.613 | 65 | 0.747 | 0.862 | 0.800 |
Lost | 1 | 0.143 | 1.000 | 0.250 | 1 | 0.000 | 0.000 | 0.000 |
Operations | 1305 | 0.807 | 0.918 | 0.859 | 1305 | 0.950 | 0.923 | 0.937 |
Payment | 230 | 0.916 | 0.761 | 0.831 | 230 | 0.926 | 0.874 | 0.899 |
Personnel | 560 | 0.880 | 0.473 | 0.616 | 560 | 0.831 | 0.861 | 0.846 |
Roadside | 20 | 0.536 | 0.750 | 0.625 | 20 | 0.680 | 0.850 | 0.756 |
Total | 2400 | Accuracy: 0.772 | 2400 | Accuracy: 0.894 |
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.938 | 0.882 | 0.909 | 68 | 0.985 | 0.985 | 0.985 |
Condition | 151 | 0.361 | 0.656 | 0.466 | 151 | 0.739 | 0.788 | 0.763 |
Information | 65 | 0.481 | 0.800 | 0.601 | 65 | 0.833 | 0.846 | 0.840 |
Lost | 1 | 0.000 | 0.000 | 0.000 | 1 | 0.000 | 0.000 | 0.000 |
Operations | 1305 | 0.831 | 0.857 | 0.843 | 1305 | 0.954 | 0.921 | 0.937 |
Payment | 230 | 0.934 | 0.796 | 0.859 | 230 | 0.942 | 0.922 | 0.932 |
Personnel | 560 | 0.832 | 0.568 | 0.675 | 560 | 0.829 | 0.873 | 0.850 |
Roadside | 20 | 0.556 | 0.750 | 0.638 | 20 | 0.600 | 0.900 | 0.720 |
Total | 2400 | Accuracy: 0.769 | 2400 | Accuracy: 0.901 |
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.882 | 0.882 | 0.882 | 68 | 0.971 | 0.971 | 0.971 |
Condition | 151 | 0.269 | 0.450 | 0.337 | 151 | 0.676 | 0.775 | 0.722 |
Information | 65 | 0.333 | 0.908 | 0.488 | 65 | 0.821 | 0.846 | 0.833 |
Lost | 1 | 0.043 | 1.000 | 0.083 | 1 | 0.000 | 0.000 | 0.000 |
Operations | 1305 | 0.766 | 0.904 | 0.829 | 1305 | 0.953 | 0.906 | 0.929 |
Payment | 230 | 0.967 | 0.635 | 0.766 | 230 | 0.938 | 0.926 | 0.932 |
Personnel | 560 | 0.863 | 0.248 | 0.386 | 560 | 0.789 | 0.848 | 0.818 |
Roadside | 20 | 0.577 | 0.750 | 0.652 | 20 | 0.696 | 0.800 | 0.744 |
Total | 2400 | Accuracy: 0.695 | 2400 | Accuracy: 0.885 |
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.937 | 0.868 | 0.901 | 68 | 0.985 | 0.971 | 0.963 |
Condition | 151 | 0.688 | 0.291 | 0.409 | 151 | 0.702 | 0.781 | 0.754 |
Information | 65 | 0.355 | 0.769 | 0.485 | 65 | 0.848 | 0.862 | 0.857 |
Lost | 1 | 0.077 | 1.000 | 0.143 | 1 | 0.000 | 0.000 | 0.000 |
Operations | 1305 | 0.669 | 0.969 | 0.792 | 1305 | 0.959 | 0.928 | 0.944 |
Payment | 230 | 0.970 | 0.700 | 0.813 | 230 | 0.935 | 0.935 | 0.930 |
Personnel | 560 | 0.942 | 0.087 | 0.160 | 560 | 0.841 | 0.879 | 0.863 |
Roadside | 20 | 0.923 | 0.600 | 0.727 | 20 | 0.762 | 0.800 | 0.800 |
Total | 2400 | Accuracy: 0.683 | 2400 | Accuracy: 0.906 |
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.312 | 0.794 | 0.448 | 68 | 0.928 | 0.941 | 0.934 |
Condition | 151 | 0.223 | 0.656 | 0.333 | 151 | 0.631 | 0.781 | 0.698 |
Information | 65 | 0.479 | 0.523 | 0.500 | 65 | 0.667 | 0.831 | 0.740 |
Lost | 1 | 0.000 | 0.000 | 0.000 | 1 | 0.000 | 0.000 | 0.000 |
Operations | 1305 | 0.774 | 0.788 | 0.781 | 1305 | 0.957 | 0.910 | 0.933 |
Payment | 230 | 0.867 | 0.396 | 0.543 | 230 | 0.905 | 0.874 | 0.889 |
Personnel | 560 | 0.778 | 0.087 | 0.157 | 560 | 0.819 | 0.839 | 0.829 |
Roadside | 20 | 0.084 | 0.750 | 0.151 | 20 | 0.538 | 0.700 | 0.609 |
Total | 2400 | Accuracy: 0.571 | 2400 | Accuracy: 0.879 |
Appendix A.2. Fine-Tuning BERT
Aspect | Count | P | R | F1 |
---|---|---|---|---|
Bike | 27 | 0.923 | 0.444 | 0.600 |
Condition | 61 | 0.000 | 0.000 | 0.000 |
Information | 26 | 0.421 | 0.308 | 0.356 |
Lost | 0 | 0.000 | 0.000 | 0.000 |
Operations | 522 | 0.852 | 0.914 | 0.882 |
Payment | 92 | 0.833 | 0.761 | 0.795 |
Personnel | 224 | 0.648 | 0.821 | 0.724 |
Roadside | 8 | 0.000 | 0.000 | 0.000 |
Total | 960 | Accuracy: 0.782 |
Facet | Count | P | R | F1 |
---|---|---|---|---|
Frustration | ||||
0 | 571 | 0.806 | 0.807 | 0.807 |
1 | 389 | 0.717 | 0.715 | 0.716 |
Total | 960 | Accuracy: 0.770 | ||
Request | ||||
0 | 486 | 0.868 | 0.770 | 0.816 |
1 | 474 | 0.788 | 0.880 | 0.832 |
Total | 960 | Accuracy: 0.824 |
Appendix A.3. Instruction–Prefix Sensitivity
ID | Instruction Line | Anchor Prefix | Complaint Prefix | Multilingual-E5-Large-Instruct | E5-Mistral-7B-Instruct | GTE-Qwen2-1.5B-Instruct | BGE-M3 | LaBSE |
---|---|---|---|---|---|---|---|---|
1 | No | - | - | |||||
2 | No | query: | query: | ✅ | ✅ | ✅ | ✅ | |
3 | No | query: | passage: | - | - | - | - | - |
4 | No | query: | - | |||||
5 | No | - | query: | ✅ | ||||
6 | No | - | passage: | |||||
7 | No | passage: | passage: | |||||
8 | No | passage: | - | |||||
9 | Yes | - | - | |||||
10 | Yes | query: | query: | |||||
11 | Yes | query: | passage: | |||||
12 | Yes | query: | - | |||||
13 | Yes | - | query: | |||||
14 | Yes | - | passage: | |||||
15 | Yes | passage: | passage: | |||||
16 | Yes | passage: | - |
References
- Sigurdsson, V.; Larsen, N.M.; Gudmundsdottir, H.K.; Alemu, M.H.; Menon, R.V.; Fagerstrøm, A. Social media: Where customers air their troubles—How to respond to them? J. Innov. Knowl. 2021, 4, 257–267. [Google Scholar] [CrossRef]
- Moreno, A.; Iglesias, C.A. Understanding customers’ transport services with topic clustering and sentiment analysis. Appl. Sci. 2021, 21, 10169. [Google Scholar] [CrossRef]
- Osorio-Arjona, J.; Horak, J.; Svoboda, R.; García-Ruíz, Y. Social media semantic perceptions on Madrid Metro system: Using Twitter data to link complaints to space. Sustain. Cities Soc. 2021, 64, 102530. [Google Scholar] [CrossRef]
- Gong, S.H.; Teng, J.; Duan, C.Y.; Liu, S.J. Framework for evaluating online public opinions on urban rail transit services through social media data classification and mining. Res. Transp. Bus. Manag. 2024, 56, 101197. [Google Scholar] [CrossRef]
- Das, R.D. Understanding users’ satisfaction towards public transit system in India: A case-study of Mumbai. ISPRS Int. J. Geo-Inf. 2021, 3, 155. [Google Scholar] [CrossRef]
- Sahil, P.S.; Jamatia, A. Team A at SemEval-2025 Task 11: Breaking Language Barriers in Emotion Detection with Multilingual Models. arXiv 2025, arXiv:2502.19856. [Google Scholar]
- Zhou, Y.; Muresanu, A.I.; Han, Z.; Paster, K.; Pitis, S.; Chan, H.; Ba, J. Large language models are human-level prompt engineers. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 25 April 2022. [Google Scholar]
- Lan, Y.; Wu, Y.; Xu, W.; Feng, W.; Zhang, Y. Chinese fine-grained financial sentiment analysis with large language models. Neural Comput. Appl. 2024, 1–10. [Google Scholar] [CrossRef]
- Shah, F.A.; Sabir, A.; Sharma, R. A Fine-grained Sentiment Analysis of App Reviews using Large Language Models: An Evaluation Study. arXiv 2024, arXiv:2409.07162. [Google Scholar] [CrossRef]
- Teng, J.; He, H.; Hu, G. A fine-grained sentiment recognition method for online Government-Public interaction texts based on large language models. In Proceedings of the International Conference on Artificial Intelligence and Machine Learning Research (CAIMLR 2024), Novena, Singapore, 28–29 September 2024; SPIE: Bellingham, WA, USA, 2025; Volume 13635, pp. 11–16. [Google Scholar]
- Wang, L.; Yang, N.; Huang, X.; Yang, L.; Majumder, R.; Wei, F. Multilingual e5 text embeddings: A technical report. arXiv 2024, arXiv:2402.05672. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, S.; Zhang, P.; Luo, K.; Lian, D.; Liu, Z. BGE M3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation. arXiv 2024, arXiv:2402.03216. [Google Scholar]
- Li, Z.; Zhang, X.; Zhang, Y.; Long, D.; Xie, P.; Zhang, M. Towards general text embeddings with multi-stage contrastive learning. arXiv 2023, arXiv:2308.03281. [Google Scholar] [CrossRef]
- Solatorio, A.V. Gistembed: Guided in-sample selection of training negatives for text embedding fine-tuning. arXiv 2024, arXiv:2402.16829. [Google Scholar] [CrossRef]
- Cao, H. Recent advances in text embedding: A Comprehensive Review of Top-Performing Methods on the MTEB Benchmark. arXiv 2024, arXiv:2406.01607. [Google Scholar]
- Gan, D.; Li, J. Small, Open-Source Text-Embedding Models as Substitutes to OpenAI Models for Gene Analysis. bioRxiv 2025, 638462. [Google Scholar] [CrossRef]
- Muennighoff, N.; Tazi, N.; Magne, L.; Reimers, N. MTEB: Massive text embedding benchmark. arXiv 2022, arXiv:2210.07316. [Google Scholar]
- BGE-M3 Model Card and Documentation, Version 1.0; Hugging Face; Beijing Academy of Artificial Intelligence: Beijing, China, 2023. Available online: https://huggingface.co/BAAI/bge-m3 (accessed on 26 June 2025).
- Goffman, E. Forms of Talk; University of Pennsylvania Press: Philadelphia, PA, USA, 1981. [Google Scholar]
- Su, H.; Shi, W.; Kasai, J.; Wang, Y.; Hu, Y.; Ostendorf, M.; Yih, W.-t.; Smith, N.A.; Zettlemoyer, L.; Yu, T. One embedder, any task: Instruction-finetuned text embeddings. arXiv 2022, arXiv:2212.09741. [Google Scholar]
- Wu, C.; Wu, F.; Liu, J.; Yuan, Z.; Wu, S.; Huang, Y. Thu_ngn at semeval-2018 task 1: Fine-grained tweet sentiment intensity analysis with attention Cnn-LSTM. In Proceedings of the 12th International Workshop on Semantic Evaluation, New Orleans, LA, USA, 5–6 June 2018; pp. 186–192. [Google Scholar]
- What is sentiment analysis? In Proceedings of the IBM Think, Boston, MA, USA, 24 August 2023; IBM: Armonk, NY, USA, 2023. Available online: https://www.ibm.com/think/topics/sentiment-analysis (accessed on 22 July 2025).
- Amazon Web Services. What Is Sentiment Analysis? Available online: https://aws.amazon.com/what-is/sentiment-analysis/ (accessed on 22 June 2025).
- Kausar, S.; Huahu, X.U.; Ahmad, W.; Shabir, M.Y. A sentiment polarity categorization technique for online product reviews. IEEE Access 2019, 8, 3594–3605. [Google Scholar] [CrossRef]
- Tirpude, S.; Thakre, Y.; Sudan, S.; Agrawal, S.; Ganorkar, A. Mining Comments and Sentiments in YouTube Live Chat Data. In Proceedings of the 2023 4th International Conference on Intelligent Technologies (CONIT), Hubballi, India, 23–25 June 2023; IEEE: Piscataway, NJ, USA, June 2024; pp. 1–6. [Google Scholar]
- Dong, Y. Fine-grained sentiment analysis for social media: From multi-model collaboration to cross-language multimodal analysis. Adv. Eng. Innov. 2025, 5, 152–156. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, J.; Jin, S. Fine-Grained Sentiment Analysis Based on SSFF-GCN Model. Systems 2025, 2, 111. [Google Scholar] [CrossRef]
- Kaminska, O.; Cornelis, C.; Hoste, V. Fuzzy rough nearest neighbour methods for aspect-based sentiment analysis. Electronics 2023, 5, 1088. [Google Scholar] [CrossRef]
- Birjali, M.; Kasri, M.; Beni-Hssane, A. A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowl.-Based Syst. 2021, 226, 107134. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, S.W. Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis. Comput. Mater. Contin. 2024, 81, 1855–1877. [Google Scholar] [CrossRef]
- Hu, H.; Wei, Y.; Zhou, Y. Product-harm crisis intelligent warning system design based on fine-grained sentiment analysis of automobile complaints. Complex Intell. Syst. 2023, 3, 2313–2320. [Google Scholar] [CrossRef]
- Akila, R.; Revathi, S. Fine Grained Analysis of Intention for Social Media Reviews Using Distance Measure and Deep Learning Technique. J. Internet Serv. Inf. Secur. 2023, 2, 48–64. [Google Scholar] [CrossRef]
- Torres, E.C.M.; de Picado-Santos, L.G. Sentiment Analysis and Topic Modeling in Transportation: A Literature Review. Appl. Sci. 2025, 12, 6576. [Google Scholar] [CrossRef]
- Pullanikkat, R.; Poddar, S.; Das, A.; Jaiswal, T.; Singh, V.K.; Basu, M.; Ghosh, S. Utilizing the Twitter social media to identify transportation-related grievances in Indian cities. Soc. Netw. Anal. Min. 2024, 1, 118. [Google Scholar] [CrossRef]
- Leong, M.; Abdelhalim, A.; Ha, J.; Patterson, D.; Pincus, G.L.; Harris, A.B.; Eichler, M.; Zhao, J. Metroberta: Leveraging traditional customer relationship management data to develop a transit-topic-aware language model. Transp. Res. Rec. 2024, 9, 215–229. [Google Scholar] [CrossRef]
- Rønningstad, E.; Storset, L.C.; Mæhlum, P.; Øvrelid, L.; Velldal, E. Mixed Feelings: Cross-Domain Sentiment Classification of Patient Feedback. In Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025), Tallinn, Estonia, 3–5 March 2025; pp. 537–543. [Google Scholar]
- Pullanikkat, R.; Basu, M.; Ghosh, S. Hear the Commute: A Generative AI-Based Framework to Summarize Transport Grievances from Social Media. Int. J. Intell. Transp. Syst. Res. 2025, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Chen, R.; Zheng, D.; Pang, P.C.I.; Lam, C.K.; Wong, D.; Wang, Y. Identifying healthcare needs with patient experience reviews using ChatGPT. PLoS ONE 2025, 3, e0313442. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Mao, C.; Pang, P.C.I.; Zhu, Q.; Xu, D.; Wang, Y. Revealing patient dissatisfaction with health care resource allocation in multiple dimensions using large language models and the international classification of diseases 11th revision: Aspect-based sentiment analysis. J. Med. Internet Res. 2025, 27, e66344. [Google Scholar] [CrossRef]
- Ruan, K.; Wang, X.; Di, X. From Twitter to Reasoner: Understand mobility travel modes and sentiment using large language models. In Proceedings of the 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), Edmonton, AB, Canada, 24–27 September 2024; IEEE: New York, NY, USA, 2024; pp. 454–459. [Google Scholar]
- Esperança, M.; Freitas, D.; Paixão, P.V.; Marcos, T.A.; Martins, R.A.; Ferreira, J.C. Proactive Complaint Management in Public Sector Informatics Using AI: A Semantic Pattern Recognition Framework. Appl. Sci. 2025, 12, 6673. [Google Scholar] [CrossRef]
- Mehta, P.; Bansal, S. A Unified Platform for Resolving Citizens’ Queries on Beneficiary Services by Using AI-Powered Chatbots. Int. J. Environ. Sci. 2025, 11, 362–376. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, G.; Cao, J. Research on Public Service Request Text Classification Based on BERT-BiLSTM-CNN Feature Fusion. Appl. Sci. 2024, 14, 6282. [Google Scholar] [CrossRef]
- Nai, R.; Meo, R.; Morina, G.; Pasteris, P. Public tenders, complaints, machine learning and recommender systems: A case study in public administration. Comput. Law Secur. Rev. 2023, 51, 105887. [Google Scholar] [CrossRef]
- Agustina, N.; Naseer, M.; Gusdevi, H.; Rismayadi, D.A. Development of a Public Complaint Classification Model to Support E-Government Using IndoBERT. In Proceedings of the 2024 6th International Conference on Cybernetics and Intelligent System (ICORIS), Central Java, Indonesia, 29–30 November, 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar]
- Jin, M.; Aletras, N. Modeling the Severity of Complaints in Social Media. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Mexico City, Mexico, 6–11 June 2021; pp. 2264–2274. [Google Scholar]
- Liu, J.; Long, R.; Chen, H.; Wu, M.; Ma, W.; Li, Q. Topic-sentiment analysis of citizen environmental complaints in China: Using a Stacking-BERT model. J. Environ. Manag. 2024, 371, 123112. [Google Scholar] [CrossRef]
- Singh, A.; Saha, S. Are you really complaining? A multi-task framework for complaint identification, emotion, and sentiment classification. In Proceedings of the International Conference on Document Analysis and Recognition, Lausanne, Switzerland, 5–10 September 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 715–731. [Google Scholar]
- Singh, A.; Bhatia, R.; Saha, S. Complaint and severity identification from online financial content. IEEE Trans. Comput. Soc. Syst. 2023, 1, 660–670. [Google Scholar] [CrossRef]
- Joshi, A.; Kumar, A.; Patel, N. Leveraging Natural Language Processing for Real-Time Financial Complaint Analysis on Social Media: A Multitasking Approach. SSRN 2024, SSRN 5059673. [Google Scholar] [CrossRef]
- Caralt, M.H.; Sekulić, I.; Carević, F.; Khau, N.; Popa, D.N.; Guedes, B.; GuimarãesMathis, V.; Yang, Z.; Manso, A.; Reddy, M.; et al. “Stupid robot, I want to speak to a human!” User Frustration Detection in Task-Oriented Dialog Systems. arXiv 2024, arXiv:2411.17437. [Google Scholar] [CrossRef]
- Berkowitz, L. Frustration-aggression hypothesis: Examination and reformulation. Psychol. Bull. 1989, 106, 59. [Google Scholar] [CrossRef] [PubMed]
- Searle, J.R. Expression and Meaning: Studies in the Theory of Speech Acts; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Wang, L.; Li, L.; Dai, D.; Chen, D.; Zhou, H.; Meng, F.; Zhou, J.; Sun, X. Label Words are Anchors: An Information Flow Perspective for Understanding In-Context Learning. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, 6–10 December 2023. [Google Scholar]
- Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 2017, 30, 4077–4087. [Google Scholar]
- Liu, H.; Zhao, S.; Zhang, X.; Zhang, F.; Wang, W.; Ma, F.; Chen, H.; Yu, H.; Zhang, X. Liberating seen classes: Boosting few-shot and zero-shot text classification via anchor generation and classification reframing. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 18644–18652. [Google Scholar]
- Paletto, L.; Basile, V.; Esposito, R. Label Augmentation for Zero-Shot Hierarchical Text Classification. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, Bangkok, Thailand, 11–16 August 2024; Volume 1, pp. 7697–7706. [Google Scholar]
- Hugging Face. Intfloat/Multilingual-e5-large-instruct. Available online: https://huggingface.co/intfloat/multilingual-e5-large-instruct (accessed on 1 July 2025).
- Asai, A.; Schick, T.; Lewis, P.; Chen, X.; Izacard, G.; Riedel, S.; Yih, W.T. Task-aware Retrieval with Instructions. In Findings of the Association for Computational Linguistics: ACL; ACL: Stroudsburg, PA, USA, 2023; pp. 3650–3675. [Google Scholar]
- Zhang, W.; Xiong, C.; Stratos, K.; Overwijk, A. Improving multitask retrieval by promoting task specialization. Trans. Assoc. Comput. Linguist. 2023, 11, 1201–1212. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 9, 1263–1284. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, Y. Pooling and attention: What are effective designs for llm-based embedding models? arXiv 2024, arXiv:2409.02727. [Google Scholar] [CrossRef]
- Wang, L.; Yang, N.; Huang, X.; Jiao, B.; Yang, L.; Jiang, D.; Majumder, R.; Wei, F. Text embeddings by weakly-supervised contrastive pre-training. arXiv 2022, arXiv:2212.03533. [Google Scholar]
- Huang, L.; Liang, S.; Ye, F.; Gao, N. A fast attention network for joint intent detection and slot filling on edge devices. IEEE Trans. Artif. Intell. 2023, 2, 530–540. [Google Scholar] [CrossRef]
- Senge, R.; Del Coz, J.J.; Hüllermeier, E. On the problem of error propagation in classifier chains for multi-label classification. In Data Analysis, Machine Learning and Knowledge Discovery; Springer International Publishing: Cham, Switzerland, 2013; pp. 163–170. [Google Scholar]
- Bell, S.J.; Meglioli, M.C.; Richards, M.; Sánchez, E.; Ropers, C.; Wang, S.; Williams, A.; Sagun, L.; Costa-jussà, M.R. On the role of speech data in reducing toxicity detection bias. arXiv 2024, arXiv:2411.08135. [Google Scholar] [CrossRef]
- Rakhimzhanov, D.; Belginova, S.; Yedilkhan, D. Automated Classification of Public Transport Complaints via Text Mining Using LLMs and Embeddings. Information 2025, 8, 644. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, 2–7 June 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1 (Long and Short Papers), pp. 4171–4186. [Google Scholar]
- Mosbach, M.; Andriushchenko, M.; Klakow, D. On the stability of fine-tuning bert: Misconceptions, explanations, and strong baselines. arXiv 2020, arXiv:2006.04884. [Google Scholar]
- Du, Y.; Nguyen, D. Measuring the Instability of Fine-Tuning. In Proceedings of the 61st Annual Meeting Of The Association For Computational Linguistics, Toronto, Canada, 9–14 July 2023. [Google Scholar]
- Hua, H.; Li, X.; Dou, D.; Xu, C.; Luo, J. Noise Stability Regularization for Improving BERT Fine-tuning. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Mexico City, Mexico, 6–11 June 2021; pp. 3229–3241. [Google Scholar]
- Manias, G.; Mavrogiorgou, A.; Kiourtis, A.; Symvoulidis, C.; Kyriazis, D. Multilingual text categorization and sentiment analysis: A comparative analysis of the utilization of multilingual approaches for classifying twitter data. Neural Comput. Appl. 2023, 29, 21415–21431. [Google Scholar] [CrossRef] [PubMed]
- Vileikytė, B.; Lukoševičius, M.; Stankevičius, L. Sentiment analysis of Lithuanian online reviews using large language models. In Proceedings of the CEUR Workshop Proceedings: IVUS 2024: Information Society and University Studies 2024, Proceedings of the 29th International Conference on Information Society and University Studies (IVUS 2023), Kaunas, Lithuania, 17 May 2024; CEUR-WS: Aachen, Germany, 2024; Volume 3885, pp. 249–258. [Google Scholar]
No | Facet, Its Meaning | Label | Description | Direct or Indirect Indicators in the Text |
---|---|---|---|---|
1 | Aspect, i.e., the service area addressed by the complaint | Condition | Issues related to the physical state and comfort of the bus | Indicated by phrases such as broken seats, malfunctioning doors, poor ventilation, dirt, noise, cold, etc. |
Information | Issues related to passenger information | Indicated by phrases such as missing route announcements, faulty display screens, non-working information display, etc. | ||
Operations | Issues related to operations | Indicated by phrases such as long waiting, late arrivals or departures, skipping stops, route deviations, overcrowding, etc. | ||
Payment | Issues related to fare collection and validation | Indicated by phrases such as non-working card readers, rejected QR, cash-only, double charging, difficulties topping up transport cards, etc. | ||
Personnel | Issues related to the behavior of drivers or conductors | Indicated by phrases such as rudeness, unsafe driving, ignoring passenger requests, improper dress, insult, boorish behavior, etc. | ||
Roadside | Issues related to deficiencies in stop and curb infrastructure | Indicated by phrases such as damaged shelters, poor lighting, lack of seating, slippery platforms, inaccessible ramps, etc. | ||
Bike | Issues related to the bike sharing system | Indicated by phrases such as bicycle, station, parked | ||
Lost | Lost items requests | Indicated by phrases such as lost, forgot, left | ||
2 | Frustration, i.e., an implicit emotional state caused by an obstacle to need satisfaction | 0 | Frustration is absent | Indicated by neutral, matter-of-fact tone and by the absence of implicit emotional tension or tangible loss or harm |
1 | Frustration is present | Indicated by phrases such as loss, harm, hurt, wasted time, wasted money, disrupted plans, deterioration of health, spoiled mood, etc. | ||
3 | Request, i.e., an explicit call for action | 0 | Request is absent | Indicated by the absence of explicit call for action, demand, request |
1 | Request is present | Indicated by phrases such as extend the route, take action, punish, fix, etc. | ||
4 | Priority level, as defined by the quadrant corresponding to the complaint’s position on the Request–Frustration plane | Incident (I) | Both frustration and a request are present | Computed directly from the underlying Frustration and Request values |
Escalation (II) | Frustration is present, but a request is absent | |||
Routine (IV) | Frustration is absent and a request is present | |||
Record (III) | Both frustration and a request are absent |
Model | Size | Language Coverage | Tuning Type | Embedding Dimension | Architecture |
---|---|---|---|---|---|
multilingual-E5-large-instruct | ~560 M | 100+ | Instruction-tuned | 1024 | XLM-Roberta-large (BERT) |
E5-mistral-7B-instruct | ~7.1 B | English with residual multilingual capability | Instruction-tuned | 4096 | Mistral-7B (LLM) |
GTE-Qwen2-1.5B-instruct | 1.5 B | 29 | Instruction-tuned | 1536 | Qwen2-1.5B (LLM) |
BGE-M3 | ~560 M | 100+ | Task-tuned | 1024 | XLM-Roberta-large (BERT) |
LaBSE | 471 M | 109 | Language agnostic | 768 | BERT-base (BERT) |
No | Facet | Class Label | Anchor Text |
---|---|---|---|
1 | Aspect | Condition | bus, interior, doors, windows, dirty, noisy, crowded, temperature |
Information | information board, electronic display, at the stop | ||
Operations | long, wait, route, late, skipped, dropped off | ||
Payment | double charge, payment, QR, terminal, amount | ||
Personnel | rude, driver, conductor, inspector, said, surname | ||
Roadside | manhole, parking, gate, snow, sidewalk | ||
Bike | bicycle, station, parked | ||
Lost | left, forgot, phone | ||
2 | Frustration | 1 | frustration, dissatisfaction, discontent, lateness |
3 | Request | 1 | request, demand, take, action, improvement, suggestion |
Side/Component | Recommended Prefix | Semantic Role in Training | Effect on Resulting Embedding |
---|---|---|---|
The retrieval task (asymmetric) | |||
Instruction | Instruct: + one-sentence task description (e.g., “Given a web search query, retrieve relevant passages that answer the query\n”) | Conveys task context | Shifts the query embedding toward the intended retrieval objective |
Query | Query: + anchor text | Poses an information query | Embedding becomes concise and abstract, optimized to match relevant passages |
Passage | Passage: + complaint text | Provides a comprehensive answer fragment | Embedding retains richer factual/contextual detail to satisfy queries |
The semantic similarity task (symmetric) | |||
Instruction | - | Not used for symmetric tasks | - |
Query 1 | query: + anchor text | Serves as the first sentence in a similarity pair | Embedding encodes full semantics and is optimized to lie close to its counterpart when the pair is meaning-equivalent |
Query 2 | query: + complaint text | Serves as the second sentence in a similarity pair | Embedding likewise captures full semantics, aligning with Query 1 when the two sentences are paraphrases and separating when they are not |
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.980 | 0.735 | 0.840 | 29 | 0.933 | 0.966 | 0.949 |
Condition | 151 | 0.417 | 0.669 | 0.514 | 60 | 0.697 | 0.767 | 0.730 |
Information | 65 | 0.516 | 0.754 | 0.613 | 20 | 0.680 | 0.850 | 0.756 |
Lost | 1 | 0.143 | 1.000 | 0.250 | - | - | - | - |
Operations | 1305 | 0.807 | 0.918 | 0.859 | 524 | 0.922 | 0.865 | 0.892 |
Payment | 230 | 0.916 | 0.761 | 0.831 | 96 | 0.922 | 0.865 | 0.892 |
Personnel | 560 | 0.880 | 0.473 | 0.616 | 223 | 0.841 | 0.874 | 0.857 |
Roadside | 20 | 0.536 | 0.750 | 0.625 | 8 | 0.714 | 0.625 | 0.667 |
Total | 2400 | Accuracy: 0.772 | 960 | Accuracy: 0.895 |
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.938 | 0.882 | 0.909 | 29 | 0.966 | 0.966 | 0.966 |
Condition | 151 | 0.361 | 0.656 | 0.466 | 60 | 0.746 | 0.733 | 0.739 |
Information | 65 | 0.481 | 0.800 | 0.601 | 20 | 0.652 | 0.750 | 0.698 |
Lost | 1 | 0.000 | 0.000 | 0.000 | - | - | - | - |
Operations | 1305 | 0.831 | 0.857 | 0.843 | 524 | 0.938 | 0.931 | 0.935 |
Payment | 230 | 0.934 | 0.796 | 0.859 | 96 | 0.946 | 0.906 | 0.926 |
Personnel | 560 | 0.832 | 0.568 | 0.675 | 223 | 0.838 | 0.857 | 0.847 |
Roadside | 20 | 0.556 | 0.750 | 0.638 | 8 | 0.667 | 0.750 | 0.706 |
Total | 2400 | Accuracy: 0.769 | 960 | Accuracy: 0.895 |
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.882 | 0.882 | 0.882 | 29 | 0.964 | 0.931 | 0.947 |
Condition | 151 | 0.269 | 0.450 | 0.337 | 60 | 0.667 | 0.700 | 0.683 |
Information | 65 | 0.333 | 0.908 | 0.488 | 20 | 0.727 | 0.800 | 0.762 |
Lost | 1 | 0.043 | 1.000 | 0.083 | - | - | - | - |
Operations | 1305 | 0.766 | 0.904 | 0.829 | 524 | 0.943 | 0.908 | 0.925 |
Payment | 230 | 0.967 | 0.635 | 0.766 | 96 | 0.936 | 0.917 | 0.926 |
Personnel | 560 | 0.863 | 0.248 | 0.386 | 223 | 0.786 | 0.857 | 0.820 |
Roadside | 20 | 0.577 | 0.750 | 0.652 | 8 | 0.800 | 0.500 | 0.615 |
Total | 2400 | Accuracy: 0.695 | 960 | Accuracy: 0.879 |
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.937 | 0.868 | 0.901 | 29 | 0.963 | 0.897 | 0.929 |
Condition | 151 | 0.688 | 0.291 | 0.409 | 60 | 0.708 | 0.767 | 0.736 |
Information | 65 | 0.355 | 0.769 | 0.485 | 20 | 0.727 | 0.800 | 0.762 |
Lost | 1 | 0.077 | 1.000 | 0.143 | - | - | - | - |
Operations | 1305 | 0.669 | 0.969 | 0.792 | 524 | 0.955 | 0.924 | 0.939 |
Payment | 230 | 0.970 | 0.700 | 0.813 | 96 | 0.917 | 0.917 | 0.917 |
Personnel | 560 | 0.942 | 0.087 | 0.160 | 223 | 0.843 | 0.892 | 0.867 |
Roadside | 20 | 0.923 | 0.600 | 0.727 | 8 | 0.714 | 0.625 | 0.667 |
Total | 2400 | Accuracy: 0.683 | 960 | Accuracy: 0.9 |
Aspect | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Bike | 68 | 0.312 | 0.794 | 0.448 | 29 | 0.900 | 0.931 | 0.915 |
Condition | 151 | 0.223 | 0.656 | 0.333 | 60 | 0.535 | 0.767 | 0.630 |
Information | 65 | 0.479 | 0.523 | 0.500 | 20 | 0.600 | 0.900 | 0.720 |
Lost | 1 | 0.000 | 0.000 | 0.000 | - | - | - | - |
Operations | 1305 | 0.774 | 0.788 | 0.781 | 524 | 0.947 | 0.912 | 0.929 |
Payment | 230 | 0.867 | 0.396 | 0.543 | 96 | 0.943 | 0.865 | 0.902 |
Personnel | 560 | 0.778 | 0.087 | 0.157 | 223 | 0.833 | 0.803 | 0.817 |
Roadside | 20 | 0.084 | 0.750 | 0.151 | 8 | 0.500 | 0.375 | 0.429 |
Total | 2400 | Accuracy: 0.571 | 960 | Accuracy: 0.869 |
Facet | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Frustration | ||||||||
0 | 1428 | 0.818 | 0.709 | 0.759 | 575 | 0.828 | 0.906 | 0.865 |
1 | 972 | 0.642 | 0.769 | 0.700 | 385 | 0.837 | 0.719 | 0.774 |
Total | 2400 | Accuracy: 0.733 | 960 | Accuracy: 0.831 | ||||
Request | ||||||||
0 | 1215 | 0.828 | 0.770 | 0.798 | 497 | 0.887 | 0.821 | 0.853 |
1 | 1185 | 0.780 | 0.836 | 0.807 | 463 | 0.822 | 0.888 | 0.854 |
Total | 2400 | Accuracy: 0.803 | 960 | Accuracy: 0.853 |
Facet | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Frustration | ||||||||
0 | 1428 | 0.784 | 0.662 | 0.718 | 575 | 0.825 | 0.845 | 0.835 |
1 | 972 | 0.595 | 0.731 | 0.657 | 385 | 0.760 | 0.732 | 0.746 |
Total | 2400 | Accuracy: 0.690 | 960 | Accuracy: 0.800 | ||||
Request | ||||||||
0 | 1215 | 0.761 | 0.740 | 0.750 | 497 | 0.870 | 0.805 | 0.836 |
1 | 1185 | 0.741 | 0.761 | 0.751 | 463 | 0.806 | 0.870 | 0.837 |
Total | 2400 | Accuracy: 0.750 | 960 | Accuracy: 0.836 |
Facet | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Frustration | ||||||||
0 | 1428 | 0.767 | 0.704 | 0.734 | 575 | 0.804 | 0.857 | 0.830 |
1 | 972 | 0.612 | 0.685 | 0.647 | 385 | 0.764 | 0.688 | 0.724 |
Total | 2400 | Accuracy: 0.697 | 960 | Accuracy: 0.790 | ||||
Request | ||||||||
0 | 1215 | 0.712 | 0.726 | 0.719 | 497 | 0.823 | 0.813 | 0.818 |
1 | 1185 | 0.713 | 0.699 | 0.706 | 463 | 0.802 | 0.812 | 0.807 |
Total | 2400 | Accuracy: 0.713 | 960 | Accuracy: 0.812 |
Facet | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Frustration | ||||||||
0 | 1428 | 0.727 | 0.629 | 0.674 | 575 | 0.844 | 0.877 | 0.860 |
1 | 972 | 0.545 | 0.652 | 0.594 | 385 | 0.804 | 0.758 | 0.781 |
Total | 2400 | Accuracy: 0.638 | 960 | Accuracy: 0.829 | ||||
Request | ||||||||
0 | 1215 | 0.771 | 0.763 | 0.767 | 497 | 0.871 | 0.869 | 0.870 |
1 | 1185 | 0.759 | 0.767 | 0.763 | 463 | 0.860 | 0.862 | 0.861 |
Total | 2400 | Accuracy: 0.675 | 960 | Accuracy: 0.866 |
Facet | Zero-Shot Classification | Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Frustration | ||||||||
0 | 1428 | 0.658 | 0.532 | 0.588 | 575 | 0.833 | 0.868 | 0.850 |
1 | 972 | 0.463 | 0.594 | 0.521 | 385 | 0.789 | 0.740 | 0.764 |
Total | 2400 | Accuracy: 0.557 | 960 | Accuracy: 0.817 | ||||
Request | ||||||||
0 | 1215 | 0.583 | 0.597 | 0.590 | 497 | 0.909 | 0.859 | 0.883 |
1 | 1185 | 0.576 | 0.563 | 0.570 | 463 | 0.857 | 0.907 | 0.881 |
Total | 2400 | Accuracy: 0.580 | 960 | Accuracy: 0.882 |
Priority Category | After Zero-Shot Classification | After Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Incident (I) | 591 | 0.477 | 0.717 | 0.573 | 228 | 0.617 | 0.693 | 0.653 |
Escalation (II) | 381 | 0.493 | 0.354 | 0.412 | 157 | 0.733 | 0.350 | 0.474 |
Routine (IV) | 594 | 0.622 | 0.399 | 0.486 | 235 | 0.668 | 0.694 | 0.681 |
Record (III) | 834 | 0.743 | 0.763 | 0.753 | 340 | 0.787 | 0.891 | 0.836 |
Total | 2400 | Accuracy: 0.597 | 960 | Accuracy: 0.707 |
Priority Category | After Zero-Shot Classification | After Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Incident (I) | 591 | 0.434 | 0.660 | 0.523 | 228 | 0.555 | 0.711 | 0.623 |
Escalation (II) | 381 | 0.332 | 0.257 | 0.290 | 157 | 0.646 | 0.325 | 0.432 |
Routine (IV) | 594 | 0.561 | 0.301 | 0.392 | 235 | 0.688 | 0.609 | 0.646 |
Record (III) | 834 | 0.662 | 0.704 | 0.682 | 340 | 0.766 | 0.859 | 0.810 |
Total | 2400 | Accuracy: 0.522 | 960 | Accuracy: 0.675 |
Priority Category | After Zero-Shot Classification | After Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Incident (I) | 591 | 0.478 | 0.613 | 0.537 | 228 | 0.562 | 0.636 | 0.597 |
Escalation (II) | 381 | 0.263 | 0.228 | 0.244 | 157 | 0.607 | 0.344 | 0.439 |
Routine (IV) | 594 | 0.530 | 0.360 | 0.429 | 235 | 0.645 | 0.579 | 0.610 |
Record (III) | 834 | 0.618 | 0.673 | 0.644 | 340 | 0.721 | 0.853 | 0.782 |
Total | 2400 | Accuracy: 0.510 | 960 | Accuracy: 0.651 |
Priority Category | After Zero-Shot Classification | After Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Incident (I) | 591 | 0.411 | 0.575 | 0.479 | 228 | 0.651 | 0.671 | 0.661 |
Escalation (II) | 381 | 0.324 | 0.286 | 0.304 | 157 | 0.617 | 0.503 | 0.554 |
Routine (IV) | 594 | 0.550 | 0.342 | 0.422 | 235 | 0.712 | 0.694 | 0.703 |
Record (III) | 834 | 0.648 | 0.674 | 0.661 | 340 | 0.796 | 0.862 | 0.828 |
Total | 2400 | Accuracy: 0.506 | 960 | Accuracy: 0.717 |
Priority Category | After Zero-Shot Classification | After Lightweight Classification | ||||||
---|---|---|---|---|---|---|---|---|
Count | P | R | F1 | Count | P | R | F1 | |
Incident (I) | 591 | 0.309 | 0.443 | 0.364 | 228 | 0.623 | 0.702 | 0.660 |
Escalation (II) | 381 | 0.246 | 0.257 | 0.252 | 157 | 0.654 | 0.433 | 0.521 |
Routine (IV) | 594 | 0.468 | 0.244 | 0.321 | 235 | 0.712 | 0.706 | 0.709 |
Record (III) | 834 | 0.394 | 0.399 | 0.397 | 340 | 0.817 | 0.879 | 0.847 |
Total | 2400 | Accuracy: 0.349 | 960 | Accuracy: 0.722 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugumanova, A.; Rakhimzhanov, D.; Mansurova, A. Global Embeddings, Local Signals: Zero-Shot Sentiment Analysis of Transport Complaints. Informatics 2025, 12, 82. https://doi.org/10.3390/informatics12030082
Nugumanova A, Rakhimzhanov D, Mansurova A. Global Embeddings, Local Signals: Zero-Shot Sentiment Analysis of Transport Complaints. Informatics. 2025; 12(3):82. https://doi.org/10.3390/informatics12030082
Chicago/Turabian StyleNugumanova, Aliya, Daniyar Rakhimzhanov, and Aiganym Mansurova. 2025. "Global Embeddings, Local Signals: Zero-Shot Sentiment Analysis of Transport Complaints" Informatics 12, no. 3: 82. https://doi.org/10.3390/informatics12030082
APA StyleNugumanova, A., Rakhimzhanov, D., & Mansurova, A. (2025). Global Embeddings, Local Signals: Zero-Shot Sentiment Analysis of Transport Complaints. Informatics, 12(3), 82. https://doi.org/10.3390/informatics12030082