Sweet Relief? Short-Term Post-Traumatic High-Sucrose Intake Attenuates Acute but Not Long-Term Fear Responses in Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experiment Design
2.3. Fear Conditioning (FC)
2.4. Conditioning Fear Tests (CFTs)
2.5. Statistical Analysis
3. Results
3.1. Sucrose Habituation
3.2. Prevention of Conditioned Freezing 24 h After Trauma by Post-trauma Sucrose Drinking for 24 h
3.3. Remote, PTSD-like Memories After Post-trauma Sucrose Drinking
3.4. Different Timing of 16% Sucrose Drinking
4. Discussion
4.1. Strengths of Our Project
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | Acute stress disorder |
CFT | Conditioned Fear Test |
FC | Fear conditioning |
HPA | Hypothalamic–pituitary–adrenocortical |
NADPH | Nicotinamide adenine dinucleotide phosphate |
PTSD | Post-traumatic stress disorders |
References
- Rowling, J.K. Harry Potter and the Prisoner of Azkaban; Bloomsbury Publishing: London, UK, 1999. [Google Scholar]
- Kelmendi, K.; Hamby, S. Resilience after trauma in kosovo and southeastern europe: A scoping review. Trauma Violence Abus. 2023, 24, 2333–2345. [Google Scholar] [CrossRef]
- Malyshev, A.V.; Sukhanova, I.A.; Ushakova, V.M.; Zorkina, Y.A.; Abramova, O.V.; Morozova, A.Y.; Zubkov, E.A.; Mitkin, N.A.; Pavshintsev, V.V.; Doronin, I.I. Peptide LCGA-17 attenuates behavioral and neurochemical deficits in rodent models of PTSD and depression. Pharmaceuticals 2022, 15, 462. [Google Scholar] [CrossRef]
- Martin, F.; Sashidharan, S. The mental health of adult irregular migrants to Europe: A systematic review. J. Immigr. Minor. Health 2023, 25, 427–435. [Google Scholar] [CrossRef]
- Trautmann, S.; Wittchen, H.-U. Trauma and PTSD in Europe. In Post-Traumatic Stress Disorder; Nemeroff, C.B., Marmar, C.R., Nemeroff, C.B., Marmar, C., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 133–146. [Google Scholar]
- Ahmed, N.; Barnett, P.; Greenburgh, A.; Pemovska, T.; Stefanidou, T.; Lyons, N.; Ikhtabi, S.; Talwar, S.; Francis, E.R.; Harris, S.M. Mental health in Europe during the COVID-19 pandemic: A systematic review. Lancet Psychiatry 2023, 10, 537–556. [Google Scholar] [CrossRef]
- So, S.; Wang, T.Q.; Yu, B.E.; Malvankar-Mehta, M.S. The Psychological Impact of the COVID-19 Pandemic on Frontline Healthcare Workers: A Systematic Review and a Meta-Analysis. Eur. J. Ment. Health 2023, 18, 1–22. [Google Scholar] [CrossRef]
- El Khoury-Malhame, M.; Rizk, R.; Joukayem, E.; Rechdan, A.; Sawma, T. The psychological impact of COVID-19 in a socio-politically unstable environment: Protective effects of sleep and gratitude in Lebanese adults. BMC Psychol. 2023, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Sumner, P.J.; Tan, E.J.; Neill, E.; Hielscher, E.; Blake, J.A.; Scott, J.G.; Phillipou, A.; Toh, W.L.; Van Rheenen, T.E. Comparing the impact of high versus low lockdown severity on the mental health of young people in Australia during the COVID-19 pandemic. Psychiatry Res. 2023, 322, 115121. [Google Scholar] [CrossRef] [PubMed]
- Ortega-de San Luis, C.; Ryan, T.J. Understanding the physical basis of memory: Molecular mechanisms of the engram. J. Biol. Chem. 2022, 298, 101866. [Google Scholar] [CrossRef]
- Devulapalli, R.; Jones, N.; Farrell, K.; Musaus, M.; Kugler, H.; McFadden, T.; Orsi, S.A.; Martin, K.; Nelsen, J.; Navabpour, S. Males and females differ in the regulation and engagement of, but not requirement for, protein degradation in the amygdala during fear memory formation. Neurobiol. Learn. Mem. 2021, 180, 107404. [Google Scholar] [CrossRef]
- Torok, B.; Sipos, E.; Pivac, N.; Zelena, D. Modelling posttraumatic stress disorders in animals. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 90, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Pitman, R.K.; Rasmusson, A.M.; Koenen, K.C.; Shin, L.M.; Orr, S.P.; Gilbertson, M.W.; Milad, M.R.; Liberzon, I. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 2012, 13, 769–787. [Google Scholar] [CrossRef] [PubMed]
- Milad, M.R.; Quirk, G.J. Fear extinction as a model for translational neuroscience: Ten years of progress. Annu. Rev. Psychol. 2012, 63, 129–151. [Google Scholar] [CrossRef] [PubMed]
- van der Kooij, M.A. The impact of chronic stress on energy metabolism. Mol. Cell. Neurosci. 2020, 107, 103525. [Google Scholar] [CrossRef]
- Hitze, B.; Hubold, C.; van Dyken, R.; Schlichting, K.; Lehnert, H.; Entringer, S.; Peters, A. How the selfish brain organizes its supply and demand. Front. Neuroenerg. 2010, 2, 7. [Google Scholar] [CrossRef]
- Musazzi, L.; Sala, N.; Tornese, P.; Gallivanone, F.; Belloli, S.; Conte, A.; Di Grigoli, G.; Chen, F.; Ikinci, A.; Treccani, G.; et al. Acute Inescapable Stress Rapidly Increases Synaptic Energy Metabolism in Prefrontal Cortex and Alters Working Memory Performance. Cereb. Cortex 2019, 29, 4948–4957. [Google Scholar] [CrossRef]
- Michopoulos, V.; Vester, A.; Neigh, G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp. Neurol. 2016, 284, 220–229. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, R.Y.; Hu, J.X.; Sun, Y.H.; Li, C.Y.; Huang, H.; Wang, H.; Li, X.M. Hypothalamic-hindbrain circuit for consumption-induced fear regulation. Nat. Commun. 2024, 15, 7728. [Google Scholar] [CrossRef]
- Conoscenti, M.A.; Williams, N.M.; Turcotte, L.P.; Minor, T.R.; Fanselow, M.S. Post-Stress Fructose and Glucose Ingestion Exhibit Dissociable Behavioral and Physiological Effects. Nutrients 2019, 11, 361. [Google Scholar] [CrossRef]
- Qi, X.; Tester, R.F. Lactose, maltose, and sucrose in health and disease. Mol. Nutr. Food Res. 2020, 64, 1901082. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yang, M.; Wu, N.; Li, J.; Song, R. Blockade of dopamine D3 receptor in ventral tegmental area attenuating contextual fear memory. Biomed. Pharmacother. 2023, 158, 114179. [Google Scholar] [CrossRef]
- Zheng, Y.; Fan, L.; Fang, Z.; Liu, Z.; Chen, J.; Zhang, X.; Wang, Y.; Zhang, Y.; Jiang, L.; Chen, Z. Postsynaptic histamine H3 receptors in ventral basal forebrain cholinergic neurons modulate contextual fear memory. Cell Rep. 2023, 42, 113073. [Google Scholar] [CrossRef]
- Custodio, R.J.P.; Hobloss, Z.; Myllys, M.; Hassan, R.; González, D.; Reinders, J.; Bornhorst, J.; Weishaupt, A.-K.; Seddek, A.-l.; Abbas, T. Cognitive Functions, Neurotransmitter Alterations, and Hippocampal Microstructural Changes in Mice Caused by Feeding on Western Diet. Cells 2023, 12, 2331. [Google Scholar] [CrossRef]
- Bellisle, F. Effects of diet on behaviour and cognition in children. Br. J. Nutr. 2004, 92 (Suppl. 2), S227–S232. [Google Scholar] [CrossRef]
- Conoscenti, M.A.; Hart, E.E.; Smith, N.J.; Minor, T.R. Temporal parameters of post-stress prophylactic glucose treatment in rats. Stress 2017, 20, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Kruse, M.S.; Vadillo, M.J.; Fernández, A.M.M.M.; Rey, M.; Zanutto, B.S.; Coirini, H. Sucrose exposure in juvenile rats produces long-term changes in fear memory and anxiety-like behavior. Psychoneuroendocrinology 2019, 104, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Coirini, H.; Rey, M.; Gonzalez Deniselle, M.C.; Kruse, M.S. Long-Term Memory Function Impairments following Sucrose Exposure in Juvenile versus Adult Rats. Biomedicines 2022, 10, 2723. [Google Scholar] [CrossRef]
- Mantantzis, K.; Schlaghecken, F.; Sunram-Lea, S.I.; Maylor, E.A. Sugar rush or sugar crash? A meta-analysis of carbohydrate effects on mood. Neurosci. Biobehav. Rev. 2019, 101, 45–67. [Google Scholar] [CrossRef] [PubMed]
- Labouebe, G.; Boutrel, B.; Tarussio, D.; Thorens, B. Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior. Nat. Neurosci. 2016, 19, 999–1002. [Google Scholar] [CrossRef]
- Labouebe, G.; Thorens, B.; Lamy, C. GLUT2-Expressing Neurons as Glucose Sensors in the Brain: Electrophysiological Analysis. Methods Mol. Biol. 2018, 1713, 255–267. [Google Scholar] [CrossRef]
- Dallman, M.F.; Pecoraro, N.C.; la Fleur, S.E. Chronic stress and comfort foods: Self-medication and abdominal obesity. Brain Behav. Immun. 2005, 19, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.E.; Bhatnagar, S.; Liang, J.; Soriano, L.; Nagy, T.R.; Dallman, M.F. Voluntary sucrose ingestion, like corticosterone replacement, prevents the metabolic deficits of adrenalectomy. J. Neuroendocrinol. 2000, 12, 461–470. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.M.; Ostrander, M.M.; Thomas, I.M.; Packard, B.A.; Furay, A.R.; Dolgas, C.M.; Van Hooren, D.C.; Figueiredo, H.F.; Mueller, N.K.; Choi, D.C.; et al. Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology 2007, 148, 1823–1834. [Google Scholar] [CrossRef]
- Varkonyi, D.; Torok, B.; Sipos, E.; Fazekas, C.L.; Banrevi, K.; Correia, P.; Chaves, T.; Farkas, S.; Szabo, A.; Martinez-Bellver, S.; et al. Investigation of Anxiety- and Depressive-like Symptoms in 4- and 8-Month-Old Male Triple Transgenic Mouse Models of Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 10816. [Google Scholar] [CrossRef]
- Acero-Castillo, M.C.; Ardila-Figueroa, M.C.; Botelho de Oliveira, S. Anhedonic Type Behavior and Anxiety Profile of Wistar-UIS Rats Subjected to Chronic Social Isolation. Front. Behav. Neurosci. 2021, 15, 663761. [Google Scholar] [CrossRef]
- Bachmanov, A.A.; Tordoff, M.G.; Beauchamp, G.K. Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem. Senses 2001, 26, 905–913. [Google Scholar] [CrossRef]
- Pibiri, F.; Nelson, M.; Guidotti, A.; Costa, E.; Pinna, G. Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: A model relevant for posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA 2008, 105, 5567–5572. [Google Scholar] [CrossRef]
- Haering, S.; Meyer, C.; Schulze, L.; Conrad, E.; Blecker, M.K.; El-Haj-Mohamad, R.; Geiling, A.; Klusmann, H.; Schumacher, S.; Knaevelsrud, C.; et al. Sex and gender differences in risk factors for posttraumatic stress disorder: A systematic review and meta-analysis of prospective studies. J. Psychopathol. Clin. Sci. 2024, 133, 429–444. [Google Scholar] [CrossRef]
- Bruzsik, B.; Biro, L.; Zelena, D.; Sipos, E.; Szebik, H.; Sarosdi, K.R.; Horvath, O.; Farkas, I.; Csillag, V.; Finszter, C.K.; et al. Somatostatin Neurons of the Bed Nucleus of Stria Terminalis Enhance Associative Fear Memory Consolidation in Mice. J. Neurosci. 2021, 41, 1982–1995. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Liu, D.; Hu, H.; Hong, Y.; Xiao, Q.; Tu, J. Sugar Beverage Habitation Relieves Chronic Stress-Induced Anxiety-like Behavior but Elicits Compulsive Eating Phenotype via vLS(GAD2) Neurons. Int. J. Mol. Sci. 2022, 24, 661. [Google Scholar] [CrossRef] [PubMed]
- Di Polito, N.; Stylianakis, A.A.; Richardson, R.; Baker, K.D. Real-World Intake of Dietary Sugars Is Associated with Reduced Cortisol Reactivity Following an Acute Physiological Stressor. Nutrients 2023, 15, 209. [Google Scholar] [CrossRef] [PubMed]
- Reichelt, A.C.; Westbrook, R.F.; Morris, M.J. Editorial: Impact of Diet on Learning, Memory and Cognition. Front. Behav. Neurosci. 2017, 11, 96. [Google Scholar] [CrossRef]
- Simsek, T.; Simsek, H.U.; Canturk, N.Z. Response to trauma and metabolic changes: Posttraumatic metabolism. Ulus. Cerrahi Derg. 2014, 30, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, A.J.; Dallman, M.F.; Epel, E.S. Comfort food is comforting to those most stressed: Evidence of the chronic stress response network in high stress women. Psychoneuroendocrinology 2011, 36, 1513–1519. [Google Scholar] [CrossRef]
- Buccellato, K.H.; Peterson, A.L. The role of cortisol in development and treatment of PTSD among service members: A narrative review. Psychoneuroendocrinology 2024, 169, 107152. [Google Scholar] [CrossRef]
- Lawrence, S.; Scofield, R.H. Post traumatic stress disorder associated hypothalamic-pituitary-adrenal axis dysregulation and physical illness. Brain Behav. Immun. Health 2024, 41, 100849. [Google Scholar] [CrossRef]
- Michopoulos, V.; Toufexis, D.; Wilson, M.E. Social stress interacts with diet history to promote emotional feeding in females. Psychoneuroendocrinology 2012, 37, 1479–1490. [Google Scholar] [CrossRef]
- Arce, M.; Michopoulos, V.; Shepard, K.N.; Ha, Q.C.; Wilson, M.E. Diet choice, cortisol reactivity, and emotional feeding in socially housed rhesus monkeys. Physiol. Behav. 2010, 101, 446–455. [Google Scholar] [CrossRef]
- Schur, E.A.; Kleinhans, N.M.; Goldberg, J.; Buchwald, D.; Schwartz, M.W.; Maravilla, K. Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus. Int. J. Obes. 2009, 33, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Maniam, J.; Antoniadis, C.P.; Youngson, N.A.; Sinha, J.K.; Morris, M.J. Sugar Consumption Produces Effects Similar to Early Life Stress Exposure on Hippocampal Markers of Neurogenesis and Stress Response. Front. Mol. Neurosci. 2015, 8, 86. [Google Scholar] [CrossRef]
- Kendig, M.D. Cognitive and behavioural effects of sugar consumption in rodents. A review. Appetite 2014, 80, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, G.; Liu, J.; Lee, S.J.; Lee, D.Y.; Zhang, G.; Kim, Y. Curcumin Mitigates the High-Fat High-Sugar Diet-Induced Impairment of Spatial Memory, Hepatic Metabolism, and the Alteration of the Gut Microbiome in Alzheimer’s Disease-Induced (3xTg-AD) Mice. Nutrients 2024, 16, 240. [Google Scholar] [CrossRef]
- Speer, K.E.; Semple, S.; Naumovski, N.; D’Cunha, N.M.; McKune, A.J. HPA axis function and diurnal cortisol in post-traumatic stress disorder: A systematic review. Neurobiol. Stress 2019, 11, 100180. [Google Scholar] [CrossRef] [PubMed]
- Carmody, R.N.; Gerber, G.K.; Luevano, J.M., Jr.; Gatti, D.M.; Somes, L.; Svenson, K.L.; Turnbaugh, P.J. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 2015, 17, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Iannone, L.F.; Preda, A.; Blottière, H.M.; Clarke, G.; Albani, D.; Belcastro, V.; Carotenuto, M.; Cattaneo, A.; Citraro, R.; Ferraris, C.; et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev. Neurother. 2019, 19, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Hartmann, J.; Ressler, K.J.; Liu, Y.Y.; Koenen, K.C. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain Behav. Immun. 2023, 114, 360–370. [Google Scholar] [CrossRef]
- Voigt, R.M.; Engen, P.A.; Villanueva, M.; Bambi, S.A.; Green, S.J.; Naqib, A.; Raeisi, S.; Shaikh, M.; Hamaker, B.R.; Cantu-Jungles, T.M.; et al. Prebiotics as an adjunct therapy for posttraumatic stress disorder: A pilot randomized controlled trial. Front. Neurosci. 2024, 18, 1477519. [Google Scholar] [CrossRef]
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Overview of oxidative stress and inflammation in diabetes. J. Diabetes 2024, 16, e70014. [Google Scholar] [CrossRef]
- Cherkas, A.; Holota, S.; Mdzinarashvili, T.; Gabbianelli, R.; Zarkovic, N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants 2020, 9, 140. [Google Scholar] [CrossRef]
- Gary, N.C.; Misganaw, B.; Hammamieh, R.; Gautam, A. Exploring metabolomic dynamics in acute stress disorder: Amino acids, lipids, and carbohydrates. Front. Genet. 2024, 15, 1394630. [Google Scholar] [CrossRef]
- Heck, A.L.; Handa, R.J. Sex differences in the hypothalamic-pituitary-adrenal axis’ response to stress: An important role for gonadal hormones. Neuropsychopharmacology 2019, 44, 45–58. [Google Scholar] [CrossRef]
- Curtis, K.S.; Stratford, J.M.; Contreras, R.J. Estrogen increases the taste threshold for sucrose in rats. Physiol. Behav. 2005, 86, 281–286. [Google Scholar] [CrossRef]
- Hayes, J.E.; Duffy, V.B. Oral sensory phenotype identifies level of sugar and fat required for maximal liking. Physiol. Behav. 2008, 95, 77–87. [Google Scholar] [CrossRef]
- Greenwood, B.N.; Thompson, R.S.; Opp, M.R.; Fleshner, M. Repeated exposure to conditioned fear stress increases anxiety and delays sleep recovery following exposure to an acute traumatic stressor. Front. Psychiatry 2014, 5, 146. [Google Scholar] [CrossRef]
- Shumake, J.; Monfils, M.H. Assessing Fear Following Retrieval + Extinction Through Suppression of Baseline Reward Seeking vs. Freezing. Front. Behav. Neurosci. 2015, 9, 355. [Google Scholar] [CrossRef]
- Chu, A.; Gordon, N.T.; DuBois, A.M.; Michel, C.B.; Hanrahan, K.E.; Williams, D.C.; Anzellotti, S.; McDannald, M.A. A fear conditioned cue orchestrates a suite of behaviors in rats. eLife 2024, 13, e82497. [Google Scholar] [CrossRef]
- Shansky, R.M. Are hormones a “female problem” for animal research? Science 2019, 364, 825–826. [Google Scholar] [CrossRef] [PubMed]
- Krych, L.; Hansen, C.H.; Hansen, A.K.; van den Berg, F.W.; Nielsen, D.S. Quantitatively different, yet qualitatively alike: A meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE 2013, 8, e62578. [Google Scholar] [CrossRef] [PubMed]
- Gabellec, M.M.; Crumeyrolle-Arias, M.; Le Saux, F.; Auriou, N.; Jacque, C.; Haour, F. Expression of interleukin-1 genes and interleukin-1 receptors in the mouse brain after hippocampal injury. Neurosci. Res. 1999, 33, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Verbitsky, A.; Dopfel, D.; Zhang, N. Rodent models of post-traumatic stress disorder: Behavioral assessment. Transl. Psychiatry 2020, 10, 132. [Google Scholar] [CrossRef]
- Farbstein, D.; Hollander, N.; Peled, O.; Apter, A.; Fennig, S.; Haberman, Y.; Gitman, H.; Yaniv, I.; Shkalim, V.; Pick, C.G.; et al. Social isolation in mice: Behavior, immunity, and tumor growth. Stress 2021, 24, 229–238. [Google Scholar] [CrossRef]
- Gresack, J.E.; Risbrough, V.B.; Scott, C.N.; Coste, S.; Stenzel-Poore, M.; Geyer, M.A.; Powell, S.B. Isolation rearing-induced deficits in contextual fear learning do not require CRF(2) receptors. Behav. Brain Res. 2010, 209, 80–84. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the MDPI and/or editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Mechanism | Impact of High Calorie on ASD | References |
---|---|---|
Meets the increased energy demand | Stabilizes metabolic responses, reduces acute stress | [20,26,33,44,45] |
HPA axis dampener | Provides negative feedback to the HPA, thus, reducing glucocorticoid secretion | [32,34,62] |
Emotional–cognitive regulator | Alters emotional appraisal of the situation, provides psychological comfort, reduces anxiety by stimulating reward and motivation | [42,49,50,51] |
Has beneficial impact on the gut microbiome | Shifts microbiota composition to reduce neuroinflammation | [59] |
Antioxidant | NADPH production via the pentose phosphate pathway | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Correia, P.; Plangár, I.; Zelena, D. Sweet Relief? Short-Term Post-Traumatic High-Sucrose Intake Attenuates Acute but Not Long-Term Fear Responses in Mice. Biomedicines 2025, 13, 2233. https://doi.org/10.3390/biomedicines13092233
Kumar P, Correia P, Plangár I, Zelena D. Sweet Relief? Short-Term Post-Traumatic High-Sucrose Intake Attenuates Acute but Not Long-Term Fear Responses in Mice. Biomedicines. 2025; 13(9):2233. https://doi.org/10.3390/biomedicines13092233
Chicago/Turabian StyleKumar, Prabhat, Pedro Correia, Imola Plangár, and Dóra Zelena. 2025. "Sweet Relief? Short-Term Post-Traumatic High-Sucrose Intake Attenuates Acute but Not Long-Term Fear Responses in Mice" Biomedicines 13, no. 9: 2233. https://doi.org/10.3390/biomedicines13092233
APA StyleKumar, P., Correia, P., Plangár, I., & Zelena, D. (2025). Sweet Relief? Short-Term Post-Traumatic High-Sucrose Intake Attenuates Acute but Not Long-Term Fear Responses in Mice. Biomedicines, 13(9), 2233. https://doi.org/10.3390/biomedicines13092233