Hematological Parameter-Derived Inflammatory Scores in Non-Pancreatic Hyperlipasemia (NPHL)—The Prognosis Lies in the Blood
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
2.3. Ethical Permission
3. Results
3.1. Study Population
3.2. Correlation Analysis of Inflammatory Markers
3.3. Performance of Hematological Parameter-Derived Inflammatory Scores in Predicting In-Hospital Mortality in the Original Non-COVID-19 Study Population
4. Discussion
5. Conclusions
Limitation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE-2 | Angiotensin-converting enzyme 2 |
AISI | Aggregate index of systemic inflammation |
AP | Acute pancreatitis |
BUN | Blood urea nitrogen |
CCI | Charlson Comorbidity Index |
CRP | C-reactive protein |
CT | Computed tomography |
dNLR | Derived neutrophil-to-lymphocyte ratio |
ICU | Intensive care unit |
LMR | Lymphocyte-to-monocyte ratio |
MCV | Mean corpuscular volume |
MRI | Magnetic resonance imaging |
N/(LP) | Neutrophil-to-(lymphocyte × platelet) ratio |
NLR | Neutrophil-to-lymphocyte ratio |
NPHL | Non-pancreatic hyperlipasemia |
PCT | Procalcitonin |
PLR | Platelet-to-lymphocyte ratio |
RDW | Red cell distribution width |
SII | Systemic immune inflammation index |
SIRI | Systemic inflammation response index |
SOFA | Sequential Organ Failure Assessment |
ULN | Upper limit of normal |
WBC | White blood cell |
WHO | World Health Organization |
References
- Tenner, S.; Baillie, J.; DeWitt, J.; Vege, S.S. American College of Gastroenterology guideline: Management of acute pancreatitis. Am. J. Gastroenterol. 2013, 108, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, A.; Patrick, J.T. In search for a better marker of acute pancreatitis: Third time lucky? Clin. Chem. 2011, 57, 1471–1473. [Google Scholar] [CrossRef]
- Hameed, A.M.; Lam, V.W.; Pleass, H.C. Significant elevations of serum lipase not caused by pancreatitis: A systematic review. HPB 2015, 17, 99–112. [Google Scholar] [CrossRef]
- Feher, K.E.; Tornai, D.; Vitalis, Z.; Davida, L.; Sipeki, N.; Papp, M. Non-pancreatic hyperlipasemia: A puzzling clinical entity. World J. Gastroenterol. 2024, 30, 2538–2552. [Google Scholar] [CrossRef]
- World Health Organization. Sepsis; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/sepsis (accessed on 20 May 2025).
- Institute for Quality and Efficiency in Health Care (IQWiG). In Brief: What Is an Inflammation? IQWiG: Cologne, Germany, 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279298/ (accessed on 20 May 2025).
- Sari, R.; Karakurt, Z.; Ay, M.; Çelik, M.E.; Tekan, Ü.Y.; Çiyiltepe, F.; Kargin, F.; Saltürk, C.; Moçin, Ö.Y.; Güngör, G.; et al. Neutrophil to lymphocyte ratio as a predictor of treatment response and mortality in septic shock patients in the intensive care unit. Turk. J. Med. Sci. 2019, 49, 1336–1349. [Google Scholar] [CrossRef] [PubMed]
- Zahorec, R. Ratio of neutrophil to lymphocyte counts–rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy. 2001, 102, 5–14. [Google Scholar] [PubMed]
- Wang, F.; Wang, H.; Fan, J.; Zhang, Y.; Wang, H.; Zhao, Q. Pancreatic Injury Patterns in Patients with Coronavirus Disease 19 Pneumonia. Gastroenterology 2020, 159, 367–370. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, L.; Wang, F.S. Liver injury in COVID-19: Management and challenges. Lancet Gastroenterol. Hepatol. 2020, 5, 428–430. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 2020, 12, 8. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, Z.; Gong, H.; Xu, D.; Wang, J.; Li, Z.; Li, Z.; Cui, X.; Xiao, J.; Zhan, J.; et al. Digestive system is a potential route of COVID-19: An analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut 2020, 69, 1010–1018. [Google Scholar] [CrossRef]
- Liu, F.; Long, X.; Zhang, B.; Zhang, W.; Chen, X.; Zhang, Z. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin. Gastroenterol. Hepatol. 2020, 18, 2128–2130.e2. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, P.; Szakács, Z.; Sahin-Tóth, M. Lipotoxicity and Cytokine Storm in Severe Acute Pancreatitis and COVID-19. Gastroenterology 2020, 159, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Proctor, M.J.; McMillan, D.C.; Morrison, D.S.; Fletcher, C.D.; Horgan, P.G.; Clarke, S.J. A derived neutrophil to lymphocyte ratio predicts survival in patients with cancer. Br. J. Cancer 2012, 107, 695–699. [Google Scholar] [CrossRef]
- Koo, C.-H.; Jung, D.E.; Park, Y.S.; Bae, J.; Cho, Y.J.; Kim, W.H.; Bahk, J.-H. Neutrophil, Lymphocyte, and Platelet Counts and Acute Kidney Injury After Cardiovascular Surgery. J. Cardiothorac. Vasc. Anesth. 2018, 32, 212–222. [Google Scholar] [CrossRef]
- Turkmen, K.; Erdur, F.M.; Ozcicek, F.; Ozcicek, A.; Akbas, E.M.; Ozbicer, A.; Akbas, E.M.; Ozbicer, A.; Demirtas, L.; Turk, S.; et al. Platelet-to-lymphocyte ratio better predicts inflammation than neutrophil-to-lymphocyte ratio in end-stage renal disease patients. Hemodial. Int. 2013, 17, 391–396. [Google Scholar] [CrossRef]
- Merekoulias, G.; Alexopoulos, E.C.; Belezos, T.; Panagiotopoulou, E.; Jelastopulu, D.M. Lymphocyte to monocyte ratio as a screening tool for influenza. PLoS Curr. 2010, 2, Rrn1154. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Ginesu, G.C.; Tanda, C.; Feo, C.F.; Fancellu, A.; Fois, A.G.; Mangoni, A.A.; Sotgia, S.; Carru, C.; Porcu, A.; et al. Inflammatory cell indexes as preoperative predictors of hospital stay in open elective thoracic surgery. ANZ J. Surg. 2018, 88, 616–620. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Qi, Q.; Zhuang, L.; Shen, Y.; Geng, Y.; Yu, S.; Chen, H.; Liu, L.; Meng, Z.; Wang, P.; Chen, Z. A novel systemic inflammation response index (SIRI) for predicting the survival of patients with pancreatic cancer after chemotherapy. Cancer 2016, 122, 2158–2167. [Google Scholar] [CrossRef]
- Hirahara, T.; Arigami, T.; Yanagita, S.; Matsushita, D.; Uchikado, Y.; Kita, Y.; Mori, S.; Sasaki, K.; Omoto, I.; Kurahara, H.; et al. Combined neutrophil-lymphocyte ratio and platelet-lymphocyte ratio predicts chemotherapy response and prognosis in patients with advanced gastric cancer. BMC Cancer 2019, 19, 672. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Liu, C.C.; Wang, L.; Zhong, M.; Tang, H.L.; Wang, H. Peripheral blood lymphocyte-to-monocyte ratio as a prognostic factor in advanced epithelial ovarian cancer: A multicenter retrospective study. J. Cancer 2017, 8, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Liu, X.; Wang, L.; Gao, Y. Lymphocyte-to-Monocyte Ratio: A Novel Predictor of the Prognosis of Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 2595–2602. [Google Scholar] [CrossRef]
- Cai, Z.; Qiao, T.; Chen, Y.; Xie, M.; Zhou, J. The association between systemic inflammatory response index and in-hospital mortality in patients with infective endocarditis. Clin. Cardiol. 2022, 45, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xing, Z.; Zhou, K.; Jiang, S. The Predictive Role of Systemic Inflammation Response Index (SIRI) in the Prognosis of Stroke Patients. Clin. Interv. Aging 2021, 16, 1997–2007. [Google Scholar] [CrossRef]
- Hoffmeister, A.; Mayerle, J.; Beglinger, C.; Büchler, M.W.; Bufler, P.; Dathe, K.; Fölsch, U.R.; Friess, H.; Izbicki, J.; Kahl, S.; et al. S3-Consensus guidelines on definition, etiology, diagnosis and medical, endoscopic and surgical management of chronic pancreatitis German Society of Digestive and Metabolic Diseases (DGVS). Z. Fur Gastroenterol. 2012, 50, 1176–1224. [Google Scholar]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.-L.; Ramsay, G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef]
- Warrington, R.; Watson, W.; Kim, H.L.; Antonetti, F.R. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2011, 7, 1–8. [Google Scholar] [CrossRef]
- Russell, C.D.; Parajuli, A.; Gale, H.J.; Bulteel, N.S.; Schuetz, P.; de Jager, C.P.; Loonen, A.J.; Merekoulias, G.I.; Baillie, J.K. The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis. J. Infect. 2019, 78, 339–348. [Google Scholar] [CrossRef]
- Liu, Y.C.; Kuo, R.L.; Shih, S.R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J. 2020, 43, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, J.; Fonseca, J.A.; Dias, J.M.; Milho, J.; Rosa, R.; Jorge, S.; Lopes, J.A.S. Neutrophil, lymphocyte and platelet ratio as a predictor of postoperative acute kidney injury in major abdominal surgery. BMC Nephrol. 2018, 19, 320. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.; Hu, Z. Clinical predictive value of the initial neutrophils to lymphocytes and platelets ratio for prognosis of sepsis patients in the intensive care unit: A retrospective study. Front. Med. 2024, 11, 1351492. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, C.; Wang, Y.; Li, C.; Wu, Y.; Ren, X. Immune cell composition and its impact on prognosis in children with sepsis. BMC Pediatr. 2024, 24, 611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, J.; Chen, H.; Li, C.; Mo, M.; Qiu, H.; Yang, Y. Development and validation of a clinical score combining the sequential organ failure assessment score with inflammation-based markers to predict outcome of patients with sepsis. Am. J. Transl. Res. 2023, 15, 1789–1797. [Google Scholar]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Jarczak, D.; Kluge, S.; Nierhaus, A. Sepsis-Pathophysiology and Therapeutic Concepts. Front. Med. 2021, 8, 628302. [Google Scholar] [CrossRef]
- Liu, Y.; Du, X.; Chen, J.; Jin, Y.; Peng, L.; Wang, H.H.; Luo, M.; Chen, L.; Zhao, Y. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J. Infect. 2020, 81, e6–e12. [Google Scholar] [CrossRef]
- Yang, A.P.; Liu, J.P.; Tao, W.Q.; Li, H.M. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol. 2020, 84, 106504. [Google Scholar] [CrossRef]
- Fois, A.G.; Paliogiannis, P.; Scano, V.; Cau, S.; Babudieri, S.; Perra, R.; Ruzzittu, G.; Zinellu, E.; Pirina, P.; Carru, C.; et al. The Systemic Inflammation Index on Admission Predicts In-Hospital Mortality in COVID-19 Patients. Molecules 2020, 25, 5725. [Google Scholar] [CrossRef]
- Baeza-Flores, G.; Aguilar, J.; Gomez, M.; Espino, E.; Lendechy, E.; Boldo-León, X.M.; Luna-Arias, J.P.; Ruiz-Quinones, J.A.; Magana-Cerino, J.M.; Martinez-Lopez, M.C. Potential Utility of Systemic Immune-Inflammation Index: NLR, PLR, and SII to Detect Poor Prognosis of COVID-19 Patients from the Mexican Southeast. Arch. Clin. Infect. Dis. 2024, 20, 9. [Google Scholar]
- Colaneri, M.; Genovese, C.; Fassio, F.; Canuti, M.; Giacomelli, A.; Ridolfo, A.L.; Asperges, E.; Albi, G.; Bruno, R.; Antinori, S.; et al. Prognostic Significance of NLR and PLR in COVID-19: A Multi-Cohort Validation Study. Infect. Dis. Ther. 2024, 13, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Semple, J.W.; Italiano, J.E.; Freedman, J., Jr. Platelets and the immune continuum. Nat. Rev. Immunol. 2011, 11, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Mazzarello, P.; Calligaro, A.L.; Calligaro, A. Giulio Bizzozero: A pioneer of cell biology. Nat. Rev. Mol. Cell. Biol. 2001, 2, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, A.; Kannan, L.; Tsokos, G.C. Platelets, complement and tissue inflammation. Autoimmunity 2013, 46, 1–5. [Google Scholar] [CrossRef]
- Russwurm, S.; Vickers, J.; Meier-Hellmann, A.; Spangenberg, P.; Bredle, D.; Reinhart, K.; Lösche, W. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock 2002, 17, 263–268. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
Inflammatory Index | Abbreviation | Calculation Formula | Described By |
---|---|---|---|
Neutrophil-to-Lymphocyte Ratio | NLR | Neutrophil count/Lymphocyte count | Zahorec, 2001 [8] |
Derived Neutrophil-to-Lymphocyte Ratio | dNLR | Neutrophil count/ (WBC count − Neutrophil count) | Proctor et al., 2012 [16] |
Neutrophil-to-Lymphocyte and Platelet Ratio | N/(LP) | Neutrophil count/ (Lymphocyte count × Platelet count) | Koo et al., 2018 [17] |
Platelet-to-Lymphocyte Ratio | PLR | Platelet count/Lymphocyte count | Turkmen et al., 2013 [18] |
Lymphocyte-to-Monocyte Ratio | LMR | Lymphocyte count/Monocyte count | Merekoulias et al., 2010 [19] |
Aggregate Index of Systemic Inflammation | AISI | (Neutrophil count × Platelet count × Monocyte count)/Lymphocyte count | Paliogiannis et al., 2018 [20] |
Systemic Inflammation Index | SII | (Platelet count × Neutrophil count)/ Lymphocyte count | Hu et al., 2014 [21] |
Systemic Inflammation Response Index | SIRI | (Neutrophil count × Monocyte count)/ Lymphocyte count | Qi et al., 2016 [22] |
Original (Non-COVID-19) Population | COVID-19 Population | ||||
---|---|---|---|---|---|
NPHL Without Systemic Infection (n = 290) | NPHL with Bacterial Sepsis (n = 111) | p Value | NPHL with Viral Infection due to COVID-19 (n = 144) | p Value | |
Demographic data | |||||
Gender (male) N (%) | 154 (53.1) | 67 (60.4) | 0.217 | 81 (56.3) | 0.541 |
Age (yr) | 65 (53–76) | 70 (57–76) | 0.092 | 66 (55–76) | 0.472 |
Clinical and outcome data | |||||
Comorbidities, any N (%) | 263 (90.7) | 106 (95.5) | 0.149 | 135 (93.7) | 0.356 |
CCI | 5 (3–8) | 6 (4–9) | 0.001 | 3 (2–5) | <0.001 |
Total length of hospitalization (d) | 7 (2–16) | 15 (8–27) | <0.001 | 11 (6–22) | <0.001 |
ICU (yes) N (%) | 98 (33.8) | 84 (75.7) | <0.001 | 69 (47.9) | 0.005 |
ICU stay (d) | 6 (3–15) | 9 (3–16) | 0.341 | 9 (5–15.5) | 0.056 |
In-hospital mortality N (%) | 40 (13.8) | 50 (45.0) | <0.001 | 55 (38.2) | <0.001 |
Biochemical parameters | |||||
Sodium (mmol/L) | 139 (136–141) | 140 (135–145) | 0.021 | 137 (134–140) | 0.024 |
Albumin (g/L) | 37 (31–42) | 29 (24–35) | <0.001 | 32 (28–36) | <0.001 |
BUN (mmol/L) | 6.8 (4.6–13.6) | 23 (10.7–37.2) | <0.001 | 10.7 (6.4–22.05) | <0.001 |
Creatinine (µmol/L) | 78 (59–140) | 218 (96–392) | <0.001 | 104 (72–186) | <0.001 |
Amylase level (U/L) | 165 (110–229) | 221 (132–344) | <0.001 | 167 (102–241) | 0.798 |
Lipase (U/L) | 266 (231–435) | 425 (263–651) | <0.001 | 300.5 (243–556) | <0.001 |
CRP (mg/L) | 21.1 (7.58–56.25) | 114.6 (53.79–190.8) | <0.001 | 79.5 (19.3–141.3) | <0.001 |
PCT (ug/L) * | 0.35 (0.13–0.91) | 2.56 (1.08–6.32) | <0.001 | 0.28 (0.09–1.70) | 0.187 |
Blood count | |||||
WBC (G/L) | 9.37 (7.23–12.8) | 14.65 (10.11–21.46) | <0.001 | 11.20 (7.87–15.20) | 0.001 |
Neutrophil granulocyte (G/L) | 6.68 (4.80–10.00) | 12.36 (8.96–18.03) | <0.001 | 9.05 (5.85–12.81) | <0.001 |
Lymphocyte count (G/L) | 1.42 (0.95–2.01) | 0.95 (0.62–1.54) | <0.001 | 1.11 (0.68–1.60) | <0.001 |
Monocyte count (G/L) | 0.67 (0.48–1.01) | 0.87 (0.59–1.29) | 0.001 | 0.75 (0.49–1.08) | 0.488 |
Platelet count (G/L) | 236 (178–301) | 219 (132–351) | 0.224 | 235 (165–325) | 0.980 |
Hematological parameter-derived inflammatory scores | |||||
NLR | 4.83 (2.69–8.78) | 12.87 (7.81–21.75) | <0.001 | 7.35 (4.50–16.00) | <0.001 |
dNLR | 2.74 (1.76–4.64) | 6.13 (3.89–9.45) | <0.001 | 4.53 (2.95–8.02) | <0.001 |
N/(LP) | 0.02 (0.01–0.05) | 0.06 (0.03–0.14) | <0.001 | 0.03 (0.02–0.08) | <0.001 |
PLR | 162.09 (110.93–262.45) | 223.26 (115.57–396.68) | 0.009 | 217.07 (125.16–355.1) | <0.001 |
LMR | 1.95 (1.19–3.23) | 1.13 (0.74–1.76) | <0.001 | 1.56 (1.03–2.34) | <0.001 |
AISI | 765.40 (293.51–1862.99) | 2588.8 (900.93–4690.27) | <0.001 | 1654.20 (481.20–4668.50) | <0.001 |
SII | 1137.98 (540.18–2182.47) | 2830.07 (1395.27–4921.08) | <0.001 | 1563.00 (809.40–4718.10) | <0.001 |
SIRI | 3.34 (1.6–7.46) | 11.96 (6.18–23.21) | <0.001 | 5.11 (2.80–11.94) | <0.001 |
Original Non-COVID-19 | Survivors (n = 311) | Non-Survivors (n = 90) | p Value | AUROC | 95% CI | Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|
NLR | 5.24 (2.84–9.66) | 12.64 (6.64–19.50) | <0.001 | 0.747 | 0.691–0.803 | >10.37 | 65.17 | 78.64 |
dNLR | 2.96 (1.81–5.01) | 5.84 (3.52–8.48) | <0.001 | 0.737 | 0.680–0.793 | >4.19 | 70.79 | 66.67 |
N/(LP) | 0.02 (0.01–0.05) | 0.08 (0.03–0.14) | <0.001 | 0.772 | 0.717–0.827 | >0.03 | 78.65 | 64.72 |
PLR | 168.86 (112.86–285.31) | 177.73 (102.76–326.78) | 0.605 | 0.518 | 0.446–0.590 | – | – | – |
LMR | 1.88 (1.15–3.1) | 1.12 (0.69–1.84) | <0.001 | 0.664 | 0.598–0.730 | ≤1.78 | 75.28 | 54.05 |
AISI | 887.4 (351.01–2189.47) | 2148.92 (626.93–4531.25) | <0.001 | 0.630 | 0.561–0.699 | >2330.97 | 49.44 | 76.38 |
SII | 1224.78 (624.06–2561.27) | 2294.76 (1010.94–4406.14) | <0.001 | 0.650 | 0.584–0.715 | >1662.25 | 66.29 | 65.37 |
SIRI | 3.81 (1.84–8.69) | 11.47 (5.52–20.39) | <0.001 | 0.722 | 0.660–0.784 | >5.94 | 74.16 | 64.08 |
All Original | OR | CI | p |
---|---|---|---|
NLR | 6.889 | 4.12–11.517 | <0.001 |
dNLR | 4.846 | 2.897–8.106 | <0.001 |
N/(LP) | 6.480 | 3.711–11.317 | <0.001 |
LMR | 3.582 | 2.106–6.091 | <0.001 |
AISI | 3.161 | 1.934–5.168 | <0.001 |
SII | 3.713 | 2.256–6.110 | <0.001 |
SIRI | 5.119 | 3.018–8.683 | <0.001 |
Original Non-COVID-19 | OR | CI | p |
---|---|---|---|
Age | 1.026 | 1.006–1.047 | 0.010 |
Sepsis | 2.264 | 1.223–4.191 | 0.009 |
N/(LP) (>0.03) | 3.980 | 2.039–7.768 | <0.001 |
Amylase (>244 U/L) | 2.496 | 1.345–4.634 | 0.004 |
Albumin (≤34 g/L) | 3.166 | 1.669–6.007 | <0.001 |
Constant | 0.006 | <0.001 |
No Systemic Infection | Survivors (n = 250) | Non-Survivors (n = 40) | AUROC | 95% CI | p | Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|
NLR | 4.15 (2.55–7.60) | 10.83 (6.12–15.97) | 0.7805 | 0.704–0.857 | <0.001 | >5.260 | 87.50 | 60.48 |
dNLR | 2.54 (1.72–4.03) | 5.06 (3.06–7.42) | 0.7506 | 0.671–0.830 | <0.001 | >4.250 | 67.50 | 76.21 |
N/(LP) | 0.02 (0.01–0.04) | 0.07 (0.02–0.10) | 0.773 | 0.695–0.851 | <0.001 | >0.045 | 60.00 | 80.24 |
PLR | 159.80 (107.34–253.85) | 191.87 (126.03–334.90) | 0.5755 | 0.476–0.675 | 0.1257 | – | – | – |
LMR | 2.03 (1.32–3.41) | 1.13 (0.70–2.21) | 0.6796 | 0.580–0.779 | 0.0003 | ≤1.150 | 42.50 | 84.27 |
AISI | 701.02 (268.52–1684.63) | 1550.82 (466.76–3516.04) | 0.6476 | 0.553–0.742 | 0.0027 | >2456.6 | 70.00 | 66.13 |
SII | 1056.87 (501.27–1844.27) | 2002.55 (1075.45–3771.16) | 0.6836 | 0.593–0.774 | 0.0002 | >1402.5 | 67.50 | 73.39 |
SIRI | 2.87 (1.44–6.44) | 8.03 (3.43–15.89) | 0.7237 | 0.634–0.813 | <0.001 | >5.950 | 52.50 | 81.45 |
Sepsis | Survivors (n = 61) | Non-Survivors (n = 50) | AUROC | 95% CI | p | Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|
NLR | 11.38 (7.34–21.11) | 14.25 (9.11–22.10) | 0.568 | 0.406–0.677 | 0.219 | – | – | – |
dNLR | 5.47 (3.91–8.57) | 7.41 (3.84–10.30) | 0.563 | 0.453–0.673 | 0.257 | – | – | – |
N/(LP) | 0.046 (0.03–0.09) | 0.09 (0.04–0.16) | 0.653 | 0.549–0.757 | 0.006 | >0.087 | 53.06 | 77.05 |
PLR | 256.76 (130.76–406.80) | 169.35 (89.37–318.20) | 0.616 | 0.509–0.722 | 0.038 | ≤171.15 | 51.02 | 68.85 |
LMR | 1.14 (0.74–1.90) | 1.08 (0.67–1.75) | 0.503 | 0.393–0.613 | 0.952 | – | – | – |
AISI | 2893.73 (1008.98–4491.68) | 2475.71 (663.18–5858.84) | 0.518 | 0.405–0.631 | 0.748 | – | – | – |
SII | 2824.00 (1434.89–5442.03) | 2836.14 (940.57–4737.29) | 0.530 | 0.420–0.641 | 0.586 | – | – | – |
SIRI | 10.04 (5.50–20.72) | 14.27 (6.45–27.37) | 0.576 | 0.467–0.686 | 0.170 | – | – | – |
COVID-19 | Survivors (n = 89) | Non-Survivors (n = 55) | AUROC | 95% CI | p | Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|
NLR | 5.70 (3.50–8.70) | 16.00 (8.80–26.05) | 0.810 | 0.736–0.884 | <0.004 | >10.65 | 73.58 | 85.06 |
dNLR | 3.71 (2.47–4.85) | 7.99 (4.77–13.22) | 0.789 | 0.709–0.870 | <0.002 | >5.78 | 73.58 | 82.76 |
N/(LP) | 0.025 (0.01–0.05) | 0.065 (0.03–0.12) | 0.773 | 0.695–0.850 | <0.001 | >0.035 | 67.92 | 70.93 |
PLR | 158.85 (112.93–265.28) | 301.32 (211.29–482.86) | 0.726 | 0.639–0.812 | <0.003 | >215.00 | 75.47 | 63.95 |
LMR | 1.73 (1.19–2.36) | 1.27 (0.76–2.16) | 0.618 | 0.518–0.717 | 0.020 | ≤0.915 | 32.08 | 90.80 |
AISI | 1863.55 (568.43–5806.4) | 1078.6 (288.25–3444.3) | 0.608 | 0.510–0.706 | 0.033 | ≤476.05 | 39.62 | 84.88 |
SII | 1160.00 (663.63–2475.28) | 4158.00 (1491.85–7672.85) | 0.763 | 0.683–0.843 | <0.001 | >2585.75 | 64.15 | 76.74 |
SIRI | 4.59 (2.61–9.5) | 7.62 (3.74–22.12) | 0.670 | 0.575–0.765 | <0.001 | >5.89 | 64.15 | 68.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feher, K.E.; Tornai, D.; Papp, M. Hematological Parameter-Derived Inflammatory Scores in Non-Pancreatic Hyperlipasemia (NPHL)—The Prognosis Lies in the Blood. Biomedicines 2025, 13, 1719. https://doi.org/10.3390/biomedicines13071719
Feher KE, Tornai D, Papp M. Hematological Parameter-Derived Inflammatory Scores in Non-Pancreatic Hyperlipasemia (NPHL)—The Prognosis Lies in the Blood. Biomedicines. 2025; 13(7):1719. https://doi.org/10.3390/biomedicines13071719
Chicago/Turabian StyleFeher, Krisztina Eszter, David Tornai, and Maria Papp. 2025. "Hematological Parameter-Derived Inflammatory Scores in Non-Pancreatic Hyperlipasemia (NPHL)—The Prognosis Lies in the Blood" Biomedicines 13, no. 7: 1719. https://doi.org/10.3390/biomedicines13071719
APA StyleFeher, K. E., Tornai, D., & Papp, M. (2025). Hematological Parameter-Derived Inflammatory Scores in Non-Pancreatic Hyperlipasemia (NPHL)—The Prognosis Lies in the Blood. Biomedicines, 13(7), 1719. https://doi.org/10.3390/biomedicines13071719