Prognostic Significance of Delays in Initiation of Adjuvant Trastuzumab-Based Therapy in Patients with HER2-Positive Breast Cancer
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. End Points
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASCO | American Society of Clinical Oncology |
CAP | College of American Pathologists |
CI | Confidence interval |
DFS | Disease-free survival |
DMFS | Distant metastasis-free survival |
ESMO | European Society for Medical Oncology |
HER2 | Human epidermal growth factor receptor 2 |
HR | Hazard Ratio |
OS | Overall survival |
TNBC | Triple-negative breast cancer |
TTAT | Time to adjuvant trastuzumab-based therapy |
References
- Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Romond, E.H.; Perez, E.A.; Bryant, J.; Suman, V.J.; Geyer, C.E., Jr.; Davidson, N.E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P.A.; et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1673–1684. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef]
- Joensuu, H.; Bono, P.; Kataja, V.; Alanko, T.; Kokko, R.; Asola, R.; Utriainen, T.; Turpeenniemi-Hujanen, T.; Jyrkkiö, S.; Möykkynen, K.; et al. Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: Final results of the FinHer Trial. J. Clin. Oncol. 2009, 27, 5685–5692. [Google Scholar] [CrossRef]
- Lohrisch, C.; Paltiel, C.; Gelmon, K.; Speers, C.; Taylor, S.; Barnett, J.; Olivotto, I.A. Impact on Survival of Time From Definitive Surgery to Initiation of Adjuvant Chemotherapy for Early-Stage Breast Cancer. J. Clin. Oncol. 2006, 24, 4888–4894. [Google Scholar] [CrossRef]
- Hershman, D.L.; Wang, X.; McBride, R.; Jacobson, J.S.; Grann, V.R.; Neugut, A.I. Delay of adjuvant chemotherapy initiation following breast cancer surgery among elderly women. Breast Cancer Res. Treat. 2006, 99, 313–321. [Google Scholar] [CrossRef]
- Nurgalieva, Z.Z.; Franzini, L.; Morgan, R.O.; Vernon, S.W.; Liu, C.C.; Du, X.L. Impact of timing of adjuvant chemotherapy initiation and completion after surgery on racial disparities in survival among women with breast cancer. Med. Oncol. 2013, 30, 419. [Google Scholar] [CrossRef]
- Sánchez, C.J.; Ruiz, A.; Martín, M.; Antón, A.; Munárriz, B.; Plazaola, A.; Schneider, J.; del Prado, P.M.; Alba, E.; Fernández-Aramburo, A. Influence of Timing of Initiation of Adjuvant Chemotherapy Over Survival in Breast Cancer: A Negative Outcome Study by the Spanish Breast Cancer Research Group (GEICAM). Breast Cancer Res. Treat. 2007, 101, 215–223. [Google Scholar] [CrossRef]
- Shannon, C.; Ashley, S.; Smith, I.E. Does Timing of Adjuvant Chemotherapy for Early Breast Cancer Influence Survival? J. Clin. Oncol. 2003, 21, 3792–3797. [Google Scholar] [CrossRef]
- Cold, S.; Düring, M.; Ewertz, M.; Knoop, A.; Møller, S. Does timing of adjuvant chemotherapy influence the prognosis after early breast cancer? Results of the Danish Breast Cancer Cooperative Group (DBCG). Br. J. Cancer 2005, 93, 627–632. [Google Scholar] [CrossRef] [PubMed]
- de Melo Gagliato, D.; Gonzalez-Angulo, A.M.; Lei, X.; Theriault, R.L.; Giordano, S.H.; Valero, V.; Hortobagyi, G.N.; Chavez-Macgregor, M. Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J. Clin. Oncol. 2014, 32, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, C.M.; More, K.; Kamath, T.; Masaquel, A.; Guerin, A.; Ionescu-Ittu, R.; Gauthier-Loiselle, M.; Nitulescu, R.; Sicignano, N.; Butts, E.; et al. Delay in initiation of adjuvant trastuzumab therapy leads to decreased overall survival and relapse-free survival in patients with HER2-positive non-metastatic breast cancer. Breast Cancer Res. Treat. 2016, 157, 145–156. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.H.; Bergh, J.; Burstein, H.J.; Cardoso, M.J.; Carey, L.A.; Dawood, S.; Del Mastro, L.; et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2024, 35, 159–182. [Google Scholar] [CrossRef]
- Bradley, R.; Braybrooke, J.; Gray, R.; Hills, R.; Liu, Z.; Peto, R.; Davies, L.; Dodwell, D.; McGale, P.; Pan, H.; et al. Trastuzumab for early-stage, HER2-positive breast cancer: A meta-analysis of 13,864 women in seven randomised trials. Lancet Oncol. 2021, 22, 1139–1150. [Google Scholar] [CrossRef]
- Dowling, G.P.; Daly, G.R.; Hegarty, A.; Flanagan, M.; Ola, M.; Fallon, R.; Cocchiglia, S.; Singh, V.; Sheehan, K.M.; Bane, F.; et al. Neoadjuvant HER2 inhibition induces ESR1 DNA methylation alterations resulting in clinically relevant ER expression changes in breast cancers. Cancer Commun. 2024, 45, 198–202. [Google Scholar] [CrossRef]
- Burstein, H.; Curigliano, G.; Loibl, S.; Dubsky, P.; Gnant, M.; Poortmans, P.; Colleoni, M.; Denkert, C.; Piccart-Gebhart, M.; Regan, M. Estimating the benefits of therapy for early-stage breast cancer: The St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann. Oncol. 2019, 30, 1541–1557. [Google Scholar] [CrossRef]
- Dowling, G.P.; Keelan, S.; Toomey, S.; Daly, G.R.; Hennessy, B.T.; Hill, A.D.K. Review of the status of neoadjuvant therapy in HER2-positive breast cancer. Front. Oncol. 2023, 13, 1066007. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Tarantino, P.; Graham, N.; Tayob, N.; Parè, L.; Villacampa, G.; Dang, C.T.; Yardley, D.A.; Moy, B.; Marcom, P.K.; et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer: Final 10-year analysis of the open-label, single-arm, phase 2 APT trial. Lancet Oncol. 2023, 24, 273–285. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Barry, W.T.; Dang, C.T.; Yardley, D.A.; Moy, B.; Marcom, P.K.; Albain, K.S.; Rugo, H.S.; Ellis, M.; Shapira, I.; et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N. Engl. J. Med. 2015, 372, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Gunduz, N.; Saffer, E.A. Influence of the interval between primary tumor removal and chemotherapy on kinetics and growth of metastases. Cancer Res. 1983, 43, 1488–1492. [Google Scholar] [PubMed]
- Fisher, B.; Gunduz, N.; Coyle, J.; Rudock, C.; Saffer, E. Presence of a growth-stimulating factor in serum following primary tumor removal in mice. Cancer Res. 1989, 49, 1996–2001. [Google Scholar]
- Alieva, M.; van Rheenen, J.; Broekman, M.L.D. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin. Exp. Metastasis 2018, 35, 319–331. [Google Scholar] [CrossRef]
- Nissen-Meyer, R.; Kjellgren, K.; Malmio, K.; Månsson, B.; Norin, T. Surgical adjuvant chemotherapy: Results with one short course with cyclophosphamide after mastectomy for breast cancer. Cancer 1978, 41, 2088–2098. [Google Scholar] [CrossRef]
- Gupta, S.; Chaubal, R.; Gardi, N.; Pachakar, S.; Bhatia, D.; Gera, P.; Nair, N.; Joshi, S.; Parmar, V.; Thakkar, P.; et al. Abstract P3-05-01: Molecular effects of surgical resection on primary breast tumor. Cancer Res. 2020, 80, P3-05-01. [Google Scholar] [CrossRef]
- van der Hage, J.A.; van de Velde, C.J.H.; Julien, J.P.; Floiras, J.L.; Delozier, T.; Vandervelden, C.; Duchateau, L. Improved survival after one course of perioperative chemotherapy in early breast cancer patients: Long-term results from the European Organization for Research and Treatment of Cancer (EORTC) Trial 10854. Eur. J. Cancer 2001, 37, 2184–2193. [Google Scholar] [CrossRef]
- Chavez-MacGregor, M.; Clarke, C.A.; Lichtensztajn, D.Y.; Giordano, S.H. Delayed Initiation of Adjuvant Chemotherapy Among Patients With Breast Cancer. JAMA Oncol. 2016, 2, 322–329. [Google Scholar] [CrossRef]
- Yu, K.D.; Fan, L.; Qiu, L.X.; Ling, H.; Jiang, Y.Z.; Shao, Z.M. Influence of delayed initiation of adjuvant chemotherapy on breast cancer survival is subtype-dependent. Oncotarget 2017, 8, 46549–46556. [Google Scholar] [CrossRef]
- Gao, W.; Wang, J.; Yin, S.; Geng, C.; Xu, B. An appropriate treatment interval does not affect the prognosis of patients with breast Cancer. Holist. Integr. Oncol. 2022, 1, 8. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Early and Locally Advanced Breast Cancer: Diagnosis and Management (NG101). Available online: https://www.nice.org.uk/guidance/ng101/chapter/Recommendations#adjuvant-chemotherapy-for-invasive-breast-cancer (accessed on 27 October 2024).
- Denduluri, N.; Somerfield, M.R.; Chavez-MacGregor, M.; Comander, A.H.; Dayao, Z.; Eisen, A.; Freedman, R.A.; Gopalakrishnan, R.; Graff, S.L.; Hassett, M.J.; et al. Selection of Optimal Adjuvant Chemotherapy and Targeted Therapy for Early Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Hatzipanagiotou, M.E.; Pigerl, M.; Gerken, M.; Räpple, S.; Zeltner, V.; Hetterich, M.; Ugocsai, P.; Inwald, E.C.; Klinkhammer-Schalke, M.; Ortmann, O.; et al. Clinical impact of delaying initiation of adjuvant chemotherapy in patients with early triple negative breast cancer. Breast Cancer Res. Treat. 2024, 204, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Berardi, R.; Morgese, F.; Rinaldi, S.; Torniai, M.; Mentrasti, G.; Scortichini, L.; Giampieri, R. Benefits and Limitations of a Multidisciplinary Approach in Cancer Patient Management. Cancer Manag. Res. 2020, 12, 9363–9374. [Google Scholar] [CrossRef]
- Ash, R.; Scodari, B.T.; Schaefer, A.P.; Cornelius, S.L.; Brooks, G.A.; O’Malley, A.J.; Onega, T.; Verhoeven, D.C.; Moen, E.L. Surgeon and Care Team Network Measures and Timely Breast Cancer Treatment. JAMA Netw. Open 2024, 7, e2427451. [Google Scholar] [CrossRef]
- Byrne, J.; Campbell, H.; Gilchrist, M.; Summersby, E.; Hennessy, B. Barriers to care for breast cancer: A qualitative study in Ireland. Eur. J. Cancer Care 2018, 27, e12876. [Google Scholar] [CrossRef]
- Colleoni, M.; Gelber, R.D. Time to initiation of adjuvant chemotherapy for early breast cancer and outcome: The earlier, the better? J. Clin. Oncol. 2014, 32, 717–719. [Google Scholar] [CrossRef]
- Land, L.H.; Dalton, S.O.; Jensen, M.B.; Ewertz, M. Influence of comorbidity on the effect of adjuvant treatment and age in patients with early-stage breast cancer. Br. J. Cancer 2012, 107, 1901–1907. [Google Scholar] [CrossRef]
TTAT (Days) | |||||
---|---|---|---|---|---|
Characteristic | All (n = 227) | ≤42 (n = 80) | >42 (n = 147) | p-Value * | |
Age at diagnosis | Mean ± SD (range); median | 51.9 ± 13.4 (23–89); 48 | 52.1 ± 14.1 (31–81); 48.5 | 51.9 ± 13.1 (23–89); 48 | 0.9 † |
≤48 years | N (%) | 114 (50.2%) | 40 (50%) | 74 (50.3%) | 0.96 χ2 |
>48 years | 113 (49.8%) | 40 (50%) | 73 (49.7%) | ||
Tumour size | Mean ± SD; median (mm) | 31.5 ± 21.0; 26 | 28.5 ± 16.4; 26 | 33.2 ± 23.1; 27 | 0.11 † |
Pathological tumour stage | N (%) | 0.6 χ2 | |||
T1 | 68 (30%) | 23 (28.7%) | 45 (30.6%) | ||
T2 | 123 (54.2%) | 47 (58.8%) | 76 (51.7%) | ||
T3 | 34 (15%) | 9 (11.3%) | 25 (17%) | ||
T4 | 2 (0.9%) | 1 (1.3%) | 1 (0.7%) | ||
Nodal status | N (%) | 0.12 χ2 | |||
N0 | 104 (45.8%) | 37 (46.3%) | 67 (45.6%) | ||
N1 | 88 (38.8%) | 25 (31.3%) | 63 (42.9%) | ||
N2 | 16 (7%) | 8 (10%) | 8 (5.4%) | ||
N3 | 19 (8.4%) | 10 (12.5%) | 9 (6.1%) | ||
Hormone receptor status | N (%) | 0.27 χ2 | |||
Positive | 166 (73.1%) | 55 (68.8%) | 111 (75.5%) | ||
Negative | 61 (26.9%) | 25 (31.3%) | 36 (24.5%) | ||
Tumour grade | N (%) | 0.7 χ2 | |||
I | 17 (7.5%) | 7 (8.8%) | 10 (6.8%) | ||
II | 87 (38.3%) | 28 (35%) | 59 (40.1%) | ||
III | 123 (54.2%) | 45 (56.3%) | 78 (53.1%) | ||
Lymphovascular invasion | N (%) | 0.39 χ2 | |||
Negative | 119 (52.4%) | 35 (43.8%) | 73 (49.7%) | ||
Positive | 108 (47.6%) | 45 (56.3%) | 74 (50.3%) | ||
Type of surgery | N (%) | 0.16 χ2 | |||
WLE | 102 (44.9%) | 41 (51.2%) | 61 (41.5%) | ||
Mastectomy | 125 (55.1%) | 39 (48.8%) | 86 (58.5%) | ||
Adjuvant regimen | N (%) | 0.33 χ2 | |||
ACTH-like | 119 (52.4%) | 39 (48.8%) | 80 (54.4%) | ||
TCH-like | 14 (6.2%) | 7 (8.8%) | 7 (4.8%) | ||
Trastuzumab + Taxane | N (%) | 62 (27.3%) | 22 (27.5%) | 40 (27.2%) | |
Trastuzumab monotherapy | 24 (10.6%) | 11 (13.8%) | 13 (8.8%) | ||
Other trastuzumab-based regimens | 8 (3.5%) | 1 (1.3%) | 7 (4.8%) | ||
Radiation therapy | N (%) | 0.5 χ2 | |||
Yes | 170 (74.9%) | 62 (77.5%) | 108 (73.5%) | ||
No | 57 (25.1%) | 18 (22.5%) | 39 (26.5%) | ||
Histological type | N (%) | 0.4 χ2 | |||
IDC | 208 (91.6%) | 76 (95%) | 132 (89.8%) | ||
ILC | 10 (4.4%) | 2 (2.5%) | 8 (5.4%) | ||
Other | 9 (4%) | 2 (2.5%) | 7 (4.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dowling, G.P.; Hegarty, A.; Daly, G.R.; Hembrecht, S.; Hehir, C.M.; Calpin, G.G.; Hogan, R.; O’Reilly, D.; Downey, E.; Toomey, S.; et al. Prognostic Significance of Delays in Initiation of Adjuvant Trastuzumab-Based Therapy in Patients with HER2-Positive Breast Cancer. Biomedicines 2025, 13, 1305. https://doi.org/10.3390/biomedicines13061305
Dowling GP, Hegarty A, Daly GR, Hembrecht S, Hehir CM, Calpin GG, Hogan R, O’Reilly D, Downey E, Toomey S, et al. Prognostic Significance of Delays in Initiation of Adjuvant Trastuzumab-Based Therapy in Patients with HER2-Positive Breast Cancer. Biomedicines. 2025; 13(6):1305. https://doi.org/10.3390/biomedicines13061305
Chicago/Turabian StyleDowling, Gavin P., Aisling Hegarty, Gordon R. Daly, Sandra Hembrecht, Cian M. Hehir, Gavin G. Calpin, Richard Hogan, David O’Reilly, Eithne Downey, Sinead Toomey, and et al. 2025. "Prognostic Significance of Delays in Initiation of Adjuvant Trastuzumab-Based Therapy in Patients with HER2-Positive Breast Cancer" Biomedicines 13, no. 6: 1305. https://doi.org/10.3390/biomedicines13061305
APA StyleDowling, G. P., Hegarty, A., Daly, G. R., Hembrecht, S., Hehir, C. M., Calpin, G. G., Hogan, R., O’Reilly, D., Downey, E., Toomey, S., Grogan, L., Breathnach, O., Allen, M., Morris, P. G., Power, C., Young, L. S., Hill, A. D. K., & Hennessy, B. T. (2025). Prognostic Significance of Delays in Initiation of Adjuvant Trastuzumab-Based Therapy in Patients with HER2-Positive Breast Cancer. Biomedicines, 13(6), 1305. https://doi.org/10.3390/biomedicines13061305