Analysis of the Relationship Between CHRNA3/5 and EPHX1 Polymorphisms to Tobacco Intake and Development of Chronic Obstructive Pulmonary Disease (COPD)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
- COPD group—participants with post-bronchodilator ratio between the forced expiratory volume in one second (FEV1) and the forced vital capacity (FVC) < 0.70;
- Control group—smokers with normal spirometry and no history of chronic respiratory disease.
2.3. Clinical and Demographic Data Collection
2.4. Pulmonary Function Testing
2.5. Genetic Analysis
- EPHX1 rs2234922 (A>G), a non-synonymous variant leading to a His139Arg substitution that modulates microsomal epoxide hydrolase activity and influences oxidative stress and epithelial injury;
- CHRNA3 rs1051730 (G>A) and CHRNA5 rs8034191 (C>T), implicated in nicotine dependence and smoking intensity.
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
3.1. Association of Polymorphisms with Tobacco Intake
3.2. Association of Polymorphisms with the Development of COPD
4. Discussion
4.1. Genetic Susceptibility to Nicotine Dependence
4.2. EPHX1 Polymorphism and COPD Risk
4.3. Studied Population
4.4. Integration of Genetic and Environmental Factors
4.5. Power Analysis and Sample Adequacy
4.6. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of COPD; Report; Global Initiative for Chronic Obstructive Lung Disease: Deer Park, IL, USA, 2024. [Google Scholar]
- Silverman, E.K. Genetics of COPD. Annu. Rev. Physiol. 2020, 82, 413–431. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.H.; Boutaoui, N.; Klanderman, B.J.; Sylvia, J.S.; Ziniti, J.P.; Hersh, C.P.; DeMeo, D.L.; Hunninghake, G.M.; Litonjua, A.A.; Sparrow, D.; et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet. 2010, 42, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Adcock, I.M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006, 28, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, P.A.; Barnes, P.J. Oxidative stress in COPD. Chest 2013, 144, 266–273. [Google Scholar] [CrossRef]
- Hersh, C.P.; Demeo, D.L.; Lazarus, R.; Celedón, J.C.; Raby, B.A.; Benditt, J.O.; Criner, G.; Make, B.; Martinez, F.J.; Scanlon, P.D.; et al. Genetic association analysis of functional impairment in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2006, 173, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Hassett, C.; Aicher, L.; Sidhu, J.S.; Omiecinski, C.J. Human microsomal epoxide hydrolase: Genetic polymorphism and functional expression in vitro of amino acid variants. Hum. Mol. Genet. 1994, 3, 421–428, Erratum in Hum. Mol. Genet. 1994, 3, 1214. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, T.E.; Ismail, S.; Abdeen, D.; Ababneh, N.A.; Khatib, F.; Al-Essa, M.K.; Hawari, F.; Obeidat, N.; Alkayed, N.J.; Shafagoj, Y. The Association between EPHX1 Gene Polymorphisms and Lung Cancer among Jordanian People. Asian Pac. J. Cancer Prev. 2024, 25, 3913–3919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Q.; Huang, W.; Yin, D.; Zhang, L.; Gao, Y.; Tong, J.; Li, Z. EPHX1 and GSTP1 polymorphisms are associated with COPD risk: A systematic review and meta-analysis. Front. Genet. 2023, 14, 1128985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Li, S.; Wang, Q.; Pan, L.; Jiang, F.; Yang, X.; Zhang, N.; Han, M.; Jia, C. Association of 5-HTTLPR polymorphism with smoking behavior: A meta-analysis. Physiol. Behav. 2015, 152, 32–40. [Google Scholar] [CrossRef]
- Thorgeirsson, T.E.; Geller, F.; Sulem, P.; Rafnar, T.; Wiste, A.; Magnusson, K.P.; Manolescu, A.; Thorleifsson, G.; Stefansson, H.; Ingason, A.; et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008, 452, 638–642. [Google Scholar] [CrossRef]
- Pillai, S.G.; Ge, D.; Zhu, G.; Kong, X.; Shianna, K.V.; Need, A.C.; Feng, S.; Hersh, C.P.; Bakke, P.; Gulsvik, A.; et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci. PLoS Genet. 2009, 5, e1000421. [Google Scholar] [CrossRef]
- Saccone, S.F.; Hinrichs, A.L.; Saccone, N.L.; Chase, G.A.; Konvicka, K.; Madden, P.A.; Breslau, N.; Johnson, E.O.; Hatsukami, D.; Pomerleau, O.; et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum. Mol. Genet. 2007, 16, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Le Marchand, L.; Derby, K.S.; Murphy, S.E.; Hecht, S.S.; Hatsukami, D.; Carmella, S.G.; Tiirikainen, M.; Wang, H. Smokers with the CHRNA lung cancer-associated variants are exposed to higher levels of nicotine equivalents and a carcinogenic tobacco-specific nitrosamine. Cancer Res. 2008, 68, 9137–9140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Little, J.; Higgins, J.P.; Ioannidis, J.P.; Moher, D.; Gagnon, F.; von Elm, E.; Khoury, M.J.; Cohen, B.; Davey-Smith, G.; Grimshaw, J.; et al. STrengthening the REporting of Genetic Association studies (STREGA)—An extension of the STROBE statement. PLoS Med. 2009, 6, e1000022. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Knudson, R.J.; Lebowitz, M.D.; Holberg, C.J.; Burrows, B. Changes in the normal maximal expiratory flow-volume curve with growth and aging. Am. Rev. Respir. Dis. 1983, 127, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.J.; van den Bree, M.B.; Munafò, M.R. Association of the CHRNA5-A3-B4 gene cluster with heaviness of smoking: A meta-analysis. Nicotine Tob. Res. 2011, 13, 1167–1175. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lassi, G.; Taylor, A.E.; Timpson, N.J.; Kenny, P.J.; Mather, R.J.; Eisen, T.; Munafò, M.R. The CHRNA5–A3–B4 Gene Cluster and Smoking: From Discovery to Therapeutics. Trends Neurosci. 2016, 39, 851–861. [Google Scholar] [CrossRef]
- Wootton, R.E.; Richmond, R.C.; Stuijfzand, B.G.; Lawn, R.B.; Sallis, H.M.; Taylor, G.M.J.; Hemani, G.; Jones, H.J.; Zammit, S.; Smith, G.D.; et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: A Mendelian randomisation study. Psychol. Med. 2020, 50, 2435–2443. [Google Scholar] [CrossRef]
- Xu, K.; Li, B.; McGinnis, K.A.; Vickers-Smith, R.; Dao, C.; Sun, N.; Kember, R.L.; Zhou, H.; Becker, W.C.; Gelernter, J.; et al. Genome-wide association study of smoking trajectory and meta-analysis of smoking status in 842,000 individuals. Nat. Commun. 2020, 11, 5302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, M.H.; Mcdonald, M.-L.N.; Zhou, X.; Mattheisen, M.; Castaldi, P.J.; Hersch, C.P.; DeMeo, D.L.; Sylvia, J.S.; Ziniti, J.; Laird, N.M.; et al. Risk loci for chronic obstructive pulmonary disease: A genome-wide association study and meta-analysis. Lancet Respir. Med. 2014, 2, 214–225. [Google Scholar] [CrossRef]
- Liu, C.; Ran, R.; Li, X.; Liu, G.; Xie, X.; Li, J. Genetic Variants Associated with Chronic Obstructive Pulmonary Disease Risk: Cumulative Epidemiological Evidence from Meta-Analyses and Genome-Wide Association Studies. Can. Respir. J. 2022, 2022, 3982335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, C.A.D.; Harrison, D.J. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet 1997, 350, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zuo, Q.; Chen, M.; Zhao, Y.; Li, X.; Guo, S. Association between the oxidative stress gene polymorphism and chronic obstructive pulmonary disease risk: A meta-analysis. BMC Pulm. Med. 2023, 23, 384. [Google Scholar] [CrossRef]
- Pena, S.D.J.; Di Pietro, G.; Fuchshuber-Moraes, M.; Genro, J.P.; Hutz, M.H.; Kehdy, F.d.S.G.; Kohlrausch, F.; Magno, L.A.V.; Montenegro, R.C.; Moraes, M.O.; et al. The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS ONE 2011, 6, e17063. [Google Scholar] [CrossRef]
- Kehdy, F.S.; Gouveia, M.H.; Machado, M.; Magalhães, W.C.S.; Horimoto, A.R.V.R.; Horta, B.L.; Moreira, R.G.; Leal, T.P.; Scliar, M.O.; Soares-Souza, G.B.; et al. Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proc. Natl. Acad. Sci. USA 2015, 112, 8696–8701. [Google Scholar] [CrossRef] [PubMed]
- Malic, Z.; Topic, A.; Francuski, D.; Stankovic, M.; Nagorni-Obradovic, L.; Markovic, B.; Radojkovic, D. Oxidative Stress and Genetic Variants of Xenobiotic-Metabolising Enzymes Associated with COPD Development and Severity in Serbian Adults. COPD J. Chronic Obstr. Pulm. Dis. 2017, 14, 95–104. [Google Scholar] [CrossRef] [PubMed]

| Variable | TI ≤ 40 (n = 76) | TI > 40 (n = 47) | p-Value |
|---|---|---|---|
| Age (years) | 62.4 ± 8.1 | 64.9 ± 9.3 | 0.117 |
| Sex (M/F) | 48/28 | 32/15 | 0.240 |
| FEV1 (% predicted) | 66.9 ± 23.6 | 64.9 ± 22.6 | 0.64 |
| SNP | Risk Allele | TI ≤ 40 | TI > 40 | p-Value |
|---|---|---|---|---|
| CHRNA3 rs1051730 | A | 36/152 (19.2%) | 31/94 (24.8%) | 0.11 |
| CHRNA3 rs8034191 | C | 40/152 (20.8%) | 34/94 (26.2%) | 0.1 |
| EPHX1 rs2234922 | A | 119/152 (78.3%) | 72/94 (76.6%) | 0.76 |
| Variable | Control (n = 29) | COPD (n = 94) | p-Value |
|---|---|---|---|
| Age (years) | 63.1 ± 8.7 | 66.2 ± 9.1 | 0.180 |
| Sex (M/F) | 14/15 | 69/25 | <0.001 |
| FEV1 (% predicted) | 94.3 ± 7.8 | 58.6 ± 13.2 | <0.001 |
| Polymorphism | Allele More Frequent in COPD | p-Value |
|---|---|---|
| EPHX1 rs2234922 (A>G) | A | 0.010 |
| CHRNA3 rs1051730 (G>A) | — | 0.61 |
| CHRNA3 rs8034191 (C>T) | — | 0.85 |
| Polymorphism | Genotype χ2 p-Value | HWE χ2 (Controls) | HWE p-Value |
|---|---|---|---|
| EPHX1 rs2234922 (A>G) | 0.041 | 1.05 | 0.30 |
| CHRNA3 rs1051730(G>A) | 0.81 | 0.49 | 0.48 |
| CHRNA3 rs8034191 (C>T) | 0.85 | 0.04 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prudente Bartholo, T.; Porto, L.C.; Pozzan, R.; Nascimento, A.; Bartholo, B.B.G.R.; Rufino, R.; da Costa, C.H. Analysis of the Relationship Between CHRNA3/5 and EPHX1 Polymorphisms to Tobacco Intake and Development of Chronic Obstructive Pulmonary Disease (COPD). Biomedicines 2025, 13, 2781. https://doi.org/10.3390/biomedicines13112781
Prudente Bartholo T, Porto LC, Pozzan R, Nascimento A, Bartholo BBGR, Rufino R, da Costa CH. Analysis of the Relationship Between CHRNA3/5 and EPHX1 Polymorphisms to Tobacco Intake and Development of Chronic Obstructive Pulmonary Disease (COPD). Biomedicines. 2025; 13(11):2781. https://doi.org/10.3390/biomedicines13112781
Chicago/Turabian StylePrudente Bartholo, Thiago, Luis Cristóvão Porto, Roberto Pozzan, Adriana Nascimento, Barbara Beatriz Garcia Raskovisch Bartholo, Rogerio Rufino, and Cláudia Henrique da Costa. 2025. "Analysis of the Relationship Between CHRNA3/5 and EPHX1 Polymorphisms to Tobacco Intake and Development of Chronic Obstructive Pulmonary Disease (COPD)" Biomedicines 13, no. 11: 2781. https://doi.org/10.3390/biomedicines13112781
APA StylePrudente Bartholo, T., Porto, L. C., Pozzan, R., Nascimento, A., Bartholo, B. B. G. R., Rufino, R., & da Costa, C. H. (2025). Analysis of the Relationship Between CHRNA3/5 and EPHX1 Polymorphisms to Tobacco Intake and Development of Chronic Obstructive Pulmonary Disease (COPD). Biomedicines, 13(11), 2781. https://doi.org/10.3390/biomedicines13112781

