The Triglyceride–Glucose Index: A Clinical Tool to Quantify Insulin Resistance as a Metabolic Myocardial Remodeling Bridge in Atrial Fibrillation
Abstract
1. Introduction
2. Pathophysiologic Pathways Linking Insulin Resistance to Atrial Fibrillation
3. Association of Triglyceride–Glucose INDEX with Risk of Atrial Fibrillation
3.1. Triglyceride–Glucose INDEX and the Incidence of Atrial Fibrillation
3.2. Triglyceride–Glucose Index and Recurrence of Atrial Fibrillation After Ablation
3.3. Triglyceride–Glucose Index and New-Onset Atrial Fibrillation After Cardiac Surgery
3.4. Triglyceride–Glucose Index and Prognosis in Atrial Fibrillation Patients
3.5. Heterogeneity and Effect Modification
3.6. Other Non-Insulin-Based Insulin Resistance Indices
4. Potential Clinical Implications
5. Limitations and Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AF | Atrial fibrillation |
ACM | Atrial cardiomyopathy |
IR | Insulin resistance |
TyG index | Triglyceride–glucose index |
GBD | Global Burden of Disease |
ROS | Reactive oxygen species |
CaMKII | Calcium/Calmodulin-dependent Protein Kinase II delta |
RyR2 | Ryanodine Receptor 2 |
PLB | Phospholamban |
SR | Sarcoplasmic reticulum |
DADs | Delayed afterdepolarizations |
INa | Fast sodium current |
Ica | L-type calcium current |
RAAS | Sympathetic–renin–angiotensin–aldosterone system |
ERP | Effective refractory period |
TNF- | Tumor Necrosis Factor-alpha |
IL-6 | Interleukin-6 |
TGF-1 | Transforming Growth Factor-beta 1 |
MMP-9 | Matrix Metalloproteinase-9 |
TG | Triglyceride |
FBG | Fasting blood glucose |
SD | Standard deviation |
OR | Odds ratio |
ACS | Acute coronary syndrome |
NAFLD | Non-alcoholic fatty liver disease |
HR | Hazard ratio |
RFA | Radiofrequency ablation |
AUC | Area Under the Curve |
METS-IR | Metabolic Score for Insulin Resistance |
TG/HDL-C Ratio | Triglyceride-to-HDL-Cholesterol Ratio |
NOAF | New-onset AF |
HOCM | Hypertrophic obstructive cardiomyopathy |
ROC | Receiver Operating Characteristic |
PCI | Percutaneous coronary intervention |
STEMI | ST-segment elevation myocardial infarction |
AMI | Acute myocardial infarction |
OPCABG | Off-pump coronary artery bypass grafting |
VAI | Visceral adiposity index |
CABG | Coronary artery bypass grafting |
MACCEs | Major cardiovascular and cerebrovascular events |
MACEs | Major adverse cardiovascular events |
ICU | Intensive care unit |
References
- Andersen, J.H.; Andreasen, L.; Olesen, M.S. Atrial fibrillation—A complex polygenetic disease. Eur. J. Hum. Genet. 2021, 29, 1051–1060. [Google Scholar] [CrossRef]
- Chung, M.K.; Refaat, M.; Shen, W.K.; Kutyifa, V.; Cha, Y.M.; Di Biase, L.; Baranchuk, A.; Lampert, R.; Natale, A.; Fisher, J.; et al. Atrial fibrillation: JACC council perspectives. J. Am. Coll. Cardiol. 2020, 75, 1689–1713. [Google Scholar] [CrossRef]
- Adolph, T.E.; Tilg, H. Western diets and chronic diseases. Nat. Med. 2024, 30, 2133–2147. [Google Scholar] [CrossRef]
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.H.; McAnulty, J.H., Jr.; Zheng, Z.J.; et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.G.; Healey, J.S.; Raina, P.; Connolly, S.J.; Ibrahim, Q.; Gupta, R.; Avezum, A.; Dans, A.L.; Lopez-Jaramillo, P.; Yeates, K.; et al. Global variations in the prevalence, treatment, and impact of atrial fibrillation in a multi-national cohort of 153,152 middle-aged individuals. Cardiovasc. Res. 2021, 117, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, A.; Iglesias, M.; Khanna, R.; Beaulieu, T. Healthcare utilization and costs associated with a diagnosis of incident atrial fibrillation. Heart Rhythm O2 2022, 3, 577–586. [Google Scholar] [CrossRef]
- Casselman, F.; Coca, A.; De Caterina, R.; Deftereos, S.; Dobrev, D.; Ferro, J.M.; Filippatos, G. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37, 2893–2962. [Google Scholar]
- Chiang, C.E.; Chao, T.F.; Choi, E.K.; Lim, T.W.; Krittayaphong, R.; Li, M.; Chen, M.; Guo, Y.; Okumura, K.; Lip, G.Y. Stroke prevention in atrial fibrillation: A scientific statement of JACC: Asia (Part 2). JACC Asia 2022, 2, 519–537. [Google Scholar] [CrossRef]
- Kamel, H.; Healey, J.S. Cardioembolic stroke. Circ. Res. 2017, 120, 514–526. [Google Scholar] [CrossRef]
- Goette, A.; Corradi, D.; Dobrev, D.; Aguinaga, L.; Cabrera, J.A.; Chugh, S.S.; De Groot, J.R.; Soulat-Dufour, L.; Fenelon, G.; Hatem, S.N.; et al. Atrial cardiomyopathy revisited—Evolution of a concept: A clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). Europace 2024, 26, euae204. [Google Scholar]
- Poole, J.E.; Bahnson, T.D.; Monahan, K.H.; Johnson, G.; Rostami, H.; Silverstein, A.P.; Al-Khalidi, H.R.; Rosenberg, Y.; Mark, D.B.; Lee, K.L.; et al. Recurrence of atrial fibrillation after catheter ablation or antiarrhythmic drug therapy in the CABANA trial. J. Am. Coll. Cardiol. 2020, 75, 3105–3118. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Y.; Zheng, Q. Metabolic inflexibility as a pathogenic basis for atrial fibrillation. Int. J. Mol. Sci. 2022, 23, 8291. [Google Scholar] [CrossRef] [PubMed]
- Bode, D.; Pronto, J.R.D.; Schiattarella, G.G.; Voigt, N. Metabolic remodelling in atrial fibrillation: Manifestations, mechanisms and clinical implications. Nat. Rev. Cardiol. 2024, 21, 682–700. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Shrader, P.; Thomas, L.; Gersh, B.J.; Kowey, P.R.; Mahaffey, K.W.; Singer, D.E.; Hylek, E.M.; Go, A.S.; Peterson, E.D.; et al. Care patterns and outcomes in atrial fibrillation patients with and without diabetes: ORBIT-AF registry. J. Am. Coll. Cardiol. 2017, 70, 1325–1335. [Google Scholar]
- Chan, Y.H.; Chang, G.J.; Lai, Y.J.; Chen, W.J.; Chang, S.H.; Hung, L.M.; Kuo, C.T.; Yeh, Y.H. Atrial fibrillation and its arrhythmogenesis associated with insulin resistance. Cardiovasc. Diabetol. 2019, 18, 125. [Google Scholar] [CrossRef]
- Lee, Y.; Cha, S.J.; Park, J.H.; Shin, J.H.; Lim, Y.H.; Park, H.C.; Shin, J.; Kim, C.K.; Park, J.K. Association between insulin resistance and risk of atrial fibrillation in non-diabetics. Eur. J. Prev. Cardiol. 2020, 27, 1934–1941. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. Endocrinol. Metab. 1979, 237, E214. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; Gonzalez-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernandez-Gonzalez, S.O.; Jacques-Camarena, O.; Rodríguez-Moran, M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef]
- Vasques, A.C.J.; Novaes, F.S.; de Oliveira, M.d.S.; Souza, J.R.M.; Yamanaka, A.; Pareja, J.C.; Tambascia, M.A.; Saad, M.J.A.; Geloneze, B. TyG index performs better than HOMA in a Brazilian population: A hyperglycemic clamp validated study. Diabetes Res. Clin. Pract. 2011, 93, e98–e100. [Google Scholar]
- Sánchez-Íñigo, L.; Navarro-González, D.; Fernández-Montero, A.; Pastrana-Delgado, J.; Martínez, J.A. The TyG index may predict the development of cardiovascular events. Eur. J. Clin. Investig. 2016, 46, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Chen, G.; Wu, K.; Wu, W.; Huang, Z.; Wang, X.; Chen, Z.; Cai, Z.; Cai, Z.; Lan, Y.; et al. Relationship between cumulative exposure to triglyceride–glucose index and heart failure: A prospective cohort study. Cardiovasc. Diabetol. 2023, 22, 239. [Google Scholar] [CrossRef] [PubMed]
- Azarboo, A.; Behnoush, A.H.; Vaziri, Z.; Daneshvar, M.S.; Taghvaei, A.; Jalali, A.; Cannavo, A.; Khalaji, A. Assessing the association between triglyceride–glucose index and atrial fibrillation: A systematic review and meta-analysis. Eur. J. Med Res. 2024, 29, 118. [Google Scholar] [CrossRef] [PubMed]
- Maria, Z.; Campolo, A.R.; Scherlag, B.J.; Ritchey, J.W.; Lacombe, V.A. Dysregulation of insulin-sensitive glucose transporters during insulin resistance-induced atrial fibrillation. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 987–996. [Google Scholar] [CrossRef]
- Ofori, E.K.; Buabeng, A.; Amanquah, S.D.; Danquah, K.O.; Amponsah, S.K.; Dziedzorm, W.; Dogodzi, F.K.; Adusu-Donkor, L.X.; Bernard, S.K.; Asare-Anane, H. Effect of circulating ceramides on adiposity and insulin resistance in patients with type 2 diabetes: An observational cross-sectional study. Endocrinol. Diabetes Metab. 2023, 6, e418. [Google Scholar] [CrossRef]
- Peterson, L.R. Obesity and insulin resistance: Effects on cardiac structure, function, and substrate metabolism. Curr. Hypertens. Rep. 2006, 8, 451–456. [Google Scholar] [CrossRef]
- Watanabe, M.; Yokoshiki, H.; Mitsuyama, H.; Mizukami, K.; Ono, T.; Tsutsui, H. Conduction and refractory disorders in the diabetic atrium. Am. J. Physiol.-Heart Circ. Physiol. 2012, 303, H86–H95. [Google Scholar] [CrossRef]
- Wong, C.X.; Ganesan, A.N.; Selvanayagam, J.B. Epicardial fat and atrial fibrillation: Current evidence, potential mechanisms, clinical implications, and future directions. Eur. Heart J. 2017, 38, 1294–1302. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwon, H.S.; Park, Y.M.; Ha, H.S.; Jeong, S.H.; Yang, H.K.; Lee, J.H.; Yim, H.W.; Kang, M.I.; Lee, W.C.; et al. Predicting the development of diabetes using the product of triglycerides and glucose: The Chungju Metabolic Disease Cohort (CMC) study. PLoS ONE 2014, 9, e90430. [Google Scholar]
- Aliyu, U.; Toor, S.M.; Abdalhakam, I.; Elrayess, M.A.; Abou-Samra, A.B.; Albagha, O.M. Evaluating indices of insulin resistance and estimating the prevalence of insulin resistance in a large biobank cohort. Front. Endocrinol. 2025, 16, 1591677. [Google Scholar] [CrossRef]
- Tao, L.C.; Xu, J.N.; Wang, T.T.; Hua, F.; Li, J.J. triglyceride–glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc. Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
- Shi, W.; Qin, M.; Wu, S.; Xu, K.; Zheng, Q.; Liu, X. Usefulness of triglyceride–glucose index for detecting prevalent atrial fibrillation in a type 2 diabetic population. Postgrad. Med. 2022, 134, 820–828. [Google Scholar] [CrossRef]
- Chen, S.; Mei, Q.; Guo, L.; Yang, X.; Luo, W.; Qu, X.; Li, X.; Zhou, B.; Chen, K.; Zeng, C. Association between triglyceride–glucose index and atrial fibrillation: A retrospective observational study. Front. Endocrinol. 2022, 13, 1047927. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Hu, Y.; Wang, J.; Qi, C. Clinical prediction study on the risk of atrial fibrillation in hypertensive patients based on metabolism, inflammation, and gender differences. Sci. Rep. 2025, 15, 12678. [Google Scholar] [CrossRef]
- Yao, C.; Qin, Y.; Yan, X.; Zhao, Z.; Wang, B.; Bai, Y.; Zhang, T.; Hou, Y. Correlation between triglyceride–glucose index and atrial fibrillation in acute coronary syndrome patients: A retrospective cohort study and the establishment of a LASSO-Logistic regression model. BMC Cardiovasc. Disord. 2024, 24, 702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Qi, J.; Yu, B.; Zhao, J.; Pang, L.; Zhang, W.; Bin, L. Correlation between the triglyceride–glucose index and the onset of atrial fibrillation in patients with non-alcoholic fatty liver disease. Diabetol. Metab. Syndr. 2023, 15, 94. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Abudukeremu, A.; Jiang, Y.; Cao, Z.; Wu, M.; Ma, J.; Sun, R.; He, W.; Chen, Z.; Chen, Y.; et al. U-shaped association between the triglyceride–glucose index and atrial fibrillation incidence in a general population without known cardiovascular disease. Cardiovasc. Diabetol. 2023, 22, 118. [Google Scholar] [CrossRef]
- Shi, S.; Song, Y.; Liu, Z.; He, J.; Zheng, Z.; Song, C.; Jia, L.; Gao, G.; Dong, Q.; Fu, R.; et al. The association of the triglyceride–glucose index with the risk of atrial fibrillation: Analysis of the UK Biobank. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103826. [Google Scholar] [CrossRef]
- Kim, H.J.; Ryu, J.; Ahn, S.Y.; Kim, S.; Lim, S.; Na, K.Y.; Kim, K.W.; Jang, H.C.; Chae, D.W.; Chin, H.J. Association of insulin resistance with lower glomerular filtration rate and all-cause mortality in the Korean elderly population: A community-based prospective cohort study. Tohoku J. Exp. Med. 2013, 231, 271–279. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, X.c.; Kenneth, L.; Huang, Y.q.; Feng, Y.q. A non-linear association of triglyceride glycemic index with cardiovascular and all-cause mortality among patients with hypertension. Front. Cardiovasc. Med. 2022, 8, 778038. [Google Scholar] [CrossRef]
- Liao, H.W.; Saver, J.; Yeh, H.C.; Chen, C.H.S.; Wu, Y.L.; Lee, M.; Ovbiagele, B. Low fasting glucose and future risks of major adverse outcomes in people without baseline diabetes or cardiovascular disease: A systematic review and meta-analysis. BMJ Open 2019, 9, e026010. [Google Scholar] [CrossRef]
- Humos, B.; Mahfoud, Z.; Dargham, S.; Al Suwaidi, J.; Jneid, H.; Abi Khalil, C. Hypoglycemia is associated with a higher risk of mortality and arrhythmias in ST-elevation myocardial infarction, irrespective of diabetes. Front. Cardiovasc. Med. 2022, 9, 940035. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Park, Y.M.; Yun, J.S.; Cha, S.A.; Choi, E.K.; Han, K.; Han, E.; Lee, Y.h.; Ahn, Y.B. Severe hypoglycemia is a risk factor for atrial fibrillation in type 2 diabetes mellitus: Nationwide population-based cohort study. J. Diabetes Complicat. 2018, 32, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Fritsche, A.; Boeing, H.; Joost, H. Fasting plasma glucose and type 2 diabetes risk: A non-linear relationship. Diabet. Med. 2010, 27, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS guideline for the diagnosis and management of atrial fibrillation: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2024, 83, 109–279. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Zhao, D.; Ren, Z.; Hou, C.R.; Su, X.; Deng, C.; Yao, Y.; Tang, K.; Li, Y.; Fu, H.; et al. Liquid nitrogen cryoballoon ablation system for paroxysmal atrial fibrillation: A multicenter, prospective, single-arm clinical trial. JACC Asia 2023, 3, 805–816. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2019, 74, 104–132. [Google Scholar]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar]
- Tang, Q.; Guo, X.G.; Sun, Q.; Ma, J. The pre-ablation triglyceride–glucose index predicts late recurrence of atrial fibrillation after radiofrequency ablation in non-diabetic adults. BMC Cardiovasc. Disord. 2022, 22, 219. [Google Scholar] [CrossRef]
- Wang, Z.; He, H.; Xie, Y.; Li, J.; Luo, F.; Sun, Z.; Zheng, S.; Yang, F.; Li, X.; Chen, X.; et al. Non-insulin-based insulin resistance indexes in predicting atrial fibrillation recurrence following ablation: A retrospective study. Cardiovasc. Diabetol. 2024, 23, 87. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Wang, S.; Chen, W.; Li, C.; Zhang, Y.; Sun, A.; Xie, L.; Hu, C. Combining computed tomography features of left atrial epicardial and pericoronary adipose tissue with the triglyceride–glucose index to predict the recurrence of atrial fibrillation after radiofrequency catheter ablation: A machine learning study. Quant. Imaging Med. Surg. 2024, 14, 9306. [Google Scholar] [CrossRef]
- Jia, S.; Yin, Y.; Mou, X.; Zheng, J.; Li, Z.; Hu, T.; Zhao, J.; Lin, J.; Song, J.; Cheng, F.; et al. Association between triglyceride–glucose index trajectories and radiofrequency ablation outcomes in patients with stage 3D atrial fibrillation. Cardiovasc. Diabetol. 2024, 23, 121. [Google Scholar] [CrossRef]
- Yan, Q.; Liang, J.Q.; Yuan, Y.D.; Li, Y.; Fan, J.L.; Wu, W.H.; Xu, P.; Xue, J.H. Association between the cumulative triglyceride–glucose index and the recurrence of atrial fibrillation after radiofrequency catheter ablation. J. Geriatr. Cardiol. JGC 2024, 21, 200. [Google Scholar] [CrossRef]
- Gaudino, M.; Di Franco, A.; Rong, L.Q.; Piccini, J.; Mack, M. Postoperative atrial fibrillation: From mechanisms to treatment. Eur. Heart J. 2023, 44, 1020–1039. [Google Scholar] [CrossRef] [PubMed]
- Chyou, J.Y.; Barkoudah, E.; Dukes, J.W.; Goldstein, L.B.; Joglar, J.A.; Lee, A.M.; Lubitz, S.A.; Marill, K.A.; Sneed, K.B.; Streur, M.M.; et al. Atrial fibrillation occurring during acute hospitalization: A scientific statement from the American Heart Association. Circulation 2023, 147, e676–e698. [Google Scholar] [CrossRef] [PubMed]
- Ninni, S.; Dombrowicz, D.; Kuznetsova, T.; Vicario, R.; Gao, V.; Molendi-Coste, O.; Haas, J.; Woitrain, E.; Coisne, A.; Neele, A.E.; et al. Hematopoietic somatic mosaicism is associated with an increased risk of postoperative atrial fibrillation. J. Am. Coll. Cardiol. 2023, 81, 1263–1278. [Google Scholar] [CrossRef]
- Yang, Y.; Du, Z.; Fang, M.; Ma, Y.; Liu, Y.; Wang, T.; Han, Z.; Peng, Z.; Pan, Y.; Qin, H.; et al. Metabolic signatures in pericardial fluid and serum are associated with new-onset atrial fibrillation after isolated coronary artery bypass grafting. Transl. Res. 2023, 256, 30–40. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, E.; Ren, C.; Dai, J.; Li, J.; Lai, Y. Triglyceride–glucose index independently predicts new-onset atrial fibrillation after septal myectomy for hypertrophic obstructive cardiomyopathy beyond the traditional risk factors. Front. Cardiovasc. Med. 2021, 8, 692511. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Fu, C.; Fan, Q.; Liu, J.; Jiang, L.; Tang, S. triglyceride–glucose index and new-onset atrial fibrillation in ST-segment elevation myocardial infarction patients after percutaneous coronary intervention. Front. Cardiovasc. Med. 2022, 9, 838761. [Google Scholar] [CrossRef]
- Wu, X.D.; Zhao, W.; Wang, Q.W.; Yang, X.Y.; Wang, J.Y.; Yan, S.; Tong, Q. Clinical predictive model of new-onset atrial fibrillation in patients with acute myocardial infarction after percutaneous coronary intervention. Sci. Rep. 2025, 15, 439. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Zhao, R.; Yang, Y.; Hua, K.; Yang, X. Predictive Value of the CT-Based Visceral Adiposity Tissue Index and Triglyceride–Glucose Index on New-Onset Atrial Fibrillation after Off-Pump Coronary Artery Bypass Graft: Analyses from a Longitudinal Study. Rev. Cardiovasc. Med. 2023, 24, 338. [Google Scholar] [CrossRef]
- Brachmann, J.; Sohns, C.; Andresen, D.; Siebels, J.; Sehner, S.; Boersma, L.; Merkely, B.; Pokushalov, E.; Sanders, P.; Schunkert, H.; et al. Atrial fibrillation burden and clinical outcomes in heart failure: The CASTLE-AF trial. Clin. Electrophysiol. 2021, 7, 594–603. [Google Scholar] [CrossRef]
- Singh, S.M.; Abdel-Qadir, H.; Pang, A.; Fang, J.; Koh, M.; Dorian, P.; Wijeysundera, H.C.; Ko, D.T. Population trends in all-cause mortality and cause specific–death with incident atrial fibrillation. J. Am. Heart Assoc. 2020, 9, e016810. [Google Scholar] [CrossRef]
- Yin, C.; Hou, Q.; Qi, Q.; Han, Q.; Wang, X.; Wu, S.; Li, K. triglyceride–glucose index predicts major adverse Cardiovascular and cerebrovascular events in patients with Atrial Fibrillation. Int. Heart J. 2024, 65, 373–379. [Google Scholar] [CrossRef]
- Gong, A.; Cao, Y.; Li, Z.; Li, W.; Li, F.; Tong, Y.; Hu, X.; Zeng, R. Association between triglyceride glucose index and adverse cardiovascular prognosis in patients with atrial fibrillation without diabetes: A retrospective cohort study. Lipids Health Dis. 2025, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Hao, J.; Yu, K.; Lv, Y.; Liu, X.; Liu, F.; Wei, N. Association between triglyceride glucose index and all-cause mortality in patients with critical atrial fibrillation in the MIMIC-IV database. Sci. Rep. 2025, 15, 13484. [Google Scholar] [CrossRef] [PubMed]
- Kan, F.; Yang, Z.; Bao, D.; Tang, M.; Ji, N. Association between triglyceride–glucose index and all-cause mortality in patients with congestive heart failure and atrial fibrillation. Front. Cardiovasc. Med. 2025, 12, 1476815. [Google Scholar] [CrossRef] [PubMed]
- Almulhem, M.; Chandan, J.S.; Gokhale, K.; Adderley, N.J.; Thayakaran, R.; Khunti, K.; Tahrani, A.A.; Hanif, W.; Nirantharakumar, K. Cardio-metabolic outcomes in South Asians compared to White Europeans in the United Kingdom: A matched controlled population-based cohort study. BMC Cardiovasc. Disord. 2021, 21, 320. [Google Scholar] [CrossRef]
- Ghoshouni, H.; Shamloo, A.S.; Mirjalili, S.R.; Soltani, F.; Bakhshandeh, H.; Hindricks, G.; Dagres, N. Association between Surrogate Insulin Resistance markers and Post-Ablation Atrial Fibrillation Recurrence: A Systematic Review and Meta-Analysis. Heart Rhythm 2025, 22, e605–e617. [Google Scholar] [CrossRef]
- Imre, E.; Gunhan, H.G.; Erel, P.; Ustay, O. SGLT2 inhibitors improve plasma atherogenic biomarkers in patients with type 2 diabetes: A real-world retrospective observational study. Minerva Endocrinol. 2021, 48, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Chinese Diabetes Society Insulin Resistance Study Group. Expert guidance on insulin resistance assessment methods and applications. Chin. J. Diabetes Mellit. 2018, 10, 377–385. [Google Scholar]
- Zhong, J.; Chen, H.; Liu, Q.; Zhou, S.; Liu, Z.; Xiao, Y. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation. J. Pharm. Anal. 2024, 14, 100917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, C.; Kong, C.Y.; Song, P.; Wu, H.M.; Xu, S.C.; Yuan, Y.P.; Deng, W.; Ma, Z.G.; Tang, Q.Z. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ. 2020, 27, 540–555. [Google Scholar] [CrossRef]
- Zhang, H.J.; Zhang, X.F.; Ma, Z.M.; Pan, L.L.; Chen, Z.; Han, H.W.; Han, C.K.; Zhuang, X.J.; Lu, Y.; Li, X.J.; et al. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J. Hepatol. 2013, 59, 557–562. [Google Scholar] [CrossRef]
- Peng, H.; Wang, Q.; Lou, T.; Qin, J.; Jung, S.; Shetty, V.; Li, F.; Wang, Y.; Feng, X.h.; Mitch, W.E.; et al. Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat. Commun. 2017, 8, 1493. [Google Scholar] [CrossRef]
- Kim, H.; Wrann, C.D.; Jedrychowski, M.; Vidoni, S.; Kitase, Y.; Nagano, K.; Zhou, C.; Chou, J.; Parkman, V.J.A.; Novick, S.J.; et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell 2018, 175, 1756–1768. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, J.; Song, X.; Gu, W.; Wang, S.; Hao, S.; Dong, Z.; Ning, Z. Irisin attenuates angiotensin II-induced atrial fibrillation and atrial fibrosis via LOXL2 and TGFβ1/Smad2/3 signaling pathways. Iran. J. Basic Med Sci. 2023, 26, 717–724. [Google Scholar]
- Anaszewicz, M.; Wawrzeńczyk, A.; Czerniak, B.; Banaś, W.; Socha, E.; Lis, K.; Żbikowska-Gotz, M.; Bartuzi, Z.; Budzyński, J. Leptin, adiponectin, tumor necrosis factor α, and irisin concentrations as factors linking obesity with the risk of atrial fibrillation among inpatients with cardiovascular diseases. Pol. Heart J. (Kardiol. Pol.) 2019, 77, 1055–1061. [Google Scholar] [CrossRef]
Study | Population | Design | Total Participants | Participants with AF | TyG Index Groups | Cutoff Value | HR/OR (95% CI) | References |
---|---|---|---|---|---|---|---|---|
Li et al., 2025 | Hypertensive patients | Retrospective cohort | 566 | 306 | Not reported | Not reported | Continuous variable OR of 1.957 (1.452–2.639) | [36] |
Shanshan Shi et al., 2025 | Individuals aged 37–73 years with no history of heart disease | Retrospective cohort | 409,705 | 26,092 | Tertiles | Not reported | T1 vs. T2 HR of 1.22 (1.17–1.27) T3 vs. T2 HR of 1.09 (1.05–1.14) | [40] |
Yao et al., 2024 | Patients with ACS | Retrospective cohort | 613 | 70 | Q1 (≤1.10) Q2 (1.10–1.64) Q3 (1.64–2.25) Q4 (>2.25) | Not reported | Continuous variable OR of 2.02 ( 1.51–2.71) Q4 vs. Q1 OR of 3.16 (1.02–9.83) | [37] |
Liu et al., 2023 | Individuals aged 45–64 years with no history of heart disease | Prospective cohort study | 11,851 | 1925 | T1 (<8.80) T2 (8.80–9.20) T3 (>9.20) | Not reported | T1 vs. T2 HR of 1.15 (1.02–1.29) T3 vs. T2 HR of 1.18 (1.03–1.37) | [39] |
Zhang et al., 2023 | Patients with NAFLD | Retrospective cohort | 912 | 204 | Q1 ≤ 8.39 Q2 ≤ 8.78 ± 0.83 ± 0.20 Q3 ≤ 9.09 ± 0.99 Q4 ≤ 9.57 ± 0.27 | Not reported | Continuous variable OR of 4.84 (2.98–7.88) T4 vs. T1 OR of 4.34 (2.37–7.94) | [38] |
Chen et al., 2022 | Hospitalized patients | Retrospective observational study | 358 | 179 | Not reported | 8.35 | Continuous Variable OR 2.092 (1.412–3.100) | [35] |
Wenrui Shi et al., 2022 | Patients with T2DM | Cross-Sectional Observational Study | 3244 | 213 | Quartiles | Not reported | Continuous variable OR of 1.406 (1.197–1.650) Q4 vs. Q1 OR of 2.120 (1.303–3.348) | [34] |
Study | Population | Design | Total Participants | Recurrence | TyG Index Groups | Cutoff Value | HR (95% CI) | References |
---|---|---|---|---|---|---|---|---|
Li et al., 2024 | Patients undergoing RFCA | Retrospective cohort | 325 | 79 | Not reported | Not reported | Continuous variable HR of 2.268 (1.372–3.750) | [53] |
Jia et al., 2024 | Patients with stage 3D AF | Retrospective cohort | 997 | 200 | T1 ≤ 8.67 T2 8.67–9.37 T3 > 9.37 | Not reported | Continuous variable HR of 1.255 (1.087–1.448) T3 vs. T1 HR of 2.056 (1.335–3.166) | [54] |
Yan et al., 2024 | Patients undergoing RFCA | Retrospective cohort | 375 | 67 | T1 < 2.07 T2 2.07–2.14 T3 ≥ 2.14 | 2.11 | T2 vs. T1 HR of 4.949 (1.778–13.778) T3 vs. T1 HR of 8.716 (3.371–22.536) | [55] |
Wang et al., 2024 | Patients undergoing RFCA | Retrospective cohort | 2242 | 711 | T1 ≤ 8.325 T2 8.325–8.765 T3 > 8.765 | 8.692 | T3 vs. T1 HR of 1.25 (1.03–1.51) | [52] |
Tang et al., 2022 | Patients without diabetes undergoing RFCA | Retrospective cohort | 275 | 70 | T1 < 6.08–8.67 T2 8.68–9.37 T3 ≥ 9.38 | 9.24 | Continuous variable HR of 2.015 (1.408–4.117) | [51] |
Study | Population | Design | Total Participants | NOAF Incidence | TyG Index Groups | Cutoff Value | HR/OR (95% CI) | References |
---|---|---|---|---|---|---|---|---|
Wu et al., 2025 | Patients with AMI (PCI) | Retrospective cohort | 551 | 94 | Not reported | Not reported | Continuous variable OR of 1.981 (1.344–2.92) | [62] |
Peng et al., 2023 | Patients with AMI (OPCABG) | Retrospective cohort | 542 | Not reported | Q1 ≤ 8.45 Q2 8.45–8.80 Q3 > 8.80 | 8.99 | Continuous variable HR of 1.24 (1.03–1.73) Q3 vs. Q1 HR of 2.88 (1.76–4.71) | [63] |
Ling et al., 2022 | Patients with AMI (PCI) | Retrospective cohort | 549 | 42 | Not reported | 9.15 | Continuous variable OR of 8.884 (1.570–50.265) | [61] |
Wei et al., 2021 | Patients with HOCM (septal myectomy) | Retrospective cohort | 409 | 61 | Not reported | 7.60 | Continuous variable OR of 4.218 (2.381–7.473) | [60] |
Study | Population | Design | Total Participants | Prognosis | TyG Index Groups | HR/OR (95% CI) | References |
---|---|---|---|---|---|---|---|
Kan et al., 2025 | Patients with AF and CHF | Retrospective cohort | 787 | Hospital mortality: 112 ICU mortality: 65 | Q1 7.21–8.46 Q2 8.46–8.84 Q3 8.84–9.30 Q4 9.30–13.49 | Hospital mortality: Continuous variable OR of 1.59 (1.15–2.19) Q4 vs. Q1 OR of 2.67 (1.30–5.50) ICU mortality: Continuous variable OR of 1.90 (1.28–2.83) Q4 vs. Q1 OR of 3.89 (1.50–10.07) | [69] |
Ma et al., 2025 | Patients with critical AF | Retrospective cohort | 1146 | All-cause mortality: 7-day: 142 15-day: 214 30-day: 278 | Q1 < 8.41 Q2 8.41–8.77 Q3 8.77–9.24 Q4 > 9.24 | 7-day mortality: Continuous variable HR of 1.48 (1.15–1.90) Q4 vs. Q1 HR of 2.40 (1.38–4.18) 15-day mortality: Continuous variable HR of 1.35 (1.09–1.67) Q4 vs. Q1 HR of 2.02 (1.30–3.31) 30-day mortality: Continuous variable HR of 1.36 (1.13–1.65) Q4 vs. Q1 HR of 1.71 (1.17–2.49) | [68] |
Gong et al., 2025 | Patients with AF without diabetes | Retrospective cohort | 864 | MACEs: 148 | T1 ≤ 8.493 T2 8.494–9.022 T3 ≥ 9.023 | Continuous variable HR of 1.77 (1.44–2.17) T3 vs. T1 HR of 1.91 (1.53–2.38) | [67] |
Yin et al., 2024 | Patients with AF | Retrospective cohort | 1979 | MACCEs: 227 | Q1 6.80–8.21 Q2 8.21–8.59 Q3 8.59–9.06 Q4 9.06–11.81 | Q4 vs. Q1 HR of 2.103 (1.107–3.994) | [66] |
Index | Calculation Formula | Combined Effect | Heterogeneity | Direction and Magnitude | Interpretation of Evidence |
---|---|---|---|---|---|
TyG | Ln[TG(mg/dL) × FBG(mg/dL)/2] | HR of 1.29 (1.15–1.44) | I = 44% | The higher the index, the greater the risk of recurrence | The hazard ratio of the TyG index is the highest among the non-insulin-based insulin resistance indices, and calculation of this index can be prioritized for baseline stratification |
METS-IR | Ln[(2 × FBG) + TG] × BMI ÷ Ln[HDL-C] | HR of 1.04 (1.03–1.05) | I = 0% | Small increase in risk per unit increase | Small variation but strong consistency |
TG/HDL | TG ÷ HDL-C | HR of 1.09 (0.96–1.24) | I = 86% | The direction is consistent but not significant | Insufficient evidence for use as a predictor alone |
TyG-BMI | TyG × BMI | Insufficient data pooled | - | - | More prospective studies are needed |
eGDR | 19.02 − (0.22 × BMI) − (3.26 × hypertension) − (0.61 × HbA1c) | Insufficient data pooled | - | - | Single research report only |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Wang, Y. The Triglyceride–Glucose Index: A Clinical Tool to Quantify Insulin Resistance as a Metabolic Myocardial Remodeling Bridge in Atrial Fibrillation. Biomedicines 2025, 13, 2348. https://doi.org/10.3390/biomedicines13102348
Luo M, Wang Y. The Triglyceride–Glucose Index: A Clinical Tool to Quantify Insulin Resistance as a Metabolic Myocardial Remodeling Bridge in Atrial Fibrillation. Biomedicines. 2025; 13(10):2348. https://doi.org/10.3390/biomedicines13102348
Chicago/Turabian StyleLuo, Muhua, and Yaping Wang. 2025. "The Triglyceride–Glucose Index: A Clinical Tool to Quantify Insulin Resistance as a Metabolic Myocardial Remodeling Bridge in Atrial Fibrillation" Biomedicines 13, no. 10: 2348. https://doi.org/10.3390/biomedicines13102348
APA StyleLuo, M., & Wang, Y. (2025). The Triglyceride–Glucose Index: A Clinical Tool to Quantify Insulin Resistance as a Metabolic Myocardial Remodeling Bridge in Atrial Fibrillation. Biomedicines, 13(10), 2348. https://doi.org/10.3390/biomedicines13102348