Beyond Acute Coronary Syndromes: Troponins as Diagnostic and Prognostic Tools in Heart Failure
Abstract
1. Introduction
2. Methodology
3. Physiology and Pathophysiology of cTnI
4. Parameters Influencing Changes in cTnI Concentration
5. Comorbidities Associated with cTnI Changes
6. Cardiac Troponin I in Acute Heart Failure
7. Cardiac Troponin I in Chronic Heart Failure
8. Cardiac Troponin I in Heart Failure: Insights into Amyloidosis and Hypertrophic Cardiomyopathy
8.1. Hypertrophic Cardiomyopathy (HCM)
8.2. Cardiac Amyloidosis
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chioncel, O.; Čelutkienė, J.; Bělohlávek, J.; Kamzola, G.; Lainscak, M.; Merkely, B.; Miličić, D.; Nessler, J.; Ristić, A.D.; Sawiełajc, L.; et al. Heart failure care in the Central and Eastern Europe and Baltic region: Status, barriers, and routes to improvement. ESC Heart Fail. 2024, 11, 1861–1874. [Google Scholar] [CrossRef]
- Volterrani, M.; Seferovic, P.; Savarese, G.; Spoletini, I.; Imbalzano, E.; Bayes-Genis, A.; Jankowska, E.; Senni, M.; Metra, M.; Chioncel, O.; et al. Implementation of guideline-recommended medical therapy for patients with heart failure in Europe. ESC Heart Fail. 2025, 12, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Baumhove, L.; van Essen, B.J.; Dokter, M.M.; Zijlstra, S.N.; Deiman, F.E.; Laman, J.D.; Lang, C.C.; Verstappen, G.M.; van Veldhuisen, D.J.; van der Meer, P.; et al. IL-17 is associated with disease severity and targetable inflammatory processes in heart failure. ESC Heart Fail. 2024, 11, 3530–3538. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; März, W.; Niessner, A.; Delgado, G.; Kleber, M.; Scharnagl, H.; Marx, N.; Schuett, K. IL-6 and hsCRP predict cardiovascular mortality in patients with heart failure with preserved ejection fraction. ESC Heart Fail. 2024, 11, 3607–3615. [Google Scholar] [CrossRef] [PubMed]
- Iwanek, G.; Ponikowska, B.; Zdanowicz, A.; Fudim, M.; Hurkacz, M.; Zymliński, R.; Ponikowski, P.; Biegus, J. Relationship of Vascular Endothelial Growth Factor C, a Lymphangiogenesis Modulator, With Edema Formation, Congestion and Outcomes in Acute Heart Failure. J. Card. Fail. 2023, 29, 1629–1638. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Misaka, T.; Sato, Y.; Sugawara, Y.; Ogawara, R.; Ichimura, S.; Tomita, Y.; Anzai, F.; Yokokawa, T.; Sato, A.; Shimizu, T.; et al. Elevated blood bicarbonate levels and long-term adverse outcomes in patients with chronic heart failure. ESC Heart Fail. 2024, 11, 4420–4426. [Google Scholar] [CrossRef]
- Watanabe, Y.; Kubota, Y.; Nishino, T.; Tara, S.; Kato, K.; Hayashi, D.; Mozawa, K.; Matsuda, J.; Tokita, Y.; Yasutake, M.; et al. Utility of fractional excretion of urea nitrogen in heart failure patients with chronic kidney disease. ESC Heart Fail. 2023, 10, 1706–1716. [Google Scholar] [CrossRef]
- Wilk, M.M.; Wilk, J.; Urban, S.; Gajewski, P. Current Review of Heart Failure-Related Risk and Prognostic Factors. Biomedicines 2024, 12, 2560. [Google Scholar] [CrossRef]
- Zymliński, R.; Sokolski, M.; Siwolowski, P.; Biegus, J.; Nawrocka, S.; Jankowska, E.; Todd, J.; Yerramilli, R.; Estis, J.; Banasiak, W.; et al. Elevated troponin I level assessed by a new high-sensitive assay and the risk of poor outcomes in patients with acute heart failure. Int. J. Cardiol. 2017, 230, 646–652. [Google Scholar] [CrossRef]
- Aviles, R.J.; Askari, A.T.; Lindahl, B.; Wallentin, L.; Jia, G.; Ohman, E.M.; Mahaffey, K.W.; Newby, L.K.; Califf, R.M.; Simoons, M.L.; et al. Troponin T Levels in Patients with Acute Coronary Syndromes, with or without Renal Dysfunction. N. Engl. J. Med. 2002, 346, 2047–2052. [Google Scholar] [CrossRef] [PubMed]
- Missov, E.; Calzolari, C.; Pau, B. Circulating Cardiac Troponin I in Severe Congestive Heart Failure. Circulation 1997, 96, 2953–2958. [Google Scholar] [CrossRef] [PubMed]
- Latini, R.; Masson, S. In Search of the Lost Ark. JACC Heart Fail. 2021, 9, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Latini, R.; Masson, S.; Anand, I.S.; Missov, E.; Carlson, M.; Vago, T.; Angelici, L.; Barlera, S.; Parrinello, G.; Maggioni, A.P.; et al. Prognostic Value of Very Low Plasma Concentrations of Troponin T in Patients with Stable Chronic Heart Failure. Circulation 2007, 116, 1242–1249. [Google Scholar] [CrossRef]
- Alhejily, W.A. High sensitivity Troponins in Patients with elevated prohormone of beta natriuretic peptide and acute heart failure (HIGH TRIP Trial). Sci. Rep. 2022, 12, 1838. [Google Scholar] [CrossRef]
- Peacock, W.F.; De Marco, T.; Fonarow, G.C.; Diercks, D.; Wynne, J.; Apple, F.S.; Wu, A.H.B. Cardiac Troponin and Outcome in Acute Heart Failure. N. Engl. J. Med. 2008, 358, 2117–2126. [Google Scholar] [CrossRef]
- Pascual-Figal, D.A.; Casas, T.; Ordonez-Llanos, J.; Manzano-Fernández, S.; Bonaque, J.C.; Boronat, M.; Muñoz-Esparza, C.; Valdés, M.; Januzzi, J.L. Highly sensitive troponin T for risk stratification of acutely destabilized heart failure. Am. Heart J. 2012, 163, 1002–1010. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Cediel, G.; Domingo, M.; Codina, P.; Santiago, E.; Lupón, J. Biomarkers in Heart Failure with Preserved Ejection Fraction. Card. Fail. Rev. 2022, 8, e20. [Google Scholar] [CrossRef]
- Gori, M.; Senni, M.; Metra, M. High-Sensitive Cardiac Troponin for Prediction of Clinical Heart Failure: Are We Ready for Prime Time? Circulation 2017, 135, 1506–1508. [Google Scholar] [CrossRef]
- Meijers, W.C.; Bayes-Genis, A.; Mebazaa, A.; Bauersachs, J.; Cleland, J.G.; Coats, A.J.; Januzzi, J.L.; Maisel, A.S.; McDonald, K.; Mueller, T.; et al. Circulating heart failure biomarkers beyond natriuretic peptides: Review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur. J. Heart Fail. 2021, 23, 1610–1632. [Google Scholar] [CrossRef]
- Eltelbany, M.; Shah, P.; Defilippi, C. Biomarkers in HFpEF for Diagnosis, Prognosis, and Biological Phenotyping. Curr. Heart Fail. Rep. 2022, 19, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Marston, S.; Zamora, J.E. Troponin structure and function: A view of recent progress. J. Muscle Res. Cell Motil. 2020, 41, 71–89. [Google Scholar] [CrossRef] [PubMed]
- Çimen, D.; Bereli, N.; Günaydın, S.; Denizli, A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020, 219, 121259. [Google Scholar] [CrossRef]
- Tobacman, L.S. Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle. Biophys. J. 2021, 120, 1–9. [Google Scholar] [CrossRef]
- Howarth, J.W.; Meller, J.; Solaro, R.J.; Trewhella, J.; Rosevear, P.R. Phosphorylation-dependent Conformational Transition of the Cardiac Specific N-Extension of Troponin I in Cardiac Troponin. J. Mol. Biol. 2007, 373, 706–722. [Google Scholar] [CrossRef]
- Chiong, M.; Wang, Z.V.; Pedrozo, Z.; Cao, D.J.; Troncoso, R.; Ibacache, M.; Criollo, A.; Nemchenko, A.; Hill, J.A.; Lavandero, S. Cardiomyocyte death: Mechanisms and translational implications. Cell Death Dis. 2011, 2, e244. [Google Scholar] [CrossRef]
- Weil, B.R.; Young, R.F.; Shen, X.; Suzuki, G.; Qu, J.; Malhotra, S.; Canty, J.M. Brief Myocardial Ischemia Produces Cardiac Troponin I Release and Focal Myocyte Apoptosis in the Absence of Pathological Infarction in Swine. JACC Basic Transl. Sci. 2017, 2, 105–114. [Google Scholar] [CrossRef]
- Takemura, G.; Kanoh, M.; Minatoguchi, S.; Fujiwara, H. Cardiomyocyte apoptosis in the failing heart—A critical review from definition and classification of cell death. Int. J. Cardiol. 2013, 167, 2373–2386. [Google Scholar] [CrossRef]
- Sampaio, J.M.C.; Lima, F.L.A.C.; de Moura Gomes, L.M.; Ribeiro, L.S.B.; da Silva Sousa, N.F.; Rios, N.A.B.; Paz, W.G. Troponina elevada e a relação com lesões cardiovasculares. Res. Soc. Dev. 2023, 12, e3912742373. [Google Scholar] [CrossRef]
- Li, F.; Hu, Y.; Nie, J.; Fu, F. Effects of acute, intermittent exercise in hypoxic environments on the release of cardiac troponin. Scand. J. Med. Sci. Sports 2016, 26, 397–403. [Google Scholar] [CrossRef]
- Riveland, E.; Valborgland, T.; Ushakova, A.; Skadberg, Ø.; Karlsen, T.; Hole, T.; Støylen, A.; Dalen, H.; Videm, V.; Koppen, E.; et al. Exercise training and high-sensitivity cardiac troponin-I in patients with heart failure with reduced ejection fraction. ESC Heart Fail. 2024, 11, 1121–1132. [Google Scholar] [CrossRef]
- Kristensen, J.H.; Hasselbalch, R.B.; Strandkjær, N.; Jørgensen, N.; Østergaard, M.; Møller-Sørensen, P.H.; Nilsson, J.C.; Afzal, S.; Kamstrup, P.R.; Dahl, M.; et al. Half-Life and Clearance of Cardiac Troponin I and Troponin T in Humans. Circulation 2024, 150, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Mastali, M.; Asif, A.; Fu, Q.; Wei, J.; Korley, F.K.; Peacock, W.F.; Sobhani, K.; Cook-Wiens, G.; Diniz, M.A.; Merz, C.N.B.; et al. Ultra-highly sensitive cardiac troponin I: Age and sex differences in healthy individuals. Am. Heart J. Plus Cardiol. Res. Pract. 2022, 13, 100110. [Google Scholar] [CrossRef] [PubMed]
- Kimenai, D.M.; Shah, A.S.V.; A McAllister, D.; Lee, K.K.; Tsanas, A.; Meex, S.J.R.; Porteous, D.J.; Hayward, C.; Campbell, A.; Sattar, N.; et al. Sex Differences in Cardiac Troponin I and T and the Prediction of Cardiovascular Events in the General Population. Clin. Chem. 2021, 67, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Abe, N.; Tomita, K.; Teshima, M.; Kuwabara, M.; Sugawa, S.; Hinata, N.; Matsuura, M.; Fujiwara, M.; Takaya, K.; Hiyoshi, T.; et al. Distribution of cardiac troponin I in the Japanese general population and factors influencing its concentrations. J. Clin. Lab. Anal. 2018, 32, e22294. [Google Scholar] [CrossRef]
- Bossard, M.; Thériault, S.; Aeschbacher, S.; Schoen, T.; Kunz, S.; von Rotz, M.; Estis, J.; Todd, J.; Risch, M.; Mueller, C.; et al. Factors independently associated with cardiac troponin I levels in young and healthy adults from the general population. Clin. Res. Cardiol. 2017, 106, 96–104. [Google Scholar] [CrossRef]
- Eggers, K.M.; Johnston, N.; Lind, L.; Venge, P.; Lindahl, B. Cardiac troponin I levels in an elderly population from the community—The implications of sex. Clin. Biochem. 2015, 48, 751–756. [Google Scholar] [CrossRef]
- Lyngbakken, M.N.; Omland, T.; Nordstrand, N.; Norseth, J.; Hjelmesæth, J.; Hofsø, D. Effect of weight loss on subclinical myocardial injury: A clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur. J. Prev. Cardiol. 2016, 23, 874–880. [Google Scholar] [CrossRef]
- Chauin, A. The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other Than Acute Myocardial Infarction (Part 1): Physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vasc. Health Risk Manag. 2021, 17, 601–617. [Google Scholar] [CrossRef]
- Chaulin, A.M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 1. Life 2021, 11, 914. [Google Scholar] [CrossRef]
- Chaulin, A.M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2. Life 2021, 11, 1175. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, P.; Huang, Y.; Yan, S.; Zhou, L.; Gao, C.; Wang, L.; Tang, J.; Zhou, Q.; Li, X.; et al. Clinical characteristics, diagnosis and short-term outcomes of COVID-19–associated acute myocarditis in China. ESC Heart Fail. 2025, 12, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Sabio, J.M.; Ríos, C.G.-D.L.; Medina-Casado, M.; Águila-García, M.d.M.D.; Cáliz-Cáliz, R.; Díaz-Chamorro, A. High-sensitivity cardiac troponin I is a biomarker for increased arterial stiffness in systemic lupus erythematous women with normal kidney function. Rheumatol. Int. 2022, 43, 253–263. [Google Scholar] [CrossRef]
- Chen, H.; Kong, L.; Zhang, Y.; Lin, X.; Shi, Z.; Du, Q.; Wang, X.; Lang, Y.; Cai, L.; Mou, Z.; et al. Myocardial Injury in Hospitalized Patients with Myasthenia Gravis. J. Clin. Med. 2022, 11, 7106. [Google Scholar] [CrossRef]
- Hoekstra, E.M.; Liem, S.I.; Ahmed, S.; Levarht, N.; Fehres, C.M.; Giuca, A.; Marsan, N.A.; Huizinga, T.W.; de Vries-Bouwstra, J.K. Troponin I levels in systemic sclerosis patients with myocardial involvement. J. Scleroderma Relat. Disord. 2024, 9, 185–191. [Google Scholar] [CrossRef]
- Chaulin, A.M. False-Positive Causes in Serum Cardiac Troponin Levels. J. Clin. Med. Res. 2022, 14, 80–87. [Google Scholar] [CrossRef]
- Kanderian, A.; Francis, G. Cardiac troponins and chronic kidney disease. Kidney Int. 2006, 69, 1112–1114. [Google Scholar] [CrossRef]
- Chesnaye, N.C.; Szummer, K.; Bárány, P.; Heimbürger, O.; Magin, H.; Almquist, T.; Uhlin, F.; Dekker, F.W.; Wanner, C.; Jager, K.J.; et al. Association Between Renal Function and Troponin T Over Time in Stable Chronic Kidney Disease Patients. J. Am. Heart Assoc. 2019, 8, e013091. [Google Scholar] [CrossRef]
- Chung, E.Y.M.; Trinh, K.; Li, J.; Hahn, S.H.; Endre, Z.H.; Rogers, N.M.; Alexander, S.I. Biomarkers in Cardiorenal Syndrome and Potential Insights into Novel Therapeutics. Front. Cardiovasc. Med. 2022, 9, 868658. [Google Scholar] [CrossRef]
- Matsunaga, N.; Yoshioka, Y.; Fukuta, Y. Extremely high troponin levels induced by septic shock: A case report. J. Med. Case Rep. 2021, 15, 466. [Google Scholar] [CrossRef]
- Garcia, M.A.; Rucci, J.M.; Thai, K.K.; Lu, Y.; Kipnis, P.; Go, A.S.; Desai, M.; Bosch, N.A.; Martinez, A.; Clancy, H.; et al. Association between Troponin I Levels during Sepsis and Postsepsis Cardiovascular Complications. Am. J. Respir. Crit. Care Med. 2021, 204, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Putot, A.; Bouhey, E.; Tetu, J.; Barben, J.; Timsit, E.; Putot, S.; Ray, P.; Manckoundia, P. Troponin Elevation in Older Patients with Acute Pneumonia: Frequency and Prognostic Value. J. Clin. Med. 2020, 9, 3623. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Long, D.A.; Tannenbaum, L.; Koyfman, A. An emergency medicine approach to troponin elevation due to causes other than occlusion myocardial infarction. Am. J. Emerg. Med. 2020, 38, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Kerr, G.; Ray, G.; Wu, O.; Stott, D.J.; Langhorne, P. Elevated Troponin after Stroke: A Systematic Review. Cerebrovasc. Dis. 2009, 28, 220–226. [Google Scholar] [CrossRef]
- Ahn, S.-H.; Lee, J.-S.; Kim, Y.-H.; Kim, B.J.; Kim, Y.-J.; Kang, D.-W.; Kim, J.S.; Kwon, S.U. Prognostic Significance of Troponin Elevation for Long-Term Mortality after Ischemic Stroke. J. Stroke 2017, 19, 312–322. [Google Scholar] [CrossRef]
- Arrigo, M.; Jessup, M.; Mullens, W.; Reza, N.; Shah, A.M.; Sliwa, K.; Mebazaa, A. Acute heart failure. Nat. Rev. Dis. Primer 2020, 6, 16. [Google Scholar] [CrossRef]
- Adler, Y.; Ristić, A.D.; Imazio, M.; Brucato, A.; Pankuweit, S.; Burazor, I.; Seferović, P.M.; Oh, J.K. Cardiac tamponade. Nat. Rev. Dis. Primer 2023, 9, 36. [Google Scholar] [CrossRef]
- Pagnesi, M.; Adamo, M.; ter Maaten, J.M.; Beldhuis, I.E.; Cotter, G.; Davison, B.A.; Felker, G.M.; Filippatos, G.; Greenberg, B.H.; Pang, P.S.; et al. Impact of mitral regurgitation in patients with acute heart failure: Insights from the RELAX-AHF-2 trial. Eur. J. Heart Fail. 2023, 25, 541–552. [Google Scholar] [CrossRef]
- Kociol, R.D.; Pang, P.S.; Gheorghiade, M.; Fonarow, G.C.; O’COnnor, C.M.; Felker, G.M. Troponin Elevation in Heart Failure: Prevalence, Mechanisms, and Clinical Implications. J. Am. Coll. Cardiol. 2010, 56, 1071–1078. [Google Scholar] [CrossRef]
- Arenja, N.; Reichlin, T.; Drexler, B.; Oshima, S.; Denhaerynck, K.; Haaf, P.; Potocki, M.; Breidthardt, T.; Noveanu, M.; Stelzig, C.; et al. Sensitive cardiac troponin in the diagnosis and risk stratification of acute heart failure. J. Intern. Med. 2012, 271, 598–607. [Google Scholar] [CrossRef]
- Felker, G.M.; Hasselblad, V.; Tang, W.W.; Hernandez, A.F.; Armstrong, P.W.; Fonarow, G.C.; Voors, A.A.; Metra, M.; McMurray, J.J.; Butler, J.; et al. Troponin I in acute decompensated heart failure: Insights from the ASCEND-HF study. Eur. J. Heart Fail. 2012, 14, 1257–1264. [Google Scholar] [CrossRef]
- Stelzle, D.; Shah, A.S.V.; Anand, A.; E Strachan, F.; Chapman, A.R.; A Denvir, M.; Mills, N.L.; A McAllister, D. High-sensitivity cardiac troponin I and risk of heart failure in patients with suspected acute coronary syndrome: A cohort study. Eur. Heart J.—Qual. Care Clin. Outcomes 2018, 4, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Horwich, T.B.; Patel, J.; MacLellan, W.R.; Fonarow, G.C. Cardiac Troponin I Is Associated with Impaired Hemodynamics, Progressive Left Ventricular Dysfunction, and Increased Mortality Rates in Advanced Heart Failure. Circulation 2003, 108, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev. 2022, 27, 625–643. [Google Scholar] [CrossRef] [PubMed]
- Yan, I.; Börschel, C.S.; Neumann, J.T.; Sprünker, N.A.; Makarova, N.; Kontto, J.; Kuulasmaa, K.; Salomaa, V.; Magnussen, C.; Iacoviello, L.; et al. High-Sensitivity Cardiac Troponin I Levels and Prediction of Heart Failure. JACC Heart Fail. 2020, 8, 401–411. [Google Scholar] [CrossRef]
- Xue, Y.; Clopton, P.; Peacock, W.F.; Maisel, A.S. Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur. J. Heart Fail. 2011, 13, 37–42. [Google Scholar] [CrossRef]
- Chetran, A.; Costache, A.D.; Ciongradi, C.I.; Duca, S.T.; Mitu, O.; Sorodoc, V.; Cianga, C.M.; Tuchilus, C.; Mitu, I.; Mitea, R.D.; et al. ECG and Biomarker Profile in Patients with Acute Heart Failure: A Pilot Study. Diagnostics 2022, 12, 3037. [Google Scholar] [CrossRef]
- Serenelli, M.; Passo, B.D.; Biscaglia, S.; Tolomeo, P.; Di Ienno, L.; Cantone, A.; Sanguettoli, F.; Campana, R.; Marchini, F.; Arzenton, M.; et al. Diagnostic accuracy of baseline troponin and troponin change for the diagnosis of myocardial infarction complicated with heart failure. Open Heart 2024, 11, e002538. [Google Scholar] [CrossRef]
- Chaulin, A.M. The Importance of Cardiac Troponin Metabolism in the Laboratory Diagnosis of Myocardial Infarction (Comprehensive Review). BioMed Res. Int. 2022, 2022, 6454467. [Google Scholar] [CrossRef]
- Pocock, S.J.; Ferreira, J.P.; Packer, M.; Zannad, F.; Filippatos, G.; Kondo, T.; McMurray, J.J.; Solomon, S.D.; Januzzi, J.L.; Iwata, T.; et al. Biomarker-driven prognostic models in chronic heart failure with preserved ejection fraction: The EMPEROR—Preserved trial. Eur. J. Heart Fail. 2022, 24, 1869–1878. [Google Scholar] [CrossRef]
- Hijazi, Z.; Siegbahn, A.; Andersson, U.; Lindahl, B.; Granger, C.B.; Alexander, J.H.; Atar, D.; Gersh, B.J.; Hanna, M.; Harjola, V.-P.; et al. Comparison of Cardiac Troponins I and T Measured with High-Sensitivity Methods for Evaluation of Prognosis in Atrial Fibrillation: An ARISTOTLE Substudy. Clin. Chem. 2015, 61, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Motoki, H.; Minamisawa, M.; Okuma, Y.; Shoin, W.; Okano, T.; Kimura, K.; Ebisawa, S.; Okada, A.; Kuwahara, K. Prognostic significance of high-sensitivity cardiac troponin in patients with heart failure with preserved ejection fraction. Heart Vessels 2019, 34, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- McDowell, K.; Kondo, T.; Talebi, A.; Teh, K.; Bachus, E.; de Boer, R.A.; Campbell, R.T.; Claggett, B.; Desai, A.S.; Docherty, K.F.; et al. Prognostic Models for Mortality and Morbidity in Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2024, 9, 457. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Solomon, S.D.; Metra, M.; Mcmurray, J.J.; Diaz, R.; Claggett, B.; Lanfear, D.E.; Vandekerckhove, H.; Biering-Sørensen, T.; Lopes, R.D.; et al. Cardiac Troponin and Treatment Effects of Omecamtiv Mecarbil: Results From the GALACTIC-HF Study. J. Card. Fail. 2024, 30, 755–763. [Google Scholar] [CrossRef]
- Sciaccaluga, C.; Natali, B.M.; Righini, F.M.; Dini, C.S.; Landra, F.; Mandoli, G.E.; Sisti, N.; Menci, D.; D’Errico, A.; D’Ascenzi, F.; et al. Heart transplantation and anti-HLA antibodY: Myocardial dysfunction and prognosis—HeartLAy study. ESC Heart Fail. 2023, 10, 2853–2864. [Google Scholar] [CrossRef]
- Averina, M.; Stylidis, M.; Brox, J.; Schirmer, H. NT-ProBNP and high-sensitivity troponin T as screening tests for subclinical chronic heart failure in a general population. ESC Heart Fail. 2022, 9, 1954–1962. [Google Scholar] [CrossRef]
- Vernooij, R.W.M.; van Ommen, A.L.N.; Valstar, G.B.; Cramer, M.J.; Teske, A.J.; Menken, R.; Hofstra, L.; Rutten, F.H.; Bots, M.L.; Ruijter, H.M.D.; et al. Association of mild kidney dysfunction with diastolic dysfunction and heart failure with preserved ejection fraction. ESC Heart Fail. 2024, 11, 315–326. [Google Scholar] [CrossRef]
- Polovina, M.; Tschöpe, C.; Rosano, G.; Metra, M.; Crea, F.; Mullens, W.; Bauersachs, J.; Sliwa, K.; de Boer, R.A.; Farmakis, D.; et al. Incidence, risk assessment and prevention of sudden cardiac death in cardiomyopathies. Eur. J. Heart Fail. 2023, 25, 2144–2163. [Google Scholar] [CrossRef]
- Saul, T.; Bui, Q.M.; Argiro, A.; Keyt, L.; Olivotto, I.; Adler, E. Natural history and clinical outcomes of patients with hypertrophic cardiomyopathy from thin filament mutations. ESC Heart Fail. 2024, 11, 3501–3510. [Google Scholar] [CrossRef]
- Seferović, P.M.; Polovina, M.; Rosano, G.; Bozkurt, B.; Metra, M.; Heymans, S.; Mullens, W.; Bauersachs, J.; Sliwa, K.; De Boer, R.A.; et al. State-of-the-art document on optimal contemporary management of cardiomyopathies. Eur. J. Heart Fail. 2023, 25, 1899–1922. [Google Scholar] [CrossRef]
- Fahed, A.C.; Nemer, G.; Bitar, F.F.; Arnaout, S.; Abchee, A.B.; Batrawi, M.; Khalil, A.; Hassan, O.K.A.; DePalma, S.R.; McDonough, B.; et al. Founder Mutation in N Terminus of Cardiac Troponin I Causes Malignant Hypertrophic Cardiomyopathy. Circ. Genom. Precis. Med. 2020, 13, 444–452. [Google Scholar] [CrossRef]
- Abood, Z.; Jan, M.F.; Ashraf, M.; Kroboth, S.; Sanders, H.; Schweitzer, M.; Misicka, A.; Ollerman, E.; Jahangir, A.; Galazka, P.; et al. Mavacamten in real-life practice: Initial experience at a hypertrophic cardiomyopathy centre. ESC Heart Fail. 2025, 12, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, M.; Zhang, C.; Zou, Y.; Kang, L.; Song, L. Role of Biomarkers of Myocardial Injury to Predict Adverse Outcomes in Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Qual. Outcomes 2024, 17, e010243. [Google Scholar] [CrossRef] [PubMed]
- Osmanska, J.; Connelly, A.; Nordin, S.; Vega, A.; Simpson, J.; Anusas, J.; Findlay, I.; Coats, C. High sensitivity troponin I in hypertrophic cardiomyopathy. Eur. Heart J. 2020, 41 (Suppl. 2), ehaa946.2078. [Google Scholar] [CrossRef]
- Castiglione, V.; Franzini, M.; Aimo, A.; Carecci, A.; Lombardi, C.M.; Passino, C.; Rapezzi, C.; Emdin, M.; Vergaro, G. Use of biomarkers to diagnose and manage cardiac amyloidosis. Eur. J. Heart Fail. 2021, 23, 217–230. [Google Scholar] [CrossRef]
- De Michieli, L.; Cipriani, A.; Iliceto, S.; Dispenzieri, A.; Jaffe, A.S. Cardiac Troponin in Patients with Light Chain and Transthyretin Cardiac Amyloidosis. JACC CardioOncol. 2024, 6, 1–15. [Google Scholar] [CrossRef]
- Luciani, M.; Troncone, L.; Del Monte, F. Current and future circulating biomarkers for cardiac amyloidosis. Acta Pharmacol. Sin. 2018, 39, 1133–1141. [Google Scholar] [CrossRef]
- Neculae, G.; Adam, R.; Jercan, A.; Bădeliță, S.; Tjahjadi, C.; Draghici, M.; Stan, C.; Bax, J.J.; Popescu, B.A.; Marsan, N.A.; et al. Cardiac amyloidosis is not a single disease: A multiparametric comparison between the light chain and transthyretin forms. ESC Heart Fail. 2024, 11, 2825–2834. [Google Scholar] [CrossRef]
- Sha, Q.; Zhang, Y.; Wang, M.; Sun, J.; Zhang, Y.; Zhang, X.; Wang, N.; Liu, Y.; Liu, Y. Biochemical and biophysical properties of a rare TTRA81V mutation causing mild transthyretin amyloid cardiomyopathy. ESC Heart Fail. 2024, 11, 112–125. [Google Scholar] [CrossRef]
- Izumiya, Y.; Kubo, T.; Endo, J.; Takashio, S.; Minamisawa, M.; Hamada, J.; Ishii, T.; Abe, H.; Konishi, H.; Tsujita, K. Transthyretin amyloid cardiomyopathy: Literature review and red-flag symptom clusters for each cardiology specialty. ESC Heart Fail. 2025, 12, 955–967. [Google Scholar] [CrossRef]
- Beghini, A.; Sammartino, A.M.; Papp, Z.; von Haehling, S.; Biegus, J.; Ponikowski, P.; Adamo, M.; Falco, L.; Lombardi, C.M.; Pagnesi, M.; et al. 2024 update in heart failure. ESC Heart Fail. 2025, 12, 8–42. [Google Scholar] [CrossRef]
- Zaroui, A.; Kharoubi, M.; Gounot, R.; Oghina, S.; Degoutte, C.; Bezard, M.; Galat, A.; Guendouz, S.; Roulin, L.; Audard, V.; et al. Prognostic mortality factors in advanced light chain cardiac amyloidosis: A prospective cohort study. ESC Heart Fail. 2024, 11, 1707–1719. [Google Scholar] [CrossRef]
- Wees, I.; Hendren, N.S.; Kaur, G.; Roth, L.R.; Grodin, J.L. Natriuretic Peptides and Cardiac Troponins: Markers of Disease Progression and Risk in Light Chain Cardiac Amyloidosis. Curr. Heart Fail. Rep. 2023, 20, 350–357. [Google Scholar] [CrossRef]
- Gioia, G.; Schrutka, L.; Jozwiak-Nozdrzykowska, J.; Kresoja, K.; Gunold, H.; Klingel, K.; Thiele, H.; Bonderman, D.; Lurz, P.; Rommel, K. Transthyretin amyloid cardiomyopathy among patients with heart failure and preserved ejection fraction: The AMY score. ESC Heart Fail. 2024, 11, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Aaseth, E.; Christiansen, J.R. Prevalence of transthyretin amyloid cardiomyopathy in pacemaker patients. ESC Heart Fail. 2024, 11, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Perfetto, F.; Zampieri, M.; Fumagalli, C.; Allinovi, M.; Cappelli, F. Circulating biomarkers in diagnosis and management of cardiac amyloidosis: A review for internist. Intern. Emerg. Med. 2022, 17, 957–969. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Population Studied | Biomarker(s) Studied | Main Findings | Comment |
---|---|---|---|---|
Horwich et al., 2003 [63] | Advanced CHF | cTnI | Higher cTnI associated with worse hemodynamics and increased mortality | Troponin I useful for stratifying advanced HF patients |
Latini et al., 2007 [14] | Stable CHF | hs-cTnT | Very low hs-cTnT levels still have prognostic value | Adds value to NP in risk assessment |
Peacock et al., 2008 [16] | AHF in emergency department | cTnT, NT-proBNP | cTnT independently predicts 60-day mortality | NT-proBNP better for diagnosis, troponin for prognosis |
Xue et al., 2011 [66] | Decompensated HF | hs-cTnI, NT-proBNP | Serial hs-cTnI changes predict worse outcomes | Serial troponin better than single measurement |
Felker et al., 2012 [61] (ASCEND-HF) | Decompensated HF | cTnI, BNP | cTnI predicts death and rehospitalization | Troponin complements NP in prognostic models |
Arenja et al., 2012 [60] | AHF | hs-cTn, BNP | Troponin sensitive for mortality and rehospitalization risk | Identifies high-risk patients |
Pascual-Figal et al., 2012 [17] | AHF | hs-cTnT, NT-proBNP, sST2 | Elevated hs-cTnT → higher risk of death and rehospitalization | Adds prognostic value beyond NP and sST2 |
Suzuki et al., 2019 [72] | HFpEF | hs-cTnT, NT-proBNP | hs-cTnT predicts cardiovascular events | Complementary to NT-proBNP |
Yan et al., 2020 [65] | Patients at risk of HF | hs-cTnI | hs-cTnI predicts development of HF | Useful in general population, earlier than NP |
Meijers et al., 2021 [20] | All HF patients | Troponins, NP, sST2, GDF-15 | Troponin complements other biomarkers | Prognostic value beyond NP |
Pocock et al., 2022 [70] (EMPEROR-Preserved) | HFpEF | hs-cTnT, NT-proBNP, GDF-15 | Troponin included in prognostic model | Improves model calibration and c-index |
Averina et al., 2022 [76] | General population | hs-cTnT, NT-proBNP | hs-cTnT + NT-proBNP better for detecting subclinical HF | Troponin complements NP screening |
Castiglione et al., 2022 [64] | All HF patients | cTn, BNP, sST2, galectin-3 | Troponin is a prognostic biomarker in HF | Emphasized role in risk stratification |
Riveland et al., 2024 [31] | HFrEF + exercise | hs-cTnI | Exercise affects hs-cTnI levels | Monitor troponin during rehabilitation programs |
Felker et al., 2024 [74] (GALACTIC-HF) | HFrEF with omecamtiv mecarbil | hs-cTn | Baseline troponin predicts response to therapy | Troponin used to assess treatment effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowiak, B.; Wilk, J.; Wilk, M.; Orłowska, A.; Gajewski, P. Beyond Acute Coronary Syndromes: Troponins as Diagnostic and Prognostic Tools in Heart Failure. Biomedicines 2025, 13, 2330. https://doi.org/10.3390/biomedicines13102330
Jankowiak B, Wilk J, Wilk M, Orłowska A, Gajewski P. Beyond Acute Coronary Syndromes: Troponins as Diagnostic and Prognostic Tools in Heart Failure. Biomedicines. 2025; 13(10):2330. https://doi.org/10.3390/biomedicines13102330
Chicago/Turabian StyleJankowiak, Berenika, Jakub Wilk, Michał Wilk, Aleksandra Orłowska, and Piotr Gajewski. 2025. "Beyond Acute Coronary Syndromes: Troponins as Diagnostic and Prognostic Tools in Heart Failure" Biomedicines 13, no. 10: 2330. https://doi.org/10.3390/biomedicines13102330
APA StyleJankowiak, B., Wilk, J., Wilk, M., Orłowska, A., & Gajewski, P. (2025). Beyond Acute Coronary Syndromes: Troponins as Diagnostic and Prognostic Tools in Heart Failure. Biomedicines, 13(10), 2330. https://doi.org/10.3390/biomedicines13102330