Development and Evaluation of Polymethacrylate-Based Ophthalmic Nanofiber Inserts Containing Dual Drug-Loaded Dorzolamide and Timolol: In Vivo Study in Rabbit’s Eye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Nanofibers
2.3. Evaluation of Physicochemical Characterization of Nanofibers
2.3.1. Thickness
2.3.2. Folding Endurance
2.3.3. Moisture Uptake and Loss
2.3.4. Swelling Degree
2.3.5. Tensile Strength Test
2.4. Contact Angle
2.5. Fourier Transform Infrared Spectroscopy (FT-IR)
2.6. Surface Morphology
2.7. In Vitro Release Study and Release Kinetic
2.8. In Vivo Pharmacokinetic Study
2.9. Irritation Test
2.10. Sterility Test
2.11. In Vitro Cell Cytotoxicity Test
2.12. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of Nanofiber
3.2. Contact Angle Results
3.3. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.4. Surface Morphology
3.5. In Vitro Release Study and Release Kinetic
3.6. Pharmacokinetic Study in Rabbit Model
3.7. Irritation Test
3.8. Sterility Test
3.9. In Vitro Cell Cytotoxicity Test
4. Discussion
4.1. Physiochemical Tests
4.2. In Vitro Release Test
4.3. In Vivo Release Test
4.4. Drug-Release Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, K.S.; Rajpurohit, R.; Sharma, S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci. 2019, 221, 362–376. [Google Scholar] [CrossRef]
- Hertzog, L.H.; Albrecht, K.G.; LaBree, L.; Lee, P.P. Glaucoma care and conformance with preferred practice patterns: Examination of the private, community-based ophthalmologist. Ophthalmology 1996, 103, 1009–1013. [Google Scholar] [CrossRef]
- Cvenkel, B.; Kolko, M. Current medical therapy and future trends in the management of glaucoma treatment. J. Ophthalmol. 2020, 2020, 6138132. [Google Scholar] [CrossRef] [PubMed]
- Radius, R.L.; Diamond, G.R.; Pollack, I.P.; Langham, M.E. Timolol: A new drug for management of chronic simple glaucoma. Arch. Ophthalmol. 1978, 96, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Shahsuvaryan, M.L. Carbonic Anhydrase Inhibitors in Ophthalmology: Glaucoma and Macular Oedema. In The Carbonic Anhydrases: Current and Emerging Therapeutic Targets; Springer: Berlin/Heidelberg, Germany, 2021; pp. 79–102. [Google Scholar]
- Konstas, A.G.; Schmetterer, L.; Katsanos, A.; Hutnik, C.M.; Holló, G.; Quaranta, L.; Teus, M.A.; Uusitalo, H.; Pfeiffer, N.; Katz, L.J. Dorzolamide/timolol fixed combination: Learning from the past and looking toward the future. Adv. Ther. 2021, 38, 24–51. [Google Scholar] [CrossRef]
- Tang, X.; Liu, J.; Yan, R.; Peng, Q. Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: A review. Int. J. Biol. Macromol. 2023, 242, 124902. [Google Scholar] [CrossRef] [PubMed]
- Jumelle, C.; Gholizadeh, S.; Annabi, N.; Dana, R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release 2020, 321, 1–22. [Google Scholar] [CrossRef]
- Imperiale, J.C.; Acosta, G.B.; Sosnik, A. Polymer-based carriers for ophthalmic drug delivery. J. Control. Release 2018, 285, 106–141. [Google Scholar] [CrossRef] [PubMed]
- Mehrandish, S.; Mirzaeei, S. A review on ocular novel drug delivery systems of antifungal drugs: Functional evaluation and comparison of conventional and novel dosage forms. Adv. Pharm. Bull. 2021, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A.; Hadji, H.; Mitra, R.; Pal, D.; Mitra, A.K. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res. 2016, 6, 735–754. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.Y.; Joly-Chevrier, M.; Akbar, D.; Tran, S.D. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023, 15, 1094. [Google Scholar] [CrossRef] [PubMed]
- Duman, G.; Yıldır, İ.; Macit, M.; Genç, E.; Sümer, E.; Kale, S.; Deniz, İ. Development and evaluation of 3D-printed ocular insert containing liposomal moxifloxacin. J. Drug Deliv. Sci. Technol. 2024, 92, 105353. [Google Scholar] [CrossRef]
- Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013, 2, 47. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.S.; Kim, T.G.; Park, T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009, 61, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Mirzaeei, S.; Barfar, D. Design and development of antibacterial/anti-inflammatory dual drug-loaded nanofibrous inserts for ophthalmic sustained delivery of gentamicin and methylprednisolone: In vitro bioassay, solvent, and method effects’ evaluation. Adv. Pharm. Bull. 2021, 12, 531. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, K.; Kotaki, M.; Zhang, Y.; Mo, X.; Ramakrishna, S. Recent advances in polymer nanofibers. J. Nanosci. Nanotechnol. 2004, 4, 52–65. [Google Scholar]
- Gu, S.; Ren, J.; Vancso, G. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur. Polym. J. 2005, 41, 2559–2568. [Google Scholar] [CrossRef]
- Teo, W.E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, H.; Khan, B.A.; Khan, Z.U.; Razzaq, A.; Khan, N.U.; Menaa, B.; Menaa, F. Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly (vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. Int. J. Biol. Macromol. 2020, 144, 921–931. [Google Scholar] [CrossRef]
- Priya, S.; Batra, U.; Samshritha, R.; Sharma, S.; Chaurasiya, A.; Singhvi, G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int. J. Biol. Macromol. 2022, 218, 209–224. [Google Scholar] [CrossRef]
- Ezzati, A.; Nokhodchi, A.; Ziaei, N.; Mirzaeei, S. Fabrication and evaluating the potentials of minocycline hydrochloride-loaded nanofibrous membranes in periodontal guided tissue regeneration: In vivo release and biocompatibility analysis. J. Drug Delivery Sci. Technol. 2023, 88, 104919. [Google Scholar] [CrossRef]
- Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, C.; Tomar, L.; Kumar, P.; du Toit, L.C.; Ndesendo, V.M. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013, 2013, 789289. [Google Scholar] [CrossRef]
- Taghe, S.; Mehrandish, S.; Mirzaeei, S. Preparation of Azithromycin Nanofibers as Controlled Release Ophthalmic Drug Carriers Using Electrospinning Technique: In-Vitro and In-Vivo Characterization. Adv. Pharm. Bull. 2021, 12, 346. [Google Scholar] [CrossRef]
- Mirzaeei, S.; Berenjian, K.; Khazaei, R. Preparation of the potential ocular inserts by electrospinning method to achieve the prolong release profile of triamcinolone acetonide. Adv. Pharm. Bull. 2018, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Omer, S.; Zelkó, R. A systematic review of drug-loaded electrospun nanofiber-based ophthalmic inserts. Pharmaceutics 2021, 13, 1637. [Google Scholar] [CrossRef]
- Garg, T.; Malik, B.; Rath, G.; Goyal, A.K. Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur. J. Pharm. Sci. 2014, 53, 10–16. [Google Scholar]
- Taghe, S.; Mirzaeei, S.; Ahmadi, A. Preparation and Evaluation of Nanofibrous and Film-Structured Ciprofloxacin Hydrochloride Inserts for Sustained Ocular Delivery: Pharmacokinetic Study in Rabbit’s Eye. Life 2023, 13, 913. [Google Scholar] [CrossRef] [PubMed]
- Kamble, R.; Mehtre, R.; Mehta, P.; Nangare, P.; Patil, S. Albendazole electrospun nanofiber films: In-vitro and ex-vivo assessment. BioNanoScience 2019, 9, 625–636. [Google Scholar] [CrossRef]
- Franca, J.R.; Foureaux, G.; Fuscaldi, L.L.; Ribeiro, T.G.; Rodrigues, L.B.; Bravo, R.; Castilho, R.O.; Yoshida, M.I.; Cardoso, V.N.; Fernandes, S.O. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: In vitro and in vivo evaluation. PLoS ONE 2014, 9, e95461. [Google Scholar] [CrossRef] [PubMed]
- Mirzaeei, S.; Faryadras, F.B.; Mehrandish, S.; Rezaei, L.; Daneshgar, F.; Karami, A. Development and evaluation of polycaprolactone-based electrospun nanofibers containing timolol maleate as a sustained-release device for treatment of glaucoma: In vivo evaluation in equine eye. Res. Pharm. Sci. 2022, 17, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Aburahma, M.H.; Mahmoud, A.A. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: Preparation and in vitro/in vivo evaluation. Aaps Pharmscitech 2011, 12, 1335–1347. [Google Scholar] [CrossRef]
- Chou, S.-F.; Woodrow, K.A. Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J. Mech. Behav. Biomed. Mater. 2017, 65, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Kouchak, M.; Bahmandar, R.; Bavarsad, N.; Farrahi, F. Ocular Dorzolamide Nanoliposomes for Prolonged IOP Reduction: In-vitroand in-vivo Evaluation in Rabbits. Iran. J. Pharm. Res. 2016, 15, 205. [Google Scholar] [PubMed]
- Franca, J.R.; Foureaux, G.; Fuscaldi, L.L.; Ribeiro, T.G.; Castilho, R.O.; Yoshida, M.I.; Cardoso, V.N.; Fernandes, S.O.; Cronemberger, S.; Nogueira, J.C. Chitosan/hydroxyethyl cellulose inserts for sustained-release of dorzolamide for glaucoma treatment: In vitro and in vivo evaluation. Int. J. Pharm. 2019, 570, 118662. [Google Scholar] [CrossRef]
- Fouda, N.H.; Abdelrehim, R.T.; Hegazy, D.A.; Habib, B.A. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: In-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv. 2018, 25, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, S.; Pandit, J.; Mondal, R.S.; Mishra, A.K.; Chuttani, K.; Aqil, M.; Ali, A.; Sultana, Y. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr. Polym. 2014, 102, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Shahab, M.S.; Rizwanullah, M.; Alshehri, S.; Imam, S.S. Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. Int. J. Biol. Macromol. 2020, 163, 2392–2404. [Google Scholar] [CrossRef] [PubMed]
- Shahab, M.S.; Rizwanullah, M.; Imam, S.S. Formulation, optimization and evaluation of vitamin E TPGS emulsified dorzolamide solid lipid nanoparticles. J. Drug Deliv. Sci. Technol. 2022, 68, 103062. [Google Scholar] [CrossRef]
- Manchanda, S.; Sahoo, P.K. Fabrication and characterization of mucoadhesive topical nanoformulations of dorzolamide HCl for ocular hypertension. J. Pharm. Investig. 2018, 48, 323–332. [Google Scholar] [CrossRef]
- Shokry, M.; Hathout, R.M.; Mansour, S. Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: Augmented in-vivo efficacy and safe histological profile. Int. J. Pharm. 2018, 545, 229–239. [Google Scholar] [CrossRef]
- Ahdyani, R.; Novitasari, L.; Martien, R.; Danarti, R. Formulation and characterization of timolol maleate-loaded nanoparticles gel by ionic gelation method using chitosan and sodium alginate. Int. J. Appl. Pharm. 2019, 11, 48–54. [Google Scholar] [CrossRef]
- Pakzad, Y.; Fathi, M.; Omidi, Y.; Mozafari, M.; Zamanian, A. Synthesis and characterization of timolol maleate-loaded quaternized chitosan-based thermosensitive hydrogel: A transparent topical ocular delivery system for the treatment of glaucoma. Int. J. Biol. Macromol. 2020, 159, 117–128. [Google Scholar] [CrossRef]
- Cuggino, J.C.; Tártara, L.I.; Gugliotta, L.M.; Palma, S.D.; Igarzabal, C.I.A. Mucoadhesive and responsive nanogels as carriers for sustainable delivery of timolol for glaucoma therapy. Mater. Sci. Eng. C 2021, 118, 111383. [Google Scholar] [CrossRef]
- Taghe, S.; Mirzaeei, S.; Bagheri, M. Preparation of polycaprolactone and polymethacrylate nanofibers for controlled ocular delivery of ketorolac tromethamine: Pharmacokinetic study in Rabbit’s Eye. Eur. J. Pharm. Sci. 2024, 192, 106631. [Google Scholar] [CrossRef] [PubMed]
- Azami, H.; Mehrandish, S.; Mirzaeei, S. Fabrication and evaluation of dual-function nanofiber membrane for guided periodontal tissue and bone regeneration with controlled release of alendronate sodium. J. Drug Deliv. Sci. Technol. 2024, 97, 105798. [Google Scholar] [CrossRef]
- Nieminen, T.; Lehtimäki, T.; Mäenpää, J.; Ropo, A.; Uusitalo, H.; Kähönen, M. Ophthalmic timolol: Plasma concentration and systemic cardiopulmonary effects. Scand. J. Clin. Lab. Investig. 2007, 67, 237–245. [Google Scholar] [CrossRef]
- Martens-Lobenhoffer, J.; Banditt, P. Clinical pharmacokinetics of dorzolamide. Clin. Pharmacokinet. 2002, 41, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Taghe, S.; Mirzaeei, S.; Hosseinkhani, T. Design and development of dual drug-loaded nanofibrous inserts for ophthalmic sustained delivery of AMK and VAN: Pharmacokinetic study in rabbit’s eye. Int. J. Pharm. 2024, 656, 124056. [Google Scholar] [CrossRef]
- Karavasili, C.; Komnenou, A.; Katsamenis, O.L.; Charalampidou, G.; Kofidou, E.; Andreadis, D.; Koutsopoulos, S.; Fatouros, D.G. Self-assembling peptide nanofiber hydrogels for controlled ocular delivery of timolol maleate. ACS Biomater. Sci. Eng. 2017, 3, 3386–3394. [Google Scholar] [CrossRef] [PubMed]
- Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: A technology evaluation. Expert Opin. Drug Deliv. 2013, 10, 131–149. [Google Scholar] [CrossRef]
- Soltani, S.; Zakeri-Milani, P.; Barzegar-Jalali, M.; Jelvehgari, M. Design of eudragit RL nanoparticles by nanoemulsion method as carriers for ophthalmic drug delivery of ketotifen fumarate. Iran. J. Basic Med. Sci. 2016, 19, 550. [Google Scholar] [PubMed]
Formulation/Test | ED | ET | EDT |
---|---|---|---|
Thickness | 0.128 ± 0.013 (mm) | 0.129 ± 0.016 (mm) | 0.129 ± 0.0128 (mm) |
Folding endurance | 161 ± 2.16 | 167 ± 1.70 | 171 ± 1.63 |
Moisture uptake (%) | 0.85 ± 0.07 | 1.004 ± 0.09 | 0.848 ± 0.51 |
Moisture loss (%) | 0.91 ± 0.04 | 0.84 ± 0.80 | 0.618 ± 0.03 |
Swelling degree (%) | 192.42 ± 4.28 | 176.97 ± 3.72 | 186.59 ± 4.37 |
Tensile strength (MPa) | 1.445 ± 0.79 | 2.18 ± 0.45 | 1.08 ± 0.83 |
Elongation at Break (%) | 3.884 ± 0.76 | 12.86825 ± 2.07 | 3.1722 ± 0.23 |
Drug Formulation | Higuchi | Zero-Order | First-Order | Korsmeyer–Peppas |
---|---|---|---|---|
TIM-ET | 0.969 (10) * | 0.899 (18) | 0.977 (21) | 0.948 (8) n = 0.36 ** |
TIM-EDT | 0.756 (12) | 0.964 (23) | 0.995 (2) | 0.995 (1) n = 0.36 |
DOR-ED | 0.876 (9) | 0.705 (15) | 0.932 (8) | 0.985 (2) n = 0.33 |
DOR-EDT | 0.812 (11) | 0.626 (16) | 0.912 (12) | 0.993 (1) n = 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karami, A.; Mirzaeei, S.; Rezaei, L.; Nokhodchi, A. Development and Evaluation of Polymethacrylate-Based Ophthalmic Nanofiber Inserts Containing Dual Drug-Loaded Dorzolamide and Timolol: In Vivo Study in Rabbit’s Eye. Biomedicines 2025, 13, 200. https://doi.org/10.3390/biomedicines13010200
Karami A, Mirzaeei S, Rezaei L, Nokhodchi A. Development and Evaluation of Polymethacrylate-Based Ophthalmic Nanofiber Inserts Containing Dual Drug-Loaded Dorzolamide and Timolol: In Vivo Study in Rabbit’s Eye. Biomedicines. 2025; 13(1):200. https://doi.org/10.3390/biomedicines13010200
Chicago/Turabian StyleKarami, Ahmad, Shahla Mirzaeei, Leila Rezaei, and Ali Nokhodchi. 2025. "Development and Evaluation of Polymethacrylate-Based Ophthalmic Nanofiber Inserts Containing Dual Drug-Loaded Dorzolamide and Timolol: In Vivo Study in Rabbit’s Eye" Biomedicines 13, no. 1: 200. https://doi.org/10.3390/biomedicines13010200
APA StyleKarami, A., Mirzaeei, S., Rezaei, L., & Nokhodchi, A. (2025). Development and Evaluation of Polymethacrylate-Based Ophthalmic Nanofiber Inserts Containing Dual Drug-Loaded Dorzolamide and Timolol: In Vivo Study in Rabbit’s Eye. Biomedicines, 13(1), 200. https://doi.org/10.3390/biomedicines13010200