Circulating Biomarkers for Cancer Detection: Could Salivary microRNAs Be an Opportunity for Ovarian Cancer Diagnostics?
Abstract
1. Introduction
2. MicroRNAs as Potential Disease Biomarkers
3. Liquid Biopsies for Detection of miRNAs in Ovarian Cancer
4. Saliva: An Informative Analyte for miRNA Detection, with Practical Advantages
Kits for Salivary Diagnostics
5. Salivary miRNAs in Oncological Conditions
Reference | Source (Analytes) | miRNAs | Cancer Type | N° of Subjects (Cancer vs Control) | Status | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|---|---|---|
[82] | cell free | miR-3679-5p | PC | 40 vs 40 | ↓ | 72.5% | 70.0% | 0.750 |
miR-940 | ↑ | |||||||
[77] | cell free | miR-21 | PC | 7 vs 4 | ↑ | 71.4% | 100% | - |
miR-23a | ↑ | 85.7% | 100% | - | ||||
miR-23b | ↑ | 85.7% | 100% | - | ||||
miR-29c | ↑ | 57.0% | 100% | - | ||||
[92] | exosomes | miR-1246 | PBTC | 14 vs 13 | ↑ | 83.3% | 92.3% | 0.833 |
miR-4644 | ↑ | |||||||
[75] | cell free | miR-1246 | PC | 41 vs 30 | - | 91.0% | 26.7% | 0.480 |
[84] | cell free | miR-21 | CRC | 34 vs 34 | ↑ | 97.0% | 91.0% | - |
[78] | cell free | miR-186-5p | CRC | 51 vs 37 | ↑ | 72.0% | 66.7% | 0.754 |
miR-29a-3p | ↑ | |||||||
miR-29c-3p | ↑ | |||||||
miR-766-3p | ↑ | |||||||
miR-491-5p | ↑ | |||||||
[79] | exosomes cell free | miR-21-5p | LiC | 24 vs 21 | ↑ | 66.0% | 78.0% | 0.770 |
miR-122-5p | ↓ | |||||||
miR-221-3p | ↑ | |||||||
[85] | cell free | mir-1262 miR-1262 mir-216a mir-484 mir-30d miR-216a-5p miR-30d-5p miR-484 mir-10401 miR-454-3p | HCC | 20 vs 19 Cirrhosis | - | 83.0% | 68.0% | 0.780 |
[86] | cell free | miR-4484 | MPE | 57 vs 49 | ↑ | 82.2% | 74.1% | 0.802 |
miR-3663-3p | ↓ | |||||||
[87] | cell free | miR-21 | BC | 41 vs 39 | ↑ | 100% | 100% | 1.0 |
[88] | cell free | miR-140-5p | GC | 100 vs 100 | ↑ | - | - | 0.700 |
miR-374a | ↑ | - | - | 0.650 | ||||
miR-454 | ↑ | - | - | 0.630 | ||||
miR-15b | ↑ | - | - | 0.650 |
6. Candidate Salivary Biomarkers of Ovarian Cancer Other Than miRNAs
7. Candidate miRNA Biomarkers of Ovarian Cancer in Other Biofluids
7.1. Blood-Derived Biofluids
7.2. Other Biofluids
8. Conclusion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of Ovarian Cancer: A Review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Jacobs, I.J.; Menon, U.; Ryan, A.; Gentry-Maharaj, A.; Burnell, M.; Kalsi, J.K.; Amso, N.N.; Apostolidou, S.; Benjamin, E.; Cruickshank, D.; et al. Ovarian Cancer Screening and Mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A Randomised Controlled Trial. Lancet 2016, 387, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Kossaï, M.; Leary, A.; Scoazec, J.Y.; Genestie, C. Ovarian Cancer: A Heterogeneous Disease. Pathobiology 2018, 85, 41–49. [Google Scholar] [CrossRef]
- Berek, J.S.; Crum, C.; Friedlander, M. Cancer of the Ovary, Fallopian Tube, and Peritoneum. Int. J. Gynecol. Obstet. 2012, 119, S118–S129. [Google Scholar] [CrossRef]
- Buys, S.S.; Partridge, E.; Black, A.; Johnson, C.C.; Lamerato, L.; Isaacs, C.; Reding, D.J.; Greenlee, R.T.; Yokochi, L.A.; Kessel, B.; et al. Effect of Screening on Ovarian Cancer Mortality: The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA J. Am. Med. Assoc. 2011, 305, 2295–2302. [Google Scholar] [CrossRef]
- Zhang, Z.; Chan, D.W. The Road from Discovery to Clinical Diagnostics: Lessons Learned from the First FDA-Cleared In Vitro Diagnostic Multivariate Index Assay of Proteomic Biomarkers. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2995–2999. [Google Scholar] [CrossRef]
- Lokich, E.; Palisoul, M.; Romano, N.; Craig Miller, M.; Robison, K.; Stuckey, A.; Disilvestro, P.; Mathews, C.; Granai, C.O.; Lambert-Messerlian, G.; et al. Assessing the Risk of Ovarian Malignancy Algorithm for the Conservative Management of Women with a Pelvic Mass. Gynecol. Oncol. 2015, 139, 248–252. [Google Scholar] [CrossRef]
- Gold, P.; Freedman, S.O. Demonstration of Tumor-Specific Antigens in Human Colonic Carcinomata By Immunological Tolerance and Absorption Techniques. J. Exp. Med. 1965, 121, 439–462. [Google Scholar] [CrossRef]
- Lee, J.M.; Kohn, E.C. Proteomics as a Guiding Tool for More Effective Personalized Therapy. In Proceedings of the Annals of Oncology, Milan, Italy, 8–12 October 2010; Volume 21. [Google Scholar]
- Mor, G.; Visintin, I.; Lai, Y.; Zhao, H.; Schwartz, P.; Rutherford, T.; Yue, L.; Bray-Ward, P.; Ward, D.C. Serum Protein Markers for Early Detection of Ovarian Cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 7677–7682. [Google Scholar] [CrossRef] [PubMed]
- van Gorp, T.; Cadron, I.; Despierre, E.; Daemen, A.; Leunen, K.; Amant, F.; Timmerman, D.; de Moor, B.; Vergote, I. HE4 and CA125 as a Diagnostic Test in Ovarian Cancer: Prospective Validation of the Risk of Ovarian Malignancy Algorithm. Br. J. Cancer 2011, 104, 863–870. [Google Scholar] [CrossRef]
- Li, F.; Tie, R.; Chang, K.; Wang, F.; Deng, S.; Lu, W.; Yu, L.; Chen, M. Does Risk for Ovarian Malignancy Algorithm Excel Human Epididymis Protein 4 and CA125 in Predicting Epithelial Ovarian Cancer: A Meta-Analysis. BMC Cancer 2012, 12, 258. [Google Scholar] [CrossRef]
- Fung, E.T. A Recipe for Proteomics Diagnostic Test Development: The OVA1 Test, from Biomarker Discovery to FDA Clearance. Clin. Chem. 2010, 56, 327–329. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, S.; Jin, Y.; Zhao, Y.; Wang, Y. Roles of CA125 in Diagnosis, Prediction, and Oncogenesis of Ovarian Cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188503. [Google Scholar] [CrossRef]
- Kamal, R.; Hamed, S.; Mansour, S.; Mounir, Y.; Sallam, S.A. Ovarian Cancer Screening-Ultrasound; Impact on Ovarian Cancer Mortality. Br. J. Radiol. 2018, 91, 20170571. [Google Scholar] [CrossRef]
- Elorriaga, M.Á.; Neyro, J.L.; Mieza, J.; Cristóbal, I.; Llueca, A. Biomarkers in Ovarian Pathology: From Screening to Diagnosis. Review of the Literature. J. Pers. Med. 2021, 11, 1115. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.G.; Blackman, A.; Miller, M.C.; Robison, K.; DiSilvestro, P.A.; Eklund, E.E.; Strongin, R.; Messerlian, G. Multiple Biomarker Algorithms to Predict Epithelial Ovarian Cancer in Women with a Pelvic Mass: Can Additional Makers Improve Performance? Gynecol. Oncol. 2019, 154, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.R.; Graham, C.; D’Amato, A.; Gentry-Maharaj, A.; Ryan, A.; Kalsi, J.K.; Whetton, A.D.; Menon, U.; Jacobs, I.; Graham, R.L.J. Diagnosis of Epithelial Ovarian Cancer Using a Combined Protein Biomarker Panel. Br. J. Cancer 2019, 121, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Hays, J.L.; Kim, G.; Giuroiu, I.; Kohn, E.C. Proteomics and Ovarian Cancer: Integrating Proteomics Information into Clinical Care. J. Proteom. 2010, 73, 1864–1872. [Google Scholar] [CrossRef] [PubMed]
- Aktas, B.; Kasimir-Bauer, S.; Wimberger, P. Utility of Mesothelin, L1CAM and Afamin as Biomarkers in Primary Ovarian Cancer. Anticancer Res. 2013, 33, 329–336. [Google Scholar] [PubMed]
- Setti, G.; Pezzi, M.E.; Viani, M.V.; Pertinhez, T.A.; Cassi, D.; Magnoni, C.; Bellini, P.; Musolino, A.; Vescovi, P.; Meleti, M. Salivary MicroRNA for Diagnosis of Cancer and Systemic Diseases: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 907. [Google Scholar] [CrossRef]
- Ueland, F. A Perspective on Ovarian Cancer Biomarkers: Past, Present and Yet-To-Come. Diagnostics 2017, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Grossman, D.C.; Curry, S.J.; Owens, D.K.; Barry, M.J.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; et al. Screening for Ovarian Cancer US Preventive Services Task Force Recommendation Statement. JAMA J. Am. Med. Assoc. 2018, 319, 588–594. [Google Scholar]
- González-Guerrero, A.B.; Maldonado, J.; Dante, S.; Grajales, D.; Lechuga, L.M. Direct and Label-Free Detection of the Human Growth Hormone in Urine by an Ultrasensitive Bimodal Waveguide Biosensor. J. Biophotonics 2017, 10, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Jiu, L.; Hogervorst, M.A.; Vreman, R.A.; Mantel-Teeuwisse, A.K.; Goettsch, W.G. Understanding Innovation of Health Technology Assessment Methods: The IHTAM Framework. Int. J. Technol. Assess. Health Care 2022, 38, e16. [Google Scholar] [CrossRef]
- Barrett, J.E.; Jones, A.; Evans, I.; Reisel, D.; Herzog, C.; Chindera, K.; Kristiansen, M.; Leavy, O.C.; Manchanda, R.; Bjørge, L.; et al. The DNA Methylome of Cervical Cells Can Predict the Presence of Ovarian Cancer. Nat. Commun. 2022, 13, 448. [Google Scholar] [CrossRef]
- Xiao, Y.; Bi, M.; Guo, H.; Li, M. Multi-Omics Approaches for Biomarker Discovery in Early Ovarian Cancer Diagnosis-NC-ND License. EBioMedicine 2022, 79, 104001. [Google Scholar] [CrossRef]
- Gahlawat, A.W.; Witte, T.; Haarhuis, L.; Schott, S. A Novel Circulating MiRNA Panel for Non-Invasive Ovarian Cancer Diagnosis and Prognosis. Br. J. Cancer 2022, 127, 1550–1556. [Google Scholar] [CrossRef]
- Drescher, C.W.; Anderson, G.L. The yet Unrealized Promise of Ovarian Cancer Screening. JAMA Oncol. 2018, 4, 456–457. [Google Scholar] [CrossRef]
- Longo, D.L. Personalized Medicine for Primary Treatment of Serous Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2471–2474. [Google Scholar] [CrossRef]
- Ying, S.Y.; Chang, D.C.; Lin, S.L. The MicroRNA (MiRNA): Overview of the RNA Genes That Modulate Gene Function. Mol. Biotechnol. 2008, 38, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Pasquinelli, A.E.; Reinhart, B.J.; Slack, F.; Martindale, M.Q.; Kuroda, M.I.; Maller, B.; Hayward, D.C.; Ball, E.E.; Degnan, B.; Müller, P.; et al. Degnan Bernard Conservation of the Sequence and Temporal Expression of Let-7 Heterochronic Regulatory RNA. Nature 2000, 408, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent Deletions and Down-Regulation of Micro-RNA Genes MiR15 and MiR16 at 13q14 in Chronic Lymphocytic Leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.J.; Yang, D.D.; Na, S.; Sandusky, G.E.; Zhang, Q.; Zhao, G. Dicer Is Required for Embryonic Angiogenesis during Mouse Development. J. Biol. Chem. 2005, 280, 9330–9335. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, C.H.; Gal, S.; Dunlop, H.M.; Pushkaran, B.; Liggins, A.P.; Pulford, K.; Banham, A.H.; Pezzella, F.; Boultwood, J.; Wainscoat, J.S.; et al. Detection of Elevated Levels of Tumour-Associated MicroRNAs in Serum of Patients with Diffuse Large B-Cell Lymphoma. Br. J. Haematol. 2008, 141, 672–675. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’briant, K.C.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of MicroRNAs in Serum: A Novel Class of Biomarkers for Diagnosis of Cancer and Other Diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef]
- Larrea, E.; Sole, C.; Manterola, L.; Goicoechea, I.; Armesto, M.; Arestin, M.; Caffarel, M.M.; Araujo, A.M.; Araiz, M.; Fernandez-Mercado, M.; et al. New Concepts in Cancer Biomarkers: Circulating MiRNAs in Liquid Biopsies. Int. J. Mol. Sci. 2016, 17, 627. [Google Scholar] [CrossRef]
- Matsuzaki, J.; Ochiya, T. Circulating MicroRNAs and Extracellular Vesicles as Potential Cancer Biomarkers: A Systematic Review. Int. J. Clin. Oncol. 2017, 22, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Carozzo, S.; Pulliero, A.; Zhabayeva, D.; Ravetti, J.L.; Bersimbaev, R. Extracellular MicroRNA in Liquid Biopsy: Applicability in Cancer Diagnosis and Prevention. Am. J. Cancer Res. 2016, 7, 1461–1493. [Google Scholar]
- Taylor, D.D.; Gercel-Taylor, C. MicroRNA Signatures of Tumor-Derived Exosomes as Diagnostic Biomarkers of Ovarian Cancer. Gynecol. Oncol. 2008, 110, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-Y.; Yu, S.-L.; Yang, P.-C. MicroRNA in Lung Cancer. Br. J. Cancer 2010, 103, 1144–1148. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Xu, W.; Habib, N.; Xu, R. Potential Uses of MicroRNA in Lung Cancer Diagnosis, Prognosis, and Therapy. Curr. Cancer Drug Targets 2009, 9, 572–594. [Google Scholar] [CrossRef]
- Slaby, O.; Svoboda, M.; Michalek, J.; Vyzula, R. MicroRNAs in Colorectal Cancer: Translation of Molecular Biology into Clinical Application. Mol. Cancer 2009, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Luo, Y. ping MicroRNAs in Breast Cancer: Oncogene and Tumor Suppressors with Clinical Potential. J. Zhejiang Univ. Sci. B 2015, 16, 18–31. [Google Scholar] [CrossRef]
- Liu, H.-S.; Xiao, H.-S. MicroRNAs as Potential Biomarkers for Gastric Cancer. No. 2012AA020103. World J. Gastroenterol. 2014, 20, 12007–12017. [Google Scholar] [CrossRef] [PubMed]
- Kinose, Y.; Sawada, K.; Nakamura, K.; Kimura, T. The Role of MicroRNAs in Ovarian Cancer. Biomed Res. Int. 2014, 2014, 249393. [Google Scholar] [CrossRef]
- Nam, E.J.; Yoon, H.; Kim, S.W.; Kim, H.; Kim, Y.T.; Kim, J.H.; Kim, J.W.; Kim, S. MicroRNA Expression Profiles in Serous Ovarian Carcinoma. Clin. Cancer Res. 2008, 14, 2690–2695. [Google Scholar] [CrossRef]
- Dahiya, N.; Morin, P.J. MicroRNAs in Ovarian Carcinomas. Endocr. Relat. Cancer 2010, 17, F77. [Google Scholar] [CrossRef]
- Kö Bel, M.; Kalloger, S.E.; Boyd, N.; Mckinney, S.; Mehl, E.; Palmer, C.; Leung, S.; Bowen, N.J.; Ionescu, D.N.; Rajput, A.; et al. Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies. PLoS Med. 2008, 5, e232. [Google Scholar] [CrossRef]
- Zuberi, M.; Mir, R.; Das, J.; Ahmad, I.; Javid, J.; Yadav, P.; Masroor, M.; Ahmad, S.; Ray, P.C.; Saxena, A. Expression of Serum MiR-200a, MiR-200b, and MiR-200c as Candidate Biomarkers in Epithelial Ovarian Cancer and Their Association with Clinicopathological Features. Clin. Transl. Oncol. 2015, 17, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bast, R.C.; Yu, Y.; Li, J.; Sokoll, L.J.; Rai, A.J.; Rosenzweig, J.M.; Cameron, B.; Wang, Y.Y.; Meng, X.-Y.; et al. Three Biomarkers Identified from Serum Proteomic Analysis for the Detection of Early Stage Ovarian Cancer. Cancer Res. 2004, 64, 5882–5890. [Google Scholar] [CrossRef]
- Anfossi, S.; Babayan, A.; Pantel, K.; Calin, G.A. Clinical Utility of Circulating Non-Coding RNAs—An Update. Nat. Rev. Clin. Oncol. 2018, 15, 541–563. [Google Scholar] [CrossRef] [PubMed]
- Ravegnini, G.; de Iaco, P.; Gorini, F.; Dondi, G.; Klooster, I.; de Crescenzo, E.; Bovicelli, A.; Hrelia, P.; Perrone, A.M.; Angelini, S. Role of Circulating Mirnas in Therapeutic Response in Epithelial Ovarian Cancer: A Systematic Revision. Biomedicines 2021, 9, 1316. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, J.-Y.; Song, F.-J.; Chen, K.-X. Advances in Circulating MicroRNAs as Diagnostic and Prognostic Markers for Ovarian Cancer. Cancer Biol. Med. 2013, 10, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Montagnana, M.; Benati, M.; Danese, E. Circulating Biomarkers in Epithelial Ovarian Cancer Diagnosis: From Present to Future Perspective. Ann. Transl. Med. 2017, 5, 276. [Google Scholar] [CrossRef]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Godoy, P.M.; Bhakta, N.R.; Barczak, A.J.; Cakmak, H.; Fisher, S.; MacKenzie, T.C.; Patel, T.; Price, R.W.; Smith, J.F.; Woodruff, P.G.; et al. Large Differences in Small RNA Composition Between Human Biofluids. Cell Rep. 2018, 25, 1346–1358. [Google Scholar] [CrossRef]
- Nik Mohamed Kamal, N.N.S.B.; Shahidan, W.N.S. Non-Exosomal and Exosomal Circulatory MicroRNAs: Which Are More Valid as Biomarkers? Front. Pharmacol. 2020, 10, 1500. [Google Scholar] [CrossRef]
- Preethi, K.A.; Selvakumar, S.C.; Ross, K.; Jayaraman, S.; Tusubira, D.; Sekar, D. Liquid Biopsy: Exosomal MicroRNAs as Novel Diagnostic and Prognostic Biomarkers in Cancer. Mol. Cancer 2022, 21, 54. [Google Scholar] [CrossRef] [PubMed]
- Sohel, M.H. Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. Achiev. Life Sci. 2016, 10, 175–186. [Google Scholar] [CrossRef]
- Roblegg, E.; Coughran, A.; Sirjani, D. Saliva: An all-rounder of our body. Eur J Pharm Biopharm. 2019, 142, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Chojnowska, S.; Baran, T.; Wilińska, I.; Sienicka, P.; Cabaj-Wiater, I.; Knaś, M. Human Saliva as a Diagnostic Material. Adv. Med. Sci. 2018, 63, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Rapado-González, Ó.; Majem, B.; Muinelo-Romay, L.; López-López, R.; Suarez-Cunqueiro, M.M. Cancer Salivary Biomarkers for Tumours Distant to the Oral Cavity. Int. J. Mol. Sci. 2016, 17, 1531. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, N.; Ilsley, D.; Gu, J.; Lea, K.; Brockman, J.; Heater, S.; Setterquist, R.; Wong, D.T.W. The Human Salivary RNA Transcriptome Revealed by Massively Parallel Sequencing. Clin. Chem. 2012, 58, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Bahn, J.H.; Zhang, Q.; Li, F.; Chan, T.M.; Lin, X.; Kim, Y.; Wong, D.T.W.; Xiao, X. The Landscape of MicroRNA, Piwi-Interacting RNA, and Circular RNA in Human Saliva. Clin. Chem. 2015, 61, 221–230. [Google Scholar] [CrossRef]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic Potential of Saliva: Current State and Future Applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Martínez-Reglero, C.; Salgado-Barreira, Á.; Takkouche, B.; López-López, R.; Suárez-Cunqueiro, M.M.; Muinelo-Romay, L. Salivary Biomarkers for Cancer Diagnosis: A Meta-Analysis. Ann. Med. 2020, 52, 131–144. [Google Scholar] [CrossRef]
- Streckfus, C.F.; Guajardo-Edwards, C. The Use of Salivary as a Biometric Tool to Determine the Presence of Carcinoma of the Breast Among Women. Biometrics 2011. [CrossRef]
- Nonaka, T.; Wong, D.T.W. Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva. In Enzymes; Academic Press: Cambridge, MA, USA, 2017; Volume 42, pp. 125–151. [Google Scholar]
- Lin, X.; Lo, H.C.; Wong, D.T.W.; Xiao, X. Noncoding RNAs in Human Saliva as Potential Disease Biomarkers. Front. Genet. 2015, 6, 175. [Google Scholar] [CrossRef] [PubMed]
- Rapado-González, Ó.; Majem, B.; Muinelo-Romay, L.; álvarez-Castro, A.; Santamaría, A.; Gil-Moreno, A.; López-López, R.; Suárez-Cunqueiro, M.M. Human Salivary MicroRNAs in Cancer. J. Cancer 2018, 9, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Ishige, F.; Hoshino, I.; Iwatate, Y.; Chiba, S.; Arimitsu, H.; Yanagibashi, H.; Nagase, H.; Takayama, W. MIR1246 in Body Fluids as a Biomarker for Pancreatic Cancer. Sci. Rep. 2020, 10, 8723. [Google Scholar] [CrossRef]
- Alemar, B.; Izetti, P.; Gregório, C.; Macedo, G.S.; Antonio, M.; Castro, A.; Osvaldt, A.B.; Matte, U.; Ashton-Prolla, P. MiRNA-21 and MiRNA-34a Are Potential Minimally Invasive Biomarkers for the Diagnosis of Pancreatic Ductal Adenocarcinoma. Pancreas 2016, 45, 84–92. [Google Scholar] [CrossRef]
- Humeau, M.; Vignolle-Vidoni, A.; Sicard, F.; Martins, F.; Bournet, B.; Buscail, L.; Torrisani, J.; Cordelier, P. Salivary MicroRNA in Pancreatic Cancer Patients. PLoS ONE 2015, 10, e0130996. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Majem, B.; Álvarez-Castro, A.; Díaz-Peña, R.; Abalo, A.; Suárez-Cabrera, L.; Gil-Moreno, A.; Santamaría, A.; López-López, R.; Muinelo-Romay, L.; et al. A Novel Saliva-Based Mirna Signature for Colorectal Cancer Diagnosis. J. Clin. Med. 2019, 8, 2029. [Google Scholar] [CrossRef] [PubMed]
- Petkevich, A.A.; Abramov, A.A.; Pospelov, V.I.; Malinina, N.A.; Kuhareva, E.I.; Mazurchik, N.V.; Tarasova, O.I. Exosomal and Non-Exosomal MiRNA Expression Levels in Patients with HCV-Related Cirrhosis and Liver Cancer. Oncotarget 2021, 12, 1697. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, Q.; Liu, F.; Zhao, L.; Wei, W. The Potential Use of Salivary Mirnas as Promising Biomarkers for Detection of Cancer: A Meta-Analysis. PLoS ONE 2016, 11, e0166303. [Google Scholar] [CrossRef] [PubMed]
- Gablo, N.A.; Prochazka, V.; Kala, Z.; Slaby, O.; Kiss, I. Cell-Free MicroRNAs as Non-Invasive Diagnostic and Prognostic Biomarkers in Pancreatic Cancer. Curr. Genom. 2019, 20, 569–580. [Google Scholar] [CrossRef]
- Xie, Z.; Yin, X.; Gong, B.; Nie, W.; Wu, B.; Zhang, X.; Huang, J.; Zhang, P.; Zhou, Z.; Li, Z. Salivary MicroRNAs Show Potential as a Noninvasive Biomarker for Detecting Resectable Pancreatic Cancer. Cancer Prev. Res. 2015, 8, 165–173. [Google Scholar] [CrossRef]
- Madhavan, B.; Yue, S.; Galli, U.; Rana, S.; Gross, W.; Müller, M.; Giese, N.A.; Kalthoff, H.; Becker, T.; Büchler, M.W.; et al. Combined Evaluation of a Panel of Protein and MiRNA Serum-Exosome Biomarkers for Pancreatic Cancer Diagnosis Increases Sensitivity and Specificity. Int. J. Cancer 2015, 136, 2616–2627. [Google Scholar] [CrossRef] [PubMed]
- Sazanov, A.A.; Kiselyova, E.V.; Zakharenko, A.A.; Romanov, M.N.; Zaraysky, M.I. Plasma and Saliva MiR-21 Expression in Colorectal Cancer Patients. J. Appl. Genet. 2017, 58, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Mariam, A.; Miller-Atkins, G.; Moro, A.; Rodarte, A.I.; Siddiqi, S.; Acevedo-Moreno, L.A.; Brown, J.M.; Allende, D.S.; Aucejo, F.; Rotroff, D.M. Salivary MiRNAs as Non-Invasive Biomarkers of Hepatocellular Carcinoma: A Pilot Study. PeerJ 2022, 9, e12715. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ma, L.; Qiao, X.; Zhang, X.; Dong, S.F.; Wu, M.T.; Zhai, K.; Shi, H.Z. Salivary MicroRNAs Show Potential as Biomarkers for Early Diagnosis of Malignant Pleural Effusion. Transl. Lung Cancer Res. 2020, 9, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Koopaie, M.; Kolahdooz, S.; Fatahzadeh, M.; Manifar, S. Salivary Biomarkers in Breast Cancer Diagnosis: A Systematic Review and Diagnostic Meta-Analysis. Cancer Med. 2022, 11, 2644–2661. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yoshizawa, J.M.; Kim, K.M.; Kanjanapangka, J.; Grogan, T.R.; Wang, X.; Elashoff, D.E.; Ishikawa, S.; Chia, D.; Liao, W.; et al. Discovery and Validation of Salivary Extracellular RNA Biomarkers for Noninvasive Detection of Gastric Cancer. Clin. Chem. 2018, 64, 1513–1521. [Google Scholar] [CrossRef]
- Lopes, C.; Chaves, J.; Ortigão, R.; Dinis-Ribeiro, M.; Pereira, C. Gastric Cancer Detection by Non-Blood-Based Liquid Biopsies: A Systematic Review Looking into the Last Decade of Research. United Eur. Gastroenterol. J. 2022, 11, 114–130. [Google Scholar] [CrossRef]
- Hizir, M.S.; Balcioglu, M.; Rana, M.; Robertson, N.M.; Yigit, M.V. Simultaneous Detection of Circulating OncomiRs from Body Fluids for Prostate Cancer Staging Using Nanographene Oxide. ACS Appl. Mater. Interfaces 2014, 6, 14772–14778. [Google Scholar] [CrossRef]
- Luedemann, C.; Reinersmann, J.L.; Klinger, C.; Degener, S.; Dreger, N.M.; Roth, S.; Kaufmann, M.; Savelsbergh, A. Prostate Cancer-Associated MiRNAs in Saliva: First Steps to an Easily Accessible and Reliable Screening Tool. Biomolecules 2022, 12, 1366. [Google Scholar] [CrossRef]
- Machida, T.; Tomofuji, T.; Maruyama, T.; Yoneda, T.; Ekuni, D.; Azuma, T.; Miyai, H.; Mizuno, H.; Kato, H.; Tsutsumi, K.; et al. MIR 1246 and MIR-4644 in Salivary Exosome as Potential Biomarkers for Pancreatobiliary Tract Cancer. Oncol. Rep. 2016, 36, 2375–2381. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, J.H.; Zhou, H.; Kim, B.W.; Wong, D.T. Salivary Transcriptomic Biomarkers for Detection of Ovarian Cancer: For Serous Papillary Adenocarcinoma. J. Mol. Med. 2012, 90, 427–434. [Google Scholar] [CrossRef]
- Yang, J.; Xiang, C.; Liu, J. Clinical Significance of Combining Salivary MRNAs and Carcinoembryonic Antigen for Ovarian Cancer Detection. Scand. J. Clin. Lab. Investig. 2021, 81, 39–45. [Google Scholar] [CrossRef]
- Li, Y.; Tan, C.; Liu, L.; Han, L. Significance of Blood and Salivary IEX-1 Expression in Diagnosis of Epithelial Ovarian Carcinoma. J. Obstet. Gynaecol. Res. 2018, 44, 764–771. [Google Scholar] [CrossRef]
- Tajmul, M.; Parween, F.; Singh, L.; Mathur, S.R.; Sharma, J.B.; Kumar, S.; Sharma, D.N.; Yadav, S. Identification and Validation of Salivary Proteomic Signatures for Non-Invasive Detection of Ovarian Cancer. Int. J. Biol. Macromol. 2018, 108, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Zermeño-Nava, J.D.J.; Martínez-Martínez, M.U.; Rámirez-De-Ávila, A.L.; Hernández-Arteaga, A.C.; García-Valdivieso, M.G.; Hernández-Cedillo, A.; José-Yacamán, M.; Navarro-Contreras, H.R. Determination of Sialic Acid in Saliva by Means of Surface-Enhanced Raman Spectroscopy as a Marker in Adnexal Mass Patients: Ovarian Cancer vs Benign Cases. J. Ovarian Res. 2018, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Bel’skaya, L.V.; Sarf, E.A.; Solomatin, D.V.; Kosenok, V.K. Analysis of the Lipid Profile of Saliva in Ovarian and Endometrial Cancer by IR Fourier Spectroscopy. Vib. Spectrosc. 2019, 104, 102944. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. MiRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef]
- Nakamura, K.; Sawada, K.; Yoshimura, A.; Kinose, Y.; Nakatsuka, E.; Kimura, T. Clinical Relevance of Circulating Cell-Free MicroRNAs in Ovarian Cancer. Mol. Cancer 2016, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Yokoi, A.; Kato, T.; Ochiya, T.; Yamamoto, Y. The Clinical Impact of Intra- and Extracellular MiRNAs in Ovarian Cancer. Cancer Sci. 2020, 111, 3435–3444. [Google Scholar] [CrossRef] [PubMed]
- Hulstaert, E.; Morlion, A.; Levanon, K.; Vandesompele, J.; Mestdagh, P. Candidate RNA Biomarkers in Biofluids for Early Diagnosis of Ovarian Cancer: A Systematic Review. Gynecol. Oncol. 2021, 160, 633–642. [Google Scholar] [CrossRef]
- Montazerian, M.; Yasari, F.; Aghaalikhani, N. Ovarian Extracellular MicroRNAs as the Potential Non-Invasive Biomarkers: An Update. Biomed. Pharmacother. 2018, 106, 1633–1640. [Google Scholar] [CrossRef]
- Resnick, K.E.; Alder, H.; Hagan, J.P.; Richardson, D.L.; Croce, C.M.; Cohn, D.E. The Detection of Differentially Expressed MicroRNAs from the Serum of Ovarian Cancer Patients Using a Novel Real-Time PCR Platform. Gynecol. Oncol. 2009, 112, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Shiao, M.S.; Chang, J.M.; Lertkhachonsuk, A.A.; Rermluk, N.; Jinawath, N. Circulating Exosomal MiRNAs as Biomarkers in Epithelial Ovarian Cancer. Biomedicines 2021, 9, 1433. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.S.; Soon, P.S.; Marsh, D.J. Comparison of Methodologies to Detect Low Levels of Hemolysis in Serum for Accurate Assessment of Serum MicroRNAs. PLoS ONE 2016, 11, e0153200. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, M.C.; Jeong, J.Y.; Hwang, S.; Jung, S.G.; Joo, W.D.; Park, H.; Song, S.H.; Lee, C.; Kim, T.H.; et al. Serum Exosomal MiRNA-145 and MiRNA-200c as Promising Biomarkers for Preoperative Diagnosis of Ovarian Carcinomas. J. Cancer 2019, 10, 1958–1967. [Google Scholar] [CrossRef]
- Elias, K.M.; Fendler, W.; Stawiski, K.; Fiascone, S.J.; Vitonis, A.F.; Berkowitz, R.S.; Frendl, G.; Konstantinopoulos, P.; Crum, C.P.; Kedzierska, M.; et al. Diagnostic Potential for a Serum MiRNA Neural Network for Detection of Ovarian Cancer. EIlife 2017, 6, e28932. [Google Scholar] [CrossRef]
- Kumar, V.; Gupta, S.; Chaurasia, A.; Sachan, M. Evaluation of Diagnostic Potential of Epigenetically Deregulated MiRNAs in Epithelial Ovarian Cancer. Front. Oncol. 2021, 11, 681872. [Google Scholar] [CrossRef]
- Carollo, E.; Paris, B.; Samuel, P.; Pantazi, P.; Bartelli, T.F.; Dias-Neto, E.; Brooks, S.A.; Pink, R.C.; Francisco Carter, D.R. Detecting Ovarian Cancer Using Extracellular Vesicles: Progress and Possibilities. Biochem. Soc. Trans. 2019, 47, 295–304. [Google Scholar] [CrossRef]
- Zheng, X.; Li, X.; Wang, X. Extracellular Vesicle-Based Liquid Biopsy Holds Great Promise for the Management of Ovarian Cancer. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188395. [Google Scholar] [CrossRef]
- Gasparri, M.L.; Casorelli, A.; Bardhi, E.; Besharat, A.R.; Savone, D.; Ruscito, I.; Farooqi, A.A.; Papadia, A.; Mueller, M.D.; Ferretti, E.; et al. Beyond Circulating MicroRNA Biomarkers: Urinary MicroRNAs in Ovarian and Breast Cancer. Tumor Biol. 2017, 39, 1010428317695525. [Google Scholar] [CrossRef] [PubMed]
- Zavesky, L.; Jandakova, E.; Turyna, R.; Langmeierova, L.; Weinberger, V.; Minar, L. Supernatant versus Exosomal Urinary MicroRNAs. Two Fractions with Different Outcomes in Gynaecological Cancers. Neoplasma 2016, 63, 121–132. [Google Scholar] [CrossRef]
- Záveský, L.; Jandáková, E.; Turyna, R.; Langmeierová, L.; Weinberger, V.; Záveská Drábková, L.; Hůlková, M.; Hořínek, A.; Dušková, D.; Feyereisl, J.; et al. Evaluation of Cell-Free Urine MicroRNAs Expression for the Use in Diagnosis of Ovarian and Endometrial Cancers. A Pilot Study. Pathol. Oncol. Res. 2015, 21, 1027–1035. [Google Scholar] [CrossRef]
- Zhou, J.; Gong, G.; Tan, H.; Dai, F.; Zhu, X.; Chen, Y.; Wang, J.; Liu, Y.; Chen, P.; Wu, X.; et al. Urinary MicroRNA-30a-5p Is a Potential Biomarker for Ovarian Serous Adenocarcinoma. Oncol. Rep. 2015, 33, 2915–2923. [Google Scholar] [CrossRef] [PubMed]
- Berner, K.; Hirschfeld, M.; Weiß, D.; Rücker, G.; Asberger, J.; Ritter, A.; Nöthling, C.; Jäger, M.; Juhasz-Böss, I.; Erbes, T. Evaluation of Circulating MicroRNAs as Non-Invasive Biomarkers in the Diagnosis of Ovarian Cancer: A Case–Control Study. Arch. Gynecol. Obstet. 2022, 306, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Záveský, L.; Jandáková, E.; Weinberger, V.; Minář, L.; Hanzíková, V.; Dušková, D.; Drábková, L.Z.; Hořínek, A. Ovarian Cancer: Differentially Expressed MicroRNAs in Tumor Tissue and Cell-Free Ascitic Fluid as Potential Novel Biomarkers. Cancer Investig. 2019, 37, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Nicolè, L.; Cappello, F.; Cappellesso, R.; VandenBussche, C.J.; Fassina, A. MicroRNA Profiling in Serous Cavity Specimens: Diagnostic Challenges and New Opportunities. Cancer Cytopathol. 2019, 127, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Záveský, L.; Jandáková, E.; Weinberger, V.; Minář, L.; Hanzíková, V.; Dušková, D.; Záveská Drábková, L.; Svobodová, I.; Hořínek, A. Ascites-Derived Extracellular MicroRNAs as Potential Biomarkers for Ovarian Cancer. Reprod. Sci. 2019, 26, 510–522. [Google Scholar] [CrossRef]
- Yamamoto, C.M.; Oakes, M.L.; Murakami, T.; Muto, M.G.; Berkowitz, R.S.; Ng, S.W. Comparison of Benign Peritoneal Fluid- and Ovarian Cancer Ascites-Derived Extracellular Vesicle RNA Biomarkers. J. Ovarian Res. 2018, 11, 20. [Google Scholar] [CrossRef]
- Vaksman, O.; Tropé, C.; Davidson, B.; Reich, R. Exosome-Derived MiRNAs and Ovarian Carcinoma Progression. Carcinogenesis 2014, 35, 2113–2120. [Google Scholar] [CrossRef]
- Mitra, A.; Yoshida-Court, K.; Solley, T.N.; Mikkelson, M.; Yeung, C.L.A.; Nick, A.; Lu, K.; Klopp, A.H. Extracellular Vesicles Derived from Ascitic Fluid Enhance Growth and Migration of Ovarian Cancer Cells. Sci. Rep. 2021, 11, 9149. [Google Scholar] [CrossRef]
- Wang, W.; Jo, H.; Park, S.; Kim, H.; Kim, S.I.; Han, Y.; Lee, J.; Seol, A.; Kim, J.; Lee, M.; et al. Integrated Analysis of Ascites and Plasma Extracellular Vesicles Identifies a MiRNA-Based Diagnostic Signature in Ovarian Cancer. Cancer Lett. 2022, 542, 215735. [Google Scholar] [CrossRef]
- Hulstaert, E.; Levanon, K.; Morlion, A.; Van Aelst, S.; Christidis, A.A.; Zamar, R.; Anckaert, J.; Verniers, K.; Bahar-Shany, K.; Sapoznik, S.; et al. RNA Biomarkers from Proximal Liquid Biopsy for Diagnosis of Ovarian Cancer. Neoplasia 2022, 24, 155–164. [Google Scholar] [CrossRef]
- Skryabin, G.O.; Komelkov, A.V.; Zhordania, K.I.; Bagrov, D.V.; Vinokurova, S.V.; Galetsky, S.A.; Elkina, N.V.; Denisova, D.A.; Enikeev, A.D.; Tchevkina, E.M. Extracellular Vesicles from Uterine Aspirates Represent a Promising Source for Screening Markers of Gynecologic Cancers. Cells 2022, 11, 1064. [Google Scholar] [CrossRef]
- Kaczor-Urbanowicz, K.E.; Wei, F.; Rao, S.L.; Kim, J.; Shin, H.; Cheng, J.; Tu, M.; Wong, D.T.W.; Kim, Y. Clinical Validity of Saliva and Novel Technology for Cancer Detection. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 49–59. [Google Scholar] [CrossRef]
- Valihrach, L.; Androvic, P.; Kubista, M. Circulating MiRNA Analysis for Cancer Diagnostics and Therapy. Mol. Asp. Med. 2020, 72, 100825. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Y.; Yao, L.; Song, G.; Teng, C. Circulating MicroRNAs: Promising Biomarkers Involved in Several Cancers and Other Diseases. DNA Cell Biol. 2017, 36, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Nebgen, D.R.; Lu, K.H.; Bast, R.C. Novel Approaches to Ovarian Cancer Screening. Curr. Oncol. Rep. 2019, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Dochez, V.; Caillon, H.; Vaucel, E.; Dimet, J.; Winer, N.; Ducarme, G. Biomarkers and Algorithms for Diagnosis of Ovarian Cancer: CA125, HE4, RMI and ROMA, a Review. J. Ovarian Res. 2019, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.; Calvo-Lozano, O.; Estevez, M.-C.; Lechuga, L.M. Nanophotonic Biosensors Driving Personalized Medicine. Opt. Photonics News 2020, 31, 24–31. [Google Scholar] [CrossRef]
- Marin, Y.; Velha, P.; Faralli, S.; Di Pasquale, F.; Oton, C.J. Oton Micro-Interferometers on Chip for Sensing Applications. In Optical Sensors; Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors); Optica Publishing Group: Washington, DC, USA, 2018. [Google Scholar]
- Iqbal, M.; Gleeson, M.A.; Spaugh, B.; Tybor, F.; Gunn, W.G.; Hochberg, M.; Baehr-Jones, T.; Bailey, R.C.; Gunn, L.C. Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 654–661. [Google Scholar] [CrossRef]
- Scheler, O.; Kindt, J.T.; Qavi, A.J.; Kaplinski, L.; Glynn, B.; Barry, T.; Kurg, A.; Bailey, R.C. Label-Free, Multiplexed Detection of Bacterial TmRNA Using Silicon Photonic Microring Resonators. Biosens. Bioelectron. 2012, 36, 56–61. [Google Scholar] [CrossRef] [PubMed]
Reference | Biofluid | Source (Analytes) | miRNAs | Status | Case | Controls | AUC (95% CI) |
---|---|---|---|---|---|---|---|
[113] | urine | cell free | miR-92 miR-106b miR-100 miR-200b | ↑ ↓ ↓ ↑ | 6 EOC FTC | 13 HS | 1.00 (0.815–1.000) 0.97 (0.764–1.000) 0.85 (0.601–0.970) 1.00 (0.782–1.000) |
[115] | urine | exosomes | miR-30a-5p | ↑ | 39 OSA | 26 BGD 30 HS | 0.86 (0.709–1.016) |
[116] | urine | cell free | miR-15a let-7a | ↑ ↓ | 13 OC | 17 HS | |
[117] | Ascite vs Plasma | exosomes | miR-203-3p miR-204-5p miR-135b-5p miR-182-5p miR-451a | ↑ ↑ ↑ ↑ ↓ | 12 OC | 12 HS | 1.000 (0.782–1.000) 1.000 (0.782–1.000) 1.000 (0.782–1.000) 0.964 (0.725–1.000) 0.964 (0.725–1.000) |
[120] | Ascite vs Benign peritoneal fluids | exosomes | let-7b. miR-23b miR-29a miR-30d miR-205 miR-720 | ↓ ↓ ↓ ↓ ↓ ↓ | 8 OC | 10 HS | |
[122] | Ascite and plasma | exosomes | miR-200c-3p miR-18a-5p miR-1246 miR-1290 miR-100- 5p miR125b-3p | ↑ ↑ ↑ ↑ ↓ ↓ | 5 OC | 2 BGD | |
[123] | Ascite vs Benign peritoneal fluids | exosomes | miR-1246 miR-1290 | ↑ ↑ | 78 OC | 72 BGD | |
[124] | Uterine cavity fluids | Cell free | let-7d-5p miR-203a miR-200b miR-200c miR-191 | ↑ ↑ ↑ ↑ ↑ | 26 OC | 48 BGD | |
[125] | Uterine cavity fluids | exosomes | miR-451a miR-199a-3p miR-375-3p | ↓ ↓ ↑ | 5 EOC | 5 HS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robotti, M.; Scebba, F.; Angeloni, D. Circulating Biomarkers for Cancer Detection: Could Salivary microRNAs Be an Opportunity for Ovarian Cancer Diagnostics? Biomedicines 2023, 11, 652. https://doi.org/10.3390/biomedicines11030652
Robotti M, Scebba F, Angeloni D. Circulating Biomarkers for Cancer Detection: Could Salivary microRNAs Be an Opportunity for Ovarian Cancer Diagnostics? Biomedicines. 2023; 11(3):652. https://doi.org/10.3390/biomedicines11030652
Chicago/Turabian StyleRobotti, Marzia, Francesca Scebba, and Debora Angeloni. 2023. "Circulating Biomarkers for Cancer Detection: Could Salivary microRNAs Be an Opportunity for Ovarian Cancer Diagnostics?" Biomedicines 11, no. 3: 652. https://doi.org/10.3390/biomedicines11030652
APA StyleRobotti, M., Scebba, F., & Angeloni, D. (2023). Circulating Biomarkers for Cancer Detection: Could Salivary microRNAs Be an Opportunity for Ovarian Cancer Diagnostics? Biomedicines, 11(3), 652. https://doi.org/10.3390/biomedicines11030652