Cardioprotective Mechanisms against Reperfusion Injury in Acute Myocardial Infarction: Targeting Angiotensin II Receptors
Abstract
:1. Introduction
2. Angiotensin Axis
2.1. Ang II/AT1R Axis
2.2. Ang II/AT2R Axis
2.3. Angiotensin 1–7/Mas Receptor Axis
3. Intracellular Renin Angiotensin System
3.1. Mitochondrial iRAS
3.1.1. Mitochondrial AT1R
3.1.2. Mitochondrial AT2R
3.2. Nuclear iRAS
4. Antioxidants
4.1. Ascorbic Acid
4.2. Deferoxamine
4.3. N-Acetylcysteine
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.; Mensah, G.; Johnson, C.; Addolorato, G.; Ammirati, E.; Baddour, L.; Barengo, N.; Beaton, A.; Benjamin, E.; Benziger, C.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Yellon, D.; Hausenloy, D. Myocardial Reperfusion Injury. N. Engl. J. Med. 2007, 357, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Piper, H.; Garcña-Dorado, D.; Ovize, M. A fresh look at reperfusion injury. Cardiovasc. Res. 1998, 38, 291–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Montero, J.; Brito, R.; Gajardo, A.; Rodrigo, R. Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J. Cardiol. 2018, 10, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 2018, 117, 76–89. [Google Scholar] [CrossRef]
- Yang, B.; Li, D.; Phillips, M.; Mehta, P.; Mehta, J. Myocardial angiotensin II receptor expression and ischemia-reperfusion injury. Vasc. Med. 1998, 3, 121–130. [Google Scholar] [CrossRef]
- Danser, A.; van Kats, J.; Admiraal, P.; Derkx, F.; Lamers, J.; Verdouw, P.; Saxena, P.; Schalekamp, M. Cardiac renin and angiotensins. Uptake from plasma versus in situ synthesis. Hypertension 1994, 24, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobales, N.; Nuñez, R.; Javadov, S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H1426–H1438. [Google Scholar] [CrossRef]
- Dikalov, S.; Nazarewicz, R. Angiotensin II-Induced Production of Mitochondrial Reactive Oxygen Species: Potential Mechanisms and Relevance for Cardiovascular Disease. Antioxid. Redox Signal. 2013, 19, 1085–1094. [Google Scholar] [CrossRef]
- Dai, W.; Kloner, R. Potential Role of Renin-Angiotensin System Blockade for Preventing Myocardial Ischemia/Reperfusion Injury and Remodeling after Myocardial Infarction. Postgrad Med. 2011, 123, 49–55. [Google Scholar] [CrossRef]
- Nuñez, R.; Javadov, S.; Escobales, N. Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts. Pflug. Arch. 2018, 470, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Düsing, R. Mega Clinical Trials Which Have Shaped the RAS Intervention Clinical Practice. Ther. Adv. Cardiovasc. Dis. 2016, 10, 133–150. [Google Scholar] [CrossRef]
- Rodgers, J.E.; Patterson, J.H. Angiotensin II-Receptor Blockers: Clinical Relevance and Therapeutic Role. Am. J. Health Syst. Pharm. 2001, 58, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; Xie, W.; Deng, W.; Xiao, Y.; Karnik, S.; Xu, C.; Chen, Q.; Wang, Q. Angiotensin II increases angiogenesis by NF-κB–mediated transcriptional activation of angiogenic factor AGGF1. FASEB J. 2018, 32, 5051–5062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Singh, V.; Baker, K. The intracellular renin-angiotensin system in the heart. Curr. Hypertens. Rep. 2009, 11, 104–110. [Google Scholar] [CrossRef]
- Mehta, P.; Griendling, K. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 2007, 292, C82–C97. [Google Scholar] [CrossRef] [PubMed]
- Katada, J.; Majima, M. AT2 receptor-dependent vasodilation is mediated by activation of vascular kinin generation under flow conditions. Br. J. Clin. Pharmacol. 2002, 136, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Tsutsumi, Y.; Matsubara, H.; Masaki, H.; Kurihara, H.; Murasawa, S.; Takai, S.; Miyazaki, M.; Nozawa, Y.; Ozono, R.; Nakagawa, K.; et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J. Clin. Investig. 1999, 104, 925–935. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, M.; Hayashida, W.; Akishita, M.; Tamura, K.; Daviet, L.; Lehtonen, J.; Dzau, V. Stimulation of Different Subtypes of Angiotensin II Receptors, AT 1 and AT 2 Receptors, Regulates STAT Activation by Negative Crosstalk. Circ. Res. 1999, 84, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Tani, T.; Ayuzawa, R.; Takagi, T.; Kanehira, T.; Maurya, D.; Tamura, M. Angiotensin II bi-directionally regulates cyclooxygenase-2 expression in intestinal epithelial cells. Mol. Cell. Biochem. 2008, 315, 185–193. [Google Scholar] [CrossRef]
- Wu, L.; Iwai, M.; Li, Z.; Shiuchi, T.; Min, L.; Cui, T.; Li, J.; Okumura, M.; Nahmias, C.; Horiuchi, M. Regulation of Inhibitory Protein-κB and Monocyte Chemoattractant Protein-1 by Angiotensin II Type 2 Receptor-Activated Src Homology Protein Tyrosine Phosphatase-1 in Fetal Vascular Smooth Muscle Cells. Mol. Endocrinol. 2004, 18, 666–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steckelings, U.; Unger, T. Angiotensin II type 2 receptor agonists—Where should they be applied? Expert Opin. Investig. Drugs 2012, 21, 763–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsubara, H. Pathophysiological Role of Angiotensin II Type 2 Receptor in Cardiovascular and Renal Diseases. Circ. Res. 1998, 83, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Friedel, N.; Heymann, A.; Bauer, P.; Neuß, M.; Rolfs, A.; Steffen, C.; Hildebrandt, A.; Hetzer, R.; Fleck, E. Regulation, Chamber Localization, and Subtype Distribution of Angiotensin II Receptors in Human Hearts. Circulation 1995, 91, 1461–1471. [Google Scholar] [CrossRef]
- Haywood, G.; Gullestad, L.; Katsuya, T.; Hutchinson, H.; Pratt, R.; Horiuchi, M.; Fowler, M. AT 1 and AT 2 Angiotensin Receptor Gene Expression in Human Heart Failure. Circulation 1997, 95, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Wharton, J.; Morgan, K.; Rutherford, R.; Catravas, J.; Chester, A.; Whitehead, B.; De Leval, M.; Yacoub, M.; Polak, J. Differential Distribution of Angiotensin AT2Receptors in the Normal and Failing Human Heart. J. Pharmacol. Exp. Ther. 1998, 284, 323–336. [Google Scholar]
- Dias-Peixoto, M.; Santos, R.; Gomes, E.; Alves, M.; Almeida, P.; Greco, L.; Rosa, M.; Fauler, B.; Bader, M.; Alenina, N.; et al. Molecular Mechanisms Involved in the Angiotensin-(1-7)/Mas Signaling Pathway in Cardiomyocytes. Hypertension 2008, 52, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Lopez Verrilli, M.; Gomez, K.; Nakagawa, P.; Peña, C.; Arranz, C.; Gironacci, M. Angiotensin-(1–7) upregulates cardiac nitric oxide synthase in spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1205–H1211. [Google Scholar] [CrossRef]
- Ferreira, A.; Santos, R.; Almeida, A. Angiotensin-(1-7): Cardioprotective Effect in Myocardial Ischemia/Reperfusion. Hypertension 2001, 38, 665–668. [Google Scholar] [CrossRef]
- Santos, R.; Ferreira, A.; Nadu, A.; Braga, A.; de Almeida, A.; Campagnole-Santos, M.; Baltatu, O.; Iliescu, R.; Reudelhuber, T.; Bader, M. Expression of an angiotensin-(1–7)-producing fusion protein produces cardioprotective effects in rats. Physiol. Genom. 2004, 17, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Tadevosyan, A.; Xiao, J.; Surinkaew, S.; Naud, P.; Merlen, C.; Harada, M.; Qi, X.; Chatenet, D.; Fournier, A.; Allen, B. Intracellular Angiotensin-II Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis, Cell Proliferation, and Collagen Secretion. J. Am. Heart Assoc. 2017, 6, e004965. [Google Scholar] [CrossRef] [PubMed]
- De Mello, W.; Monterrubio, J. Intracellular and Extracellular Angiotensin II Enhance the L-Type Calcium Current in the Failing Heart. Hypertension 2004, 44, 360–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, K.; Chernin, M.; Schreiber, T.; Sanghi, S.; Haiderzaidi, S.; Booz, G.; Dostal, D.; Kumar, R. Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul. Pept. 2004, 120, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Le, B.; Khode, R.; Baker, K.; Kumar, R. Intracellular Angiotensin II Production in Diabetic Rats Is Correlated With Cardiomyocyte Apoptosis, Oxidative Stress, and Cardiac Fibrosis. Diabetes 2008, 57, 3297–3306. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Kranzlin, B.; Schaeffer, S.; Zimmer, J.; Resch, S.; Bachmann, S.; Gretz, N.; Hackenthal, E. Presence of renin within intramitochondrial dense bodies of the rat adrenal cortex. Am. J. Physiol. Endocrinol. Metab. 1996, 271, E439–E450. [Google Scholar] [CrossRef]
- Valenzuela, R.; Costa-Besada, M.; Iglesias-Gonzalez, J.; Perez-Costas, E.; Villar-Cheda, B.; Garrido-Gil, P.; Melendez-Ferro, M.; Soto-Otero, R.; Lanciego, J.; Henrion, D.; et al. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis. 2016, 7, e2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Yang, T.; Long, Z.; Cheng, J. Effect of mitochondrial ATP-sensitive potassium channel opening on the translocation of protein kinase C epsilon in adult rat ventricular myocytes. Genet. Mol. Res. 2014, 13, 4516–4522. [Google Scholar] [CrossRef]
- Labandeira-Garcia, J.; Valenzuela, R.; Costa-Besada, M.; Villar-Cheda, B.; Rodriguez-Perez, A. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog. Neurobiol. 2021, 199, 101919. [Google Scholar] [CrossRef]
- Matsushima-Otsuka, S.; Fujiwara-Tani, R.; Sasaki, T.; Ohmori, H.; Nakashima, C.; Kishi, S.; Nishiguchi, Y.; Fujii, K.; Luo, Y.; Kuniyasu, H. Significance of intranuclear angiotensin-II type 2 receptor in oral squamous cell carcinoma. Oncotarget 2018, 9, 36561–36574. [Google Scholar] [CrossRef] [Green Version]
- Villar-Cheda, B.; Costa-Besada, M.; Valenzuela, R.; Perez-Costas, E.; Melendez-Ferro, M.; Labandeira-Garcia, J. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system. Cell Death Dis. 2017, 8, e3044. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, R.; Prieto, J.; Aguayo, R.; Ramos, C.; Puentes, Á.; Gajardo, A.; Panieri, E.; Rojas-Solé, C.; Lillo-Moya, J.; Saso, L. Joint Cardioprotective Effect of Vitamin C and Other Antioxidants against Reperfusion Injury in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Molecules 2021, 26, 5702. [Google Scholar] [CrossRef] [PubMed]
- Rivas, C.; Zúñiga, F.; Salas-Burgos, A.; Mardones, L.; Ormazabal, V.; Vera, J. Vitamin C transporters. J. Physiol. Biochem. 2008, 64, 357–375. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.; et al. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Lykkesfeldt, J.; Tveden-Nyborg, P. The pharmacokinetics of vitamin C. Nutrients 2019, 11, 2412. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.; Xu, A.; Vita, J.; Keaney, J. Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ. Res. 1998, 83, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, R.; Libuy, M.; Feliú, F.; Hasson, D. Molecular basis of cardioprotective effect of antioxidant vitamins in myocardial infarction. Biomed. Res. Int. 2013, 2013, 437613. [Google Scholar] [CrossRef] [Green Version]
- Ülker, S.; McKeown, P.; Bayraktutan, U. Vitamins Reverse Endothelial Dysfunction Through Regulation of eNOS and NAD(P)H Oxidase Activities. Hypertension 2003, 41, 534–539. [Google Scholar] [CrossRef] [Green Version]
- May, J.; Qu, Z.; Mendiratta, S. Protection and Recycling of α-Tocopherol in Human Erythrocytes by Intracellular Ascorbic Acid. Arch. Biochem. Biophys. 1998, 349, 281–289. [Google Scholar] [CrossRef]
- Petrat, F.; Groot, H.; Sustmann, R.; Rauen, U. The Chelatable Iron Pool in Living Cells: A Methodically Defined Quantity. Biol. Chem. 2002, 383, 489–502. [Google Scholar] [CrossRef]
- Kehrer, J. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50. [Google Scholar] [CrossRef]
- Chan, W.; Taylor, A.; Ellims, A.; Lefkovits, L.; Wong, C.; Kingwell, B.; Natoli, A.; Croft, K.; Mori, T.; Kaye, D.; et al. Effect of Iron Chelation on Myocardial Infarct Size and Oxidative Stress in ST-Elevation–Myocardial Infarction. Circ. Cardiovasc. Interv. 2012, 5, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, S.; Barnucz, E.; Loganathan, S.; Li, S.; Radovits, T.; Hegedus, P.; Zubarevich, A.; Hirschberg, K.; Weymann, A.; Puskás, L.; et al. Q50, an Iron-Chelating and Zinc-Complexing Agent, Improves Cardiac Function in Rat Models of Ischemia/Reperfusion-Induced Myocardial Injury. Circ. J. 2013, 77, 1817–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, P.; Rodrigo, R. Novel antioxidant therapy against myocardial ischemia– reperfusion injury during percutaneous coronary angioplasty. In Free Radicals and Diseases; IntechOpen: London, UK, 2016; Chapter 19; pp. 383–406. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Liu, H.; Yang, Y.; Yang, Y.; Jiao, Y.; Tay, F.R.; Chen, J. Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects. Oxid. Med. Cell. Longev. 2018, 2018, 2835787. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, Y. Valsartan-Induced Cardioprotection Involves Angiotensin II Type 2 Receptor Upregulation in Isolated Ischaemia and Reperfused Rat Hearts. Acta Cardiol. 2015, 70, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Jugdutt, B.I.; Menon, V. Upregulation of Angiotensin II Type 2 Receptor and Limitation of Myocardial Stunning by Angiotensin II Type 1 Receptor Blockers during Reperfused Myocardial Infarction in the Rat. J. Cardiovasc. Pharmacol. Ther. 2003, 8, 217–226. [Google Scholar] [CrossRef]
- Ryckwaert, F.; Colson, P.; Guillon, G.; Foëx, P. Cumulative Effects of AT1 and AT2 Receptor Blockade on Ischaemia–Reperfusion Recovery in Rat Hearts. Pharmacol. Res. 2005, 51, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Choi, W.-G.; Kwan, J.; Park, K.-S.; Lee, W.-H. Effects of Early Losartan Therapy on Ventricular Late Potentials in Acute Myocardial Infarction. Ann. Noninvasive Electrocardiol. 2008, 13, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.; Ferdinandy, P.; Andreadou, I.; Bøtker, H.; Heusch, G.; Ibáñez, B.; Ovize, M.; Schulz, R.; Yellon, D.; Hausenloy, D.; et al. Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury. J. Am. Coll. Cardiol. 2019, 73, 89–99. [Google Scholar] [CrossRef]
- Sun, Y.; Cleutjens, J.; Diaz-Arias, A.; Weber, K. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc. Res. 1994, 28, 1423–1432. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Zhang, J.; Weber, K. Renin Expression at Sites of Repair in the Infarcted Rat Heart. J. Mol. Cell. Cardiol. 2001, 33, 995–1003. [Google Scholar] [CrossRef]
- Passier, R.; Smits, J.; Verluyten, M.; Daemen, M. Expression and localization of renin and angiotensinogen in rat heart after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 1996, 271, H1040–H1048. [Google Scholar] [CrossRef] [PubMed]
- Oyamada, S.; Bianchi, C.; Takai, S.; Robich, M.P.; Clements, R.T.; Chu, L.; Sellke, F.W. Impact of Acute Myocardial Ischemia Reperfusion on the Tissue and Blood-Borne Renin–Angiotensin System. Basic Res. Cardiol. 2010, 105, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Oudit, G.; Crackower, M.; Backx, P.; Penninger, J. The Role of ACE2 in Cardiovascular Physiology. Trends Cardiovasc. Med. 2003, 13, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Burrell, L.; Johnston, C.; Tikellis, C.; Cooper, M. ACE2, a new regulator of the renin–angiotensin system. Trends Endocrinol. Metab. 2004, 15, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Der Sarkissian, S.; Grobe, J.; Yuan, L.; Narielwala, D.; Walter, G.; Katovich, M.; Raizada, M. Cardiac Overexpression of Angiotensin Converting Enzyme 2 Protects the Heart From Ischemia-Induced Pathophysiology. Hypertension 2008, 51, 712–718. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, P.; Garabadu, D.; Goyal, A.; Upadhyay, P. Angiotensin (1–7) facilitates cardioprotection of ischemic preconditioning on ischemia–reperfusion-challenged rat heart. Mol. Cell. Biochem. 2017, 430, 99–113. [Google Scholar] [CrossRef]
- Mendoza-Torres, E.; Riquelme, J.; Vielma, A.; Sagredo, A.; Gabrielli, L.; Bravo-Sagua, R.; Jalil, J.; Rothermel, B.; Sanchez, G.; Ocaranza, M.; et al. Protection of the myocardium against ischemia/reperfusion injury by angiotensin-(1–9) through an AT2R and Akt-dependent mechanism. Pharmacol. Res. 2018, 135, 112–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Valdés, G.; Pérez-Carreño, V.; Bragato, M.C.; Hundahl, M.; Chichiarelli, S.; Saso, L.; Rodrigo, R. Cardioprotective Mechanisms against Reperfusion Injury in Acute Myocardial Infarction: Targeting Angiotensin II Receptors. Biomedicines 2023, 11, 17. https://doi.org/10.3390/biomedicines11010017
Méndez-Valdés G, Pérez-Carreño V, Bragato MC, Hundahl M, Chichiarelli S, Saso L, Rodrigo R. Cardioprotective Mechanisms against Reperfusion Injury in Acute Myocardial Infarction: Targeting Angiotensin II Receptors. Biomedicines. 2023; 11(1):17. https://doi.org/10.3390/biomedicines11010017
Chicago/Turabian StyleMéndez-Valdés, Gabriel, Vicente Pérez-Carreño, Maria Chiara Bragato, Malthe Hundahl, Silvia Chichiarelli, Luciano Saso, and Ramón Rodrigo. 2023. "Cardioprotective Mechanisms against Reperfusion Injury in Acute Myocardial Infarction: Targeting Angiotensin II Receptors" Biomedicines 11, no. 1: 17. https://doi.org/10.3390/biomedicines11010017
APA StyleMéndez-Valdés, G., Pérez-Carreño, V., Bragato, M. C., Hundahl, M., Chichiarelli, S., Saso, L., & Rodrigo, R. (2023). Cardioprotective Mechanisms against Reperfusion Injury in Acute Myocardial Infarction: Targeting Angiotensin II Receptors. Biomedicines, 11(1), 17. https://doi.org/10.3390/biomedicines11010017