Plasma Glycosaminoglycans in Children with Juvenile Idiopathic Arthritis Being Treated with Etanercept as Potential Biomarkers of Joint Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Extraction and Determination of Plasma GAGs
2.3. Assay of the Concentration of MMP-1 and MMP-3
2.4. Assay of the Concentration of TAS
2.5. Statistical Analysis
3. Results
3.1. Plasma Levels of GAGs in Healthy Children and JIA Patients
3.2. Plasma Levels of MMP-1, MMP-3, and TAS in Healthy Children and JIA Patients
3.3. Changes in Plasma Levels of GAGs, MMP-1, MMP-3, and TAS in Patients with JIA during ETA Treatment
3.4. Correlation Analysis between Plasma GAGs and MMP-1, MMP-3, TOS, TAS, TGF-β1, and CRP Levels in JIA Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barut, K.; Adrovic, A.; Şahin, S.; Kasapçopur, Ö. Juvenile idiopathic arthritis. Balk. Med. J. 2017, 34, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Crayne, C.B.; Beukelman, T. Juvenile idiopathic arthritis: Oligoarthritis and polyarthritis. Pediatr. Clin. N. Am. 2018, 65, 657–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, M.; Baron, B. The role of TNF-α in rheumatoid arthritis: A focus on regulatory T cells. J. Clin. Transl. Res. 2016, 2, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Sznurkowska, K.; Bockowska, M.; Zielinski, M.; Plata-Nazar, K.; Trzonkowski, P.; Liberek, A.; Kaminska, B.; Szlagatys-Sidorkiewicz, A. Peripheral regulatory T cells and anti-inflammatory cytokines in children with juvenile idiopathic arthritis. Acta Biochim. Pol. 2018, 65, 119–123. [Google Scholar] [CrossRef]
- Rigante, D.; Bosco, A.; Esposito, S. The etiology of juvenile idiopathic arthritis. Clin. Rev. Allergy Immunol 2015, 49, 253–261. [Google Scholar] [CrossRef]
- Pomin, V.H.; Mulloy, B. Glycosaminoglycans and proteoglycans. Pharmaceuticals 2018, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Uhl, F.E.; Zhang, F.; Pouliot, R.A.; Uriarte, J.J.; Rolandsson Enes, S.; Han, X.; Ouyang, Y.; Xia, K.; Westergren-Thorsson, G.; Malmström, A.; et al. Functional role of glycosaminoglycans in decellularized lung extracellular matrix. Acta Biomater. 2020, 102, 231–246. [Google Scholar] [CrossRef]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef]
- Laronha, H.; Caldeira, J. Structure and function of human matrix metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef]
- Winsz-Szczotka, K.; Komosińska-Vassev, K.; Kuźnik-Trocha, K.; Gruenpeter, A.; Lachór-Motyka, I.; Olczyk, K. Influence of proteolytic-antiproteolytic enzymes and prooxidative-antioxidative factors on proteoglycan alterations in children with juvenile idiopathic arthritis. Clin. Biochem. 2014, 47, 829–834. [Google Scholar] [CrossRef]
- Bolduc, J.A.; Collins, J.A.; Loeser, R.F. Reactive oxygen species, aging and articular cartilage homeostasis. Free. Radic. Biol. Med. 2019, 132, 73–82. [Google Scholar] [CrossRef]
- Yoo, S.-J.; Go, E.; Kim, Y.-E.; Lee, S.; Kwon, J. Roles of reactive oxygen species in rheumatoid arthritis pathogenesis. J. Rheum. Dis. 2016, 23, 340. [Google Scholar] [CrossRef] [Green Version]
- Brescia, A.C.; Simonds, M.M.; McCahan, S.M.; Fawcett, P.T.; Rose, C.D. The role of transforming growth factor β signaling in fibroblast-like synoviocytes from patients with oligoarticular juvenile idiopathic arthritis: Dysregulation of transforming growth factor β signaling, including overexpression of bone morphogenetic pro. Arthritis Rheumatol. 2014, 66, 1352–1362. [Google Scholar] [CrossRef] [Green Version]
- Kuźnik-Trocha, K.; Winsz-Szczotka, K.; Lachór-Motyka, I.; Dąbkowska, K.; Wojdas, M.; Olczyk, K.; Komosińska-Vassev, K. The effects of TNF- α inhibition on the metabolism of cartilage: Relationship between KS, HA, HAPLN1 and ADAMTS4, ADAMTS5, TOS and TGF- β1 plasma concentrations in patients with juvenile idiopathic arthritis. J. Clin. Med. 2022, 11, 2013. [Google Scholar] [CrossRef]
- Petty, R.E.; Southwood, T.R.; Manners, P. International league of associations for rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar]
- Wallace, C.A.; Giannini, E.H.; Huang, B.; Itert, L.; Ruperto, N. American college of rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res. 2011, 63, 929–936. [Google Scholar] [CrossRef]
- Volpi, N.; Cusmano, M.; Venturelli, T. Qualitative and quantitative studies of heparin and chondroitin sulfates in normal human plasma. Biochim. Biophys. Acta 1995, 1243, 49–58. [Google Scholar] [CrossRef]
- Olczyk, K.; Glowacki, A.; Kozma, E.M. Non-insulin-dependent diabetes mellitus-associated changes in serum glycosaminoglycans. Pathophysiol 1997, 4, 121–129. [Google Scholar] [CrossRef]
- Winsz-Szczotka, K.; Komosińska-Vassev, K.; Kuźnik-Trocha, K.; Olczyk, K. Antioxidant activity and structural modifications of serum chondroitin sulfate in Graves’ disease. Clin. Biochem. 2014, 47, 19–24. [Google Scholar] [CrossRef]
- Volpi, N.; Galeotti, F.; Yang, B.; Linhardt, R.J. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone-labeled disaccharides with LC-fluorescence and LC-MS detection. Nat. Protoc. 2014, 9, 541–558. [Google Scholar] [CrossRef]
- Filisetti-Cozzi, T.M.C.C.; Carpita, N.C. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 1991, 197, 157–162. [Google Scholar] [CrossRef]
- Van Den Hoogen, B.M.; Van Weeren, P.R.; Lopes-Cardozo, M.; Van Golde, L.M.G.; Barneveld, A.; Van De Lest, C.H.A. A microtiter plate assay for the determination of uronic acids. Anal. Biochem. 1998, 257, 107–111. [Google Scholar] [CrossRef]
- Winsz-Szczotka, K.; Mencner, Ł.; Olczyk, K. Metabolism of glycosaminoglycans in the course of juvenile idiopathic arthritis. Post. Hig. Med. Dosw. 2016, 70, 135–142. [Google Scholar] [CrossRef]
- Winsz-Szczotka, K.; Kuźnik-Trocha, K.; Komosińska-Vassev, K.; Wisowski, G.; Gruenpeter, A.; Lachór-Motyka, I.; Zegleń, B.; Lemski, W.; Olczyk, K. Plasma and urinary glycosaminoglycans in the course of juvenile idiopathic arthritis. Biochem. Biophys. Res. Commun. 2015, 458, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, N.S.; Panko, N.O.; Rakovska, L.O.; Holovko, T.O. Connective tissue metabolism in patients with juvenile idiopathic arthritis: 10-year follow-up study. Inter. Coll. 2019, 6, 5–11. [Google Scholar]
- Winsz-Szczotka, K.; Komosińska-Vassev, K.; Kuźnik-Trocha, K.; Siwiec, A.; Zegleń, B.; Olczyk, K. Circulating keratan sulfate as a marker of metabolic changes of cartilage proteoglycan in juvenile idiopathic arthritis; Influence of growth factors as well as proteolytic and prooxidative agents on aggrecan alterations. Clin. Chem. Lab. Med. 2015, 53, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akioka, S. Interleukin-6 in juvenile idiopathic arthritis. Mod. Rheumatol 2019, 29, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Mateen, S.; Moin, S.; Khan, A.Q.; Zafar, A.; Fatima, N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 2016, 11, e0152925. [Google Scholar] [CrossRef] [Green Version]
- Rose, B.J.; Kooyman, D.L. A tale of two joints: The role of matrix metalloproteases in cartilage biology. Dis. Markers 2016, 2016, 4895050. [Google Scholar] [CrossRef] [Green Version]
- Struglics, A.; Lohmander, L.S.; Last, K.; Akikusa, J.; Allen, R.; Fosang, A.J. Aggrecanase cleavage in juvenile idiopathic arthritis patients is minimally detected in the aggrecan interglobular domain but robust at the aggrecan C-terminus. Arthritis Rheum. 2012, 64, 4151–4161. [Google Scholar] [CrossRef]
- Jura-Półtorak, A.; Komosińska-Vassev, K.; Kotulska, A.; Kucharz, E.J.; Klimek, K.; Kopec-Medrek, M.; Olczyk, K. Alterations of plasma glycosaminoglycan profile in patients with rheumatoid arthritis in relation to disease activity. Clin. Chim. Acta 2014, 433, 20–27. [Google Scholar] [CrossRef]
- Vynios, D.H. Metabolism of cartilage proteoglycans in health and disease. BioMed. Res. Int. 2014, 2014, 452315. [Google Scholar] [CrossRef] [Green Version]
- Umlauf, D.; Frank, S.; Pap, T.; Bertrand, J. Cartilage biology, pathology, and repair. Cell Mol. Life Sci. 2010, 67, 4197–4211. [Google Scholar] [CrossRef]
- Iwamoto, M.; Ohta, Y.; Larmour, C.; Enomoto-Iwamoto, M. Toward regeneration of articular cartilage. Birth Defects Res. Part C -Embryo Today Rev. 2013, 99, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Ostrowska, M.; Maśliński, W.; Prochorec-Sobieszek, M.; Nieciecki, M.; Sudoł-Szopińska, I. Cartilage and bone damage in rheumatoid arthritis. Reumatologia 2018, 56, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Pap, T.; Korb-Pap, A. Cartilage damage in osteoarthritis and rheumatoid arthritis—Two unequal siblings. Nat. Rev. Rheumatol. 2015, 11, 606–615. [Google Scholar] [CrossRef]
- Raeeszadeh-Sarmazdeh, M.; Do, L.D.; Hritz, B.G. Metalloproteinases and their inhibitors: Potential for the development of new therapeutics. Cells 2020, 9, 1313. [Google Scholar] [CrossRef]
- Phull, A.R.; Nasir, B.; ul Haq, I.; Kim, S.J. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem. Biol. Interact. 2018, 281, 121–136. [Google Scholar] [CrossRef]
- Peake, N.J.; Khawaja, K.; Myers, A.; Jones, D.; Cawston, T.E.; Rowan, A.D.; Foster, H.E. Levels of matrix metalloproteinase (MMP)-1 in paired sera and synovial fluids of juvenile idiopathic arthritis patients: Relationship to inflammatory activity, MMP-3 and tissue inhibitor of metalloproteinases-1 in a longitudinal study. Rheumatology 2005, 44, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, V.; Myles, A.; Dayal, R.; Aggarwal, A. Levels of serum matrix metalloproteinase-3 correlate with disease activity in the enthesitis-related arthritis category of juvenile idiopathic arthritis. J. Rheumatol. 2011, 38, 2482–2487. [Google Scholar] [CrossRef]
- Lipińska, J.; Lipińska, S.; Stańczyk, J.; Sarniak, A.; Przymińska vel Prymont, A.; Kasielski, M.; Smolewska, E. Reactive oxygen species and serum antioxidant defense in juvenile idiopathic arthritis. Clin. Rheumatol. 2015, 34, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Rani, A.; Baruah, R.; Goyal, A. Physicochemical, antioxidant and biocompatible properties of chondroitin sulphate isolated from chicken keel bone for potential biomedical applications. Carbohydr. Polym. 2017, 159, 11–19. [Google Scholar] [CrossRef]
- Albertini, R.; Passi, A.; Abuja, P.M.; De Luca, G. The effect of glycosaminoglycans and proteoglycans on lipid peroxidation. Int. J. Mol. Med. 2000, 6, 129–136. [Google Scholar] [CrossRef]
- Egea, J.; García, A.G.; Verges, J.; Montell, E.; López, M.G. Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans. Osteoarthr. Cartil. 2010, 18, s24–s27. [Google Scholar] [CrossRef] [Green Version]
- Campo, G.M.; Avenoso, A.; Campo, S.; Nastasi, G.; Traina, P.; D’Ascola, A.; Rugolo, C.A.; Calatroni, A. The antioxidant activity of chondroitin-4-sulphate, in carbon tetrachloride-induced acute hepatitis in mice, involves NF-κB and caspase activation. Br. J. Pharm. 2008, 155, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Campo, G.M.; Avenoso, A.; Campo, S.; D’Ascola, A.; Traina, P.; Samà, D.; Calatroni, A. NF-kB and caspases are involved in the hyaluronan and chondroitin-4- sulphate-exerted antioxidant effect in fibroblast cultures exposed to oxidative stress. J. Appl. Toxicol. 2008, 28, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Fu, N.; Cai, L.Y.; Gong, T.; Li, G.; Peng, Q.; Cai, X.X. The effects of interleukin-1β in modulating osteoclast-conditioned medium’s influence on gelatinases in chondrocytes through mitogen-activated protein kinases. Int. J. Oral. Sci. 2015, 7, 220–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alge-Priglinger, C.S.; Kreutzer, T.; Obholzer, K.; Wolf, A.; Mempel, M.; Kernt, M.; Kampik, A.; Priglinger, S.G. Oxidative stress-mediated induction of MMP-1 and MMP-3 in human RPE cells. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5495–5503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, L.; Eck, S.; Mollmark, J.; Hays, E.; Tomek, I.; Kantor, S.; Elliott, S.; Vincenti, M. Interleukin-1 beta induction of matrix metalloproteinase-1 transcription in chondrocytes requires ERK-dependent activation of CCAAT enhancer-binding protein-beta. J. Cell Physiol. 2006, 207, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Squires, G.R.; Mousa, A.; Tanzer, M.; Zukor, D.J.; Antoniou, J.; Feige, U.; Poole, A.R. Role of interleukin-1 and tumor necrosis factor α in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 2005, 52, 128–135. [Google Scholar] [CrossRef]
- Endo, K.; Fujita, N.; Nakagawa, T.; Nishimura, R. Comparison of the effect of growth factors on chondrogenesis of canine mesenchymal stem cells. J. Vet. Med. Sci. 2019, 81, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Legendre, F.; Dudhia, J.; Pujol, J.P.; Bogdanowicz, P. JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of Sox9 expression. J. Biol. Chem. 2003, 278, 2903–2912. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Che, M.; Xin, J.; Zheng, Z.; Li, J.; Zhang, S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed. Pharm. 2020, 131, 110660. [Google Scholar] [CrossRef]
- Mehta, A.K.; Gracias, D.T.; Croft, M. TNF activity and T cells. Cytokine 2018, 101, 14–18. [Google Scholar] [CrossRef]
Parameter | Control Subjects (n = 30) | JIA Patients (n = 38) | |||||
---|---|---|---|---|---|---|---|
Before ETA Treatment T0 | Time after Starting ETA Therapy | ||||||
3 Months T3 | 6 Months T6 | 12 Months T12 | 18 Months T18 | 24 Months T24 | |||
Age (years) | 8.01 ± 2.59 | 6.82 ± 2.04 | 7.04 ± 2.08 | 7.31 ± 2.07 | 7.82 ± 2.03 | 8.37 ± 2.71 | 8.84 ± 2.07 |
Sex (F/M) | 21/9 | 25/10 | 25/10 | 25/10 | 25/10 | 25/10 | 25/10 |
JADAS-27 | - | 41.50 (36.50–49.50) | 17.50 (15.50–21.50) | 9.50 (8.00–13.50) | 2.50 (1.00–4.00) | 1.00 (1.00–1.50) | 0.50 (0.00–1.00) b |
Treatment Drugs | - | MTX, EC, SSA | ETA, MTX, EC, SSA | ETA, MTX | ETA, MTX | ETA, MTX | ETA, MTX |
WBC (103/μL) | 5.23 ± 2.15 | 9.88 ± 3.70 a | 7.07 ± 2.63 | 6.96 ± 2.85 | 6.75 ± 1.52 | 6.52 ± 1.62 | 6.28 ± 2.16 b |
RBC (106/μL) | 4.85 ± 0.33 | 3.87 ± 0.58 a | 4.51 ± 0.72 | 4.50 ± 0.82 | 4.48 ± 0.32 | 4.60 ± 0.39 | 4.86 ± 0.64 |
Hb (g/dL) | 13.84 ± 1.81 | 11.35 ± 2.52 a | 11.99 ± 1.95 | 12.61 ± 4.40 | 13.50 ± 1.81 | 13.01 ± 1.46 | 13.80 ± 1.25 b |
PLT (103/μL) | 293.20 ± 71.56 | 348.95 ± 55.04 | 362.41 ± 53.88 | 318.95 ± 77.10 | 327.74 ± 84.96 | 312.05 ± 78.96 | 336.15 ± 50.50 |
GPT (U/L) | 19.65 ± 7.98 | 23.96 ± 11.02 | 22.25 ± 7.41 | 17.56 ± 11.00 | 21.08 ± 8.30 | 24.45 ± 7.61 | 26.00 ± 10.08 a |
GOT (U/L) | 25.68 ± 9.02 | 26.99 ± 10.98 | 26.70 ± 7.82 | 22.28 ± 7.41 | 22.19 ± 10.47 | 23.22 ± 10.87 | 25.92 ± 12.20 |
Cr (mg/dL) | 0.69 ± 0.42 | 0.68 ± 0.55 | 0.70 ± 0.72 | 0.65 ± 0.23 | 0.70 ± 0.25 | 0.83 ± 0.25 | 0.96 ± 0.50 b |
ESR (mm/h) | 6.99 ± 2.21 | 42.85 ± 13.27 a | 29.41 ± 13.05 | 12.04 ± 7.84 | 8.95 ± 2.49 | 9.65 ± 6.60 | 8.87 ± 1.23 b |
CRP (mg/L) | 0.67 (0.36–1.00) | 23.83 (18.5–33.79) | 13.98 (11.69–16.12) | 0.79 (0.38–5.16) | 0.74 (0.32–2.60) | 0.45 (0.20–1.20) | 0.43 (0.23–1.61) b |
TOS (mmol/L) | 438.82 ± 140.96 | 1266.65 ± 526.77 a | 717.11 ± 356.63 b | 724.68 ± 300.56 b | 595.05 ± 301.87 b | 519.11 ± 277.00 b | 377.69 ± 160.66 b,c,d |
TGF-β1 (ng/mL) | 6.94 ± 0.90 | 11.01 ± 2.28 a | 5.68 ± 2.10 b | 3.99 ± 1.41 b,c | 4.12 ± 1.26 b,c | 4.42 ± 1.54 b,c | 5.03 ± 1.37 a,b |
Parameter | Control Subjects (n = 30) | JIA Patients (n = 38) | |||||
---|---|---|---|---|---|---|---|
Before ETA Treatment T0 | Time after Starting ETA Therapy | ||||||
3 Months T3 | 6 Months T6 | 12 Months T12 | 18 Months T18 | 24 Months T24 | |||
GAGs (µg hexuronic acids/mL) | 23.93 ± 2.40 | 19.37 ± 5.14 a | 23.24 ± 6.47 | 25.12 ± 8.84 b | 20.99 ± 5.60 | 16.67 ± 5.47 | 15.71 ± 5.83 a |
MMP-1 (ng/mL) | 0.35 ± 0.10 | 0.50 ± 0.24 a | 0.75 ± 0.32 b | 0.86 ± 0.35 b | 0.74 ± 0.31 b | 0.65 ± 0.29 | 0.53 ± 0.23 a |
MMP-3 (ng/mL) | 12.95 ± 3.39 | 20.50 ± 7.62 a | 24.42 ± 8.45 | 27.20 ± 11.79 b | 17.62 ± 7.40 | 16.86 ± 5.28 | 16.40 ± 5.70 a |
TAS (µmol/L) | 726.25 ± 179.04 | 405.00 ± 121.26 a | 481.66 ± 149.67 | 605.19 ± 175.84 b | 604.67 ± 215.65 b | 591.19 ± 258.06 b | 842.04 ± 149.76 a,b |
Parameter | JIA Patients (n = 38) | |||||
---|---|---|---|---|---|---|
Before ETA Treatment T0 | Time after Starting ETA Therapy | |||||
3 Months T3 | 6 Months T6 | 12 Months T12 | 18 Months T18 | 24 Months T24 | ||
MMP-1 r(p) | 0.768 (p = 0.000) | 0.678 (p = 0.000) | 0.738 (p = 0.000) | 0.779 (p = 0.000) | 0.692 (p = 0.000) | 0.693 (p = 0.000) |
MMP-3 r(p) | 0.386 (p = 0.017) | 0.614 (p = 0.000) | 0.664 (p = 0.000) | 0.701 (p = 0.000) | 0.720 (p = 0.000) | 0.811 (p = 0.000) |
TAS r(p) | −0.865 (p = 0.000) | 0.718 (p = 0.000) | −0.917 (p = 0.000) | −0.214 (NS) | −0.163 (NS) | −0.248 (NS) |
TOS r(p) | −0.118 (NS) | 0.753 (p = 0.000) | −0.080 (NS) | −0.791 (p = 0.000) | −0.175 (NS) | 0.541 (p = 0.000) |
TGF-β1 r(p) | 0.222 (NS) | −0.031 (NS) | −0.065 (NS) | −0.024 (NS) | −0.180 (NS) | −0.233 (NS) |
CRP r(p) | −0.769 (p = 0.000) | −0.257 (NS) | 0.114 (NS) | 0.439 (p = 0.006) | 0.012 (NS) | −0.073 (NS) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojdas, M.; Dąbkowska, K.; Kuźnik-Trocha, K.; Wisowski, G.; Lachór-Motyka, I.; Komosińska-Vassev, K.; Olczyk, K.; Winsz-Szczotka, K. Plasma Glycosaminoglycans in Children with Juvenile Idiopathic Arthritis Being Treated with Etanercept as Potential Biomarkers of Joint Dysfunction. Biomedicines 2022, 10, 1845. https://doi.org/10.3390/biomedicines10081845
Wojdas M, Dąbkowska K, Kuźnik-Trocha K, Wisowski G, Lachór-Motyka I, Komosińska-Vassev K, Olczyk K, Winsz-Szczotka K. Plasma Glycosaminoglycans in Children with Juvenile Idiopathic Arthritis Being Treated with Etanercept as Potential Biomarkers of Joint Dysfunction. Biomedicines. 2022; 10(8):1845. https://doi.org/10.3390/biomedicines10081845
Chicago/Turabian StyleWojdas, Magdalena, Klaudia Dąbkowska, Kornelia Kuźnik-Trocha, Grzegorz Wisowski, Iwona Lachór-Motyka, Katarzyna Komosińska-Vassev, Krystyna Olczyk, and Katarzyna Winsz-Szczotka. 2022. "Plasma Glycosaminoglycans in Children with Juvenile Idiopathic Arthritis Being Treated with Etanercept as Potential Biomarkers of Joint Dysfunction" Biomedicines 10, no. 8: 1845. https://doi.org/10.3390/biomedicines10081845
APA StyleWojdas, M., Dąbkowska, K., Kuźnik-Trocha, K., Wisowski, G., Lachór-Motyka, I., Komosińska-Vassev, K., Olczyk, K., & Winsz-Szczotka, K. (2022). Plasma Glycosaminoglycans in Children with Juvenile Idiopathic Arthritis Being Treated with Etanercept as Potential Biomarkers of Joint Dysfunction. Biomedicines, 10(8), 1845. https://doi.org/10.3390/biomedicines10081845