A Portable Nanoporous Gold Modified Screen-Printed Sensor for Reliable and Simultaneous Multi-Vitamins Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Construction and Characterization of NPAu/SPE
2.3. Electrochemical Experiments Using NPAu/SCE
2.4. HPLC Analysis in Human Serum and Fermentation Liquid
3. Results and Discussion
3.1. Fabrication and Characterization of the Portable NPAu/SPE
3.2. Amperometric Quantification of Multi-Vitamins Using the Portable NPAu/SPE
3.2.1. The Individual Detection of Multi-Vitamins by the Portable NPAu/SPE
3.2.2. The Simultaneous Detection of Multi-Vitamins by the Portable NPAu/SPE
3.2.3. Anti-Interference and Repeatability of the Portable NPAu/SPE
3.3. The Application of the Portable NPAu/SPE in Real Sample Detection
3.3.1. The Detection of Multi-Vitamins in Human Serum
3.3.2. The Detection of Multi-Vitamins in Fermentation Liquid
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaishnavi Sharma, V.; Jayaprakash, G.K. Fabrications of electrochemical sensors based on carbon paste electrode for vitamin detection in real samples. J. Electrochem. Sci. Eng. 2022, 12, 421–430. [Google Scholar]
- Mikkelsen, K.; Stojanovska, L.; Apostolopoulos, V. The effects of vitamin B in depression. Curr. Med. Chem. 2016, 23, 4317–4337. [Google Scholar] [CrossRef] [PubMed]
- Martins, E.C.; Santana, E.R.; Spinelli, A. Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks. Talanta 2023, 252, 123836. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Li, H.; Shang, M.; Sun, D.; Liu, C.; Che, G. Recent analytical methodologies and analytical trends for riboflavin (vitamin B2) analysis in food, biological and pharmaceutical samples. Trends Analyt. Chem. 2021, 143, 116412. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, G.; Yu, K.; Chai, H.; Tian, M.; Qu, L.; Dong, H.; Zhang, X. Smartphone light-driven zinc porphyrinic MOF nanosheets-based enzyme-free wearable photoelectrochemical sensor for continuous sweat vitamin C detection. Chem. Eng. J. 2023, 455, 140779. [Google Scholar] [CrossRef]
- Huang, L.; Tian, S.; Zhao, W.; Liu, K.; Guo, J. Electrochemical vitamin sensors: A critical review. Talanta 2021, 222, 121645. [Google Scholar] [CrossRef]
- Pappenberger, G.; Hohmann, H.P. Industrial production of L-ascorbic acid (vitamin C) and D-isoascorbic acid. Adv. Biochem. Eng. Biotechnol. 2013, 143, 143–188. [Google Scholar]
- Nie, T.; Xu, J.; Lu, L.; Zhang, K.; Bai, L.; Wen, Y. Electroactive species-doped poly(3,4-ethylenedioxythiophene) films: Enhanced sensitivity for electrochemical simultaneous determination of vitamins B2, B6 and C. Biosens. Bioelectron. 2013, 50, 244–250. [Google Scholar] [CrossRef]
- Çimen, D.; Denizli, A. Development of rapid, sensitive, and effective plasmonic nanosensor for the detection of vitamins in infact formula and milk samples. Photonic Sens. 2020, 10, 316–332. [Google Scholar] [CrossRef]
- Woollard, D.C.; Bensch, A.; Indyk, H.; Mcmahon, A. Determination of vitamin A and vitamin E esters in infant formulae and fortified milk powders by HPLC: Use of internal standardisation. Food Chem. 2016, 197, 457–465. [Google Scholar] [CrossRef]
- Dziomba, S.; Kowalski, P.; Baczek, T. Field-amplified sample stacking–sweeping of vitamins B determination in capillary electrophoresis. J. Chromatogr. A 2012, 1267, 224–330. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wang, Y.; Lu, C.; Yang, X. Ovalbumin-directed synthesis of fluorescent copper nanoclusters for sensing both vitamin B1 and doxycycline. J. Lumin. 2018, 196, 181–186. [Google Scholar] [CrossRef]
- Carlucci, L.; Favero, G.; Tortolini, C.; Di Fusco, M.; Romagnoli, E.; Minisola, S.; Mazzei, F. Several approaches for vitamin D determination by surface plasmon resonance and electrochemical affinity biosensors. Biosens. Bioelectron. 2013, 40, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Lu, L. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection. Biosens. Bioelectron. 2018, 110, 180–192. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Sadowska, M.; Krasnodebska-Ostrega, B.; Nowicka, A.M. Selective and sensitive electrochemical device for direct VB2 determination in real products. Talanta 2017, 163, 72–77. [Google Scholar] [CrossRef]
- Khan, M.Q.; Khan, R.A.; Alsalme, A.; Ahmad, K.; Kim, H. Design and fabrication of α-MnO2-nanorods-modified glassy-carbon-electrode-based serotonin sensor. Biosensor 2022, 12, 849. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Xiong, H. Sensitive and selective determination of riboflavin in milk and soymilk powder by multi-walled carbon nanotubes and ionic liquid [BMPi]PF6 modified electrode. Food Anal. Methods 2016, 10, 399–406. [Google Scholar] [CrossRef]
- Montes, C.; Soriano, M.L.; Villaseñor, M.J.; Ríos, A. Carbon-based nanodots as effective electrochemical sensing tools toward the simultaneous detection of bioactive compounds in complex matrice. J. Electroanal. Chem. 2020, 878, 114573. [Google Scholar] [CrossRef]
- Ding, Y.; Kim, Y.; Erlebacher, J. Nanoporous gold leaf: “ancient tecnology”/advanced material. Adv. Mater. 2004, 16, 1897–1900. [Google Scholar] [CrossRef]
- Chen, S.; Shang, K.; Gao, X.; Wang, X. The development of NAD+-dependent dehydrogenase screen-printed biosensor based on enzyme and nanoporous gold co-catalytic strategy. Biosens. Bioelectron. 2022, 211, 114376. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, M. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009, 34, 569–576. [Google Scholar] [CrossRef]
- Wang, K.; Ding, Y. Carbon-free nanoporous gold based membrane electrocatalysts for fuel cells. Prog. Nat. Sci.-Mater. 2020, 30, 775–786. [Google Scholar] [CrossRef]
- Yan, X.; Meng, F.; Cui, S.; Liu, J.; Gu, J.; Zou, Z. Effective and rapid electrochemical detection of hydrazine by nanoporous gold. J. Electroanal. Chem. 2011, 661, 44–48. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Wang, S.; Xiao, S.; Ma, H.; Wang, X. Multianalyte electrochemical electrode for the determination of vitamins B2 and B6 in complex biosystem. Microchem. J. 2020, 158, 105233. [Google Scholar] [CrossRef]
- Shanmugam, R.; Koventhan, C.; Chen, S.; Hung, W. A portable Ru-decorated cobalt phosphide on graphitic carbon nitride sensor: An effective electrochemical evaluation method for vitamin B2 in the environment and biological samples. Chem. Eng. J. 2022, 446, 136909. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Y.M.; Sun, D.M. Simultaneous determination of vitamins B2, B6 and C using silver-doped poly(L-arginine)-modified glassy carbon electrode. J. Anal. Chem. 2016, 71, 102–109. [Google Scholar] [CrossRef]
- Sonkar, P.K.; Ganesan, V.; Gupta, S.K.S.; Yadav, D.K.; Gupta, R.; Yadav, M. Highly dispersed multiwalled carbon nanotubes coupled manganese salen nanostructure for simultaneous electrochemical sensing of vitamin B2 and B6. J. Electroanal. Chem. 2017, 807, 235–243. [Google Scholar] [CrossRef]
- Beitollahi, H.; Nejad, F.G. Voltammetric determination of vitamin B6 (pyridoxine) at a graphite screen-printed electrode modified with graphene oxide/Fe3O4@SiO2 nanocomposite. Russ. Chem. Bull. 2018, 6, 238–242. [Google Scholar] [CrossRef]
- Gribata, L.C.; Babautab, J.T.; Beyenalb, H.; Walla, N.A. New rotating disk hematite film electrode for riboflavin detection. J. Electroanal. Chem. 2017, 798, 42–50. [Google Scholar] [CrossRef]
- Kapoor, A.; Pratibha, V.; Rajput, J.K.; Singh, D.; Jigyasa, K.N. Bi2O3@MWCNT@g-C3N4 ternary nanocomposite for the efficient electrochemical determination of Riboflavin in pharmaceutical samples. J. Food Compos. Anal. 2022, 114, 104792. [Google Scholar] [CrossRef]
- Sangeetha, N.S.; Narayanan, S.S. Effective electrochemical detection of riboflavin and butylated hydroxy anisole based on azure A and nickel hexacyanoferrate framework on graphite electrode. Chem. Data Collect. 2020, 30, 100544. [Google Scholar] [CrossRef]
- Ganesamurthi, J.; Shanmugam, R.; Chen, S.M. Electrochemical evaluation of vitamin B2 through a portable electrochemical sensor based on binary transition metal oxide in various biological and vegetable samples. J. Electrochem. Soc. 2022, 169, 096505. [Google Scholar] [CrossRef]
- Pereira, D.F.; Santana, E.R.; Spinelli, A. Electrochemical paper-based analytical devices containing magnetite nanoparticles for the determination of vitamins B2 and B6. Microchem. J. 2022, 179, 107588. [Google Scholar] [CrossRef]
- Razmi, H.; Bahadori, Y. Chicken feet yellow membrane/over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C. Microchem. J. 2021, 168, 106442. [Google Scholar] [CrossRef]
- Anil Subash, S.; Manjunatha, C.; Sudeep, M.; Chandresh, K.R.; Vishal, C.; Girish, K.S.; Praveen, S. Development of a non-enzymatic vitamin-C electrochemical sensor based on rGO/Ce2(SO4)3 hierarchical nanocomposite. J. Electrochem. Soc. 2023, 170, 037504. [Google Scholar]
- Wang, Y.; Zhao, P.; Gao, B.; Yuan, M.; Yu, J.; Wang, Z.; Chen, X. Self-reduction of bimetallic nanoparticles on flexible MXene-graphene electrodes for simultaneous detection of ascorbic acid, dopamine, and uric acid. Microchem. J. 2023, 185, 108177. [Google Scholar] [CrossRef]
- Chu, Y.; Zhou, H.; Wang, X.; Zhang, H.; Zhao, L.; Xu, T.; Yan, H.; Zhao, F. A flexible and self-supported nanoporous gold wire electrode with a seamless structure for electrochemical ascorbic acid sensor. Microchem. J. 2023, 186, 108259. [Google Scholar] [CrossRef]
- Abo-bakr, A.M.; Abd-Elsabour, M.; Abou-Krisha, M.M. An efficient novel electrochemical sensor for simultaneous determination of vitamin C and aspirin based on a PMR/Zn-Al LDH/GCE. Electroanalysis 2021, 33, 2476–2489. [Google Scholar] [CrossRef]
- Jahani, P.M.; Jafari, M.; Ahmadi, S.A. Voltammetric determination of vitamin B6 in the presence of vitamin C based on zinc ferrite nano-particles modified screen printed graphite electrode. ADMET DMPK 2023, 11, 251–261. [Google Scholar]
- Buleandră, M.; Popa, D.E.; Popa, A.; Codreanu, N.A.M.; Davidz, I.G. Multi-analyte sensor based on pencil graphite electrode for riboflavin and pyridoxine determination. J. Electrochem. Soc. 2022, 169, 017517. [Google Scholar] [CrossRef]
- Manoj, D.; Rajendran, S.; Qin, J.; Sundaravadivel, E.; Yola, M.L.; Necip Atar, N.; Gracia, F.; Boukherroub, R.; Gracia-Pinilla, M.A.; Gupta, V.K. Heterostructures of mesoporous TiO2 and SnO2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets. J. Colloid Interf. Sci. 2019, 542, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, M.; Li, H.; Wang, G.; Long, Y.; Li, A.; Yang, B. In situ detection of melatonin and pyridoxine in plants using a CuO−poly(L-lysine)/graphene-based electrochemical sensor. ACS Sustain. Chem. Eng. 2019, 7, 19537–19545. [Google Scholar] [CrossRef]
- Yomthiangthae, P.; Takeshi Kondo, T.; Chailapakul, O.; Siangproh, W. The effects of the supporting electrolyte on the simultaneous determination of vitamin B2, vitamin B6, and vitamin C using a modification-free screen-printed carbon electrode. New J. Chem. 2020, 44, 12603–12612. [Google Scholar] [CrossRef]
- Manoj, D.; Rajendran, S.; Gracia, F.; Naushad, M.; Santhamoorthy, M.; Soto-Moscoso, M.; Gracia-Pinilla, M.A. Engineering ZnO nanocrystals anchored on mesoporous TiO2 for simultaneous detection of vitamins. Biochem. Eng. J. 2022, 186, 108585. [Google Scholar] [CrossRef]
- Puangjan, A.; Suwan Chaiyasith, S.; Taweeporngitgul, W.; Keawtep, J. Application of functionalized multi-walled carbon nanotubes supporting cuprous oxide and silver oxide composite catalyst on copper substrate for simultaneous detection of vitamin B2, vitamin B6 and ascorbic acid. Mater. Sci. Eng. C 2017, 76, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Nie, T.; Zhang, K.; Xu, J.; Lu, L.; Bai, L. A facile one-pot strategy for the electrochemical synthesis of poly(3,4-ethylenedioxythiophene)/Zirconia nanocomposite as an effective sensing platform for vitamins B2, B6 and C. J. Electroanal. Chem. 2014, 717–718, 1–9. [Google Scholar] [CrossRef]
Sample/Detection Mode | Vitamin | Linear Dynamic Range (μM) | LOD (μM) | Sensitivity (μA/μM) |
---|---|---|---|---|
Individual detection | VB2 | 5–250 | 0.26 | 114.90 |
VC | 5–3000 | 2.03 | 15.00 | |
VB6 | 5–3000 | 1.50 | 20.32 | |
Simultaneous detection | VB2 | 5–250 | 0.46 | 68.58 |
VC | 100–1500 | 6.44 | 4.77 | |
VB6 | 50–1100 | 1.92 | 15.94 | |
Human serum | VB2 | 30–130 | 0.17 | 98.86 |
VC | 50–1300 | 9.43 | 2.47 | |
VB6 | 30–500 | 2.48 | 18.50 | |
Fermentation liquid | VB2 | 50–120 | 0.30 | 174.6 |
VC | 100–1500 | 11.97 | 3.31 | |
VB6 | 100–1500 | 1.58 | 12.21 |
Real Samples | Sample Number | Sample Concentration | Detection by NPAu/SPE | Detection by HPLC | |||
---|---|---|---|---|---|---|---|
Target Vitamins | Spiked Concentration (μM) | Concentration (μM) | Recovery Rate (%) | Concentration (μM) | Recovery Rate (%) | ||
Human serum samples | 1 | VB2 | 60 | 67 ± 3.8 | 111.7 | 50 ± 2.8 | 83.3 |
VC | 1200 | 1180 ± 1.8 | 98.3 | 1334 ± 11.2 | 111.2 | ||
VB6 | 200 | 209 ± 7.2 | 104.5 | 195 ± 0.4 | 97.5 | ||
2 | VB2 | 80 | 74 ± 2.2 | 92.5 | 73 ± 0.8 | 91.3 | |
VC | 1300 | 1223 ± 26.8 | 94.1 | 1308 ± 30.1 | 100.6 | ||
VB6 | 300 | 306 ± 26.7 | 102 | 294 ± 7.9 | 98 | ||
3 | VB2 | 100 | 104 ± 19.1 | 104 | 106 ± 7.7 | 106 | |
VC | 1400 | 1331 ± 43.9 | 95.1 | 1421 ± 16.3 | 101.5 | ||
VB6 | 400 | 425 ± 6.9 | 106.3 | 402 ± 0.2 | 100.5 | ||
Fermentation liquid samples | 1 | VB2 | 70 | 77 ± 3.8 | 110 | 71 ± 1.5 | 101.4 |
VC | 500 | 509 ± 42.3 | 101.8 | 478 ± 21.2 | 95.6 | ||
VB6 | 500 | 449 ± 12.7 | 89.8 | 533 ± 0.5 | 106.6 | ||
2 | VB2 | 110 | 112 ± 0.9 | 101.8 | 108 ± 1.4 | 98.2 | |
VC | 1300 | 1327 ± 1.5 | 102.1 | 1257 ± 104 | 96.7 | ||
VB6 | 1300 | 1303 ± 9.2 | 100.2 | 1313 ± 3.1 | 101 | ||
3 | VB2 | 130 | 130 ± 1.4 | 100 | 132 ± 1.0 | 101.5 | |
VC | 1700 | 1578 ± 0.2 | 92.8 | 1739 ± 5.5 | 102.3 | ||
VB6 | 1700 | 1679 ± 31.6 | 98.8 | 1651 ± 0.3 | 97.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Chen, S.; Wang, X.; Liu, H.; Wang, X. A Portable Nanoporous Gold Modified Screen-Printed Sensor for Reliable and Simultaneous Multi-Vitamins Analysis. Chemosensors 2023, 11, 502. https://doi.org/10.3390/chemosensors11090502
Gao X, Chen S, Wang X, Liu H, Wang X. A Portable Nanoporous Gold Modified Screen-Printed Sensor for Reliable and Simultaneous Multi-Vitamins Analysis. Chemosensors. 2023; 11(9):502. https://doi.org/10.3390/chemosensors11090502
Chicago/Turabian StyleGao, Xinyu, Siyu Chen, Xiaolei Wang, Honglei Liu, and Xia Wang. 2023. "A Portable Nanoporous Gold Modified Screen-Printed Sensor for Reliable and Simultaneous Multi-Vitamins Analysis" Chemosensors 11, no. 9: 502. https://doi.org/10.3390/chemosensors11090502
APA StyleGao, X., Chen, S., Wang, X., Liu, H., & Wang, X. (2023). A Portable Nanoporous Gold Modified Screen-Printed Sensor for Reliable and Simultaneous Multi-Vitamins Analysis. Chemosensors, 11(9), 502. https://doi.org/10.3390/chemosensors11090502