Characteristics of Morphology in Older Adult Patients with Obstructive Sleep Apnea: A Retrospective Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Subjects
2.3. Polysomnography
2.4. Method and Measurement Conditions
2.5. Cephalometric X-Ray
2.6. Statistical Analysis
3. Result
3.1. Polysomnographic and Cephalometric Characteristics by Age Group
3.2. Multiple Regression Analyses
4. Discussion
4.1. Morphological Factors
4.2. Functional Mechanisms
4.3. PSG Findings
4.4. Clinical Implications
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OSA | Obstructive Sleep Apnea |
AHI | Apnea–Hypopnea Index |
BMI | Body Mass Index |
AS | Airway Space |
PNS-P | Length of the Soft Palate |
SNB | Sella-Nasion-B Point Angle (Mandibular Position) |
MP-H | Hyoid Bone Position (Mento-Hyoid Distance) |
References
- Gauda, E.B. Introduction: Sleep-disordered breathing across the life span: Exploring a human disorder using animal models. ILAR J. 2009, 50, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Maniaci, A.; Lavalle, S.; Parisi, F.M.; Barbanti, M.; Cocuzza, S.; Iannella, G.; Magliulo, G.; Pace, A.; Lentini, M.; Masiello, E.; et al. Impact of Obstructive Sleep Apnea and Sympathetic Nervous System on Cardiac Health: A Comprehensive Review. J. Cardiovasc. Dev. Dis. 2024, 11, 204. [Google Scholar] [CrossRef]
- Tufik, S.; Santos-Silva, R.; Taddei, J.A.; Bittencourt, L.R.A. Obstructive Sleep Apnea Syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep Med. 2010, 11, 441–446. [Google Scholar] [CrossRef]
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef]
- Thompson, C.; Legault, J.; Moullec, G.; Baltzan, M.; Cross, N.; Dang-Vu, T.T.; Martineau-Dussault, M.È.; Hanly, P.; Ayas, N.; Lorrain, D.; et al. A portrait of obstructive sleep apnea risk factors in 27,210 middle-aged and older adults in the Canadian Longitudinal Study on Aging. Sci. Rep. 2022, 12, 5127. [Google Scholar] [CrossRef]
- Okubo, M.; Suzuki, M.; Horiuchi, A.; Okabe, S.; Ikeda, K.; Higano, S.; Mitani, H.; Hida, W.; Kobayashi, T.; Sugawara, J. Morphologic analyses of mandible and upper airway soft tissue by MRI of patients with obstructive sleep apnea hypopnea syndrome. Sleep 2006, 29, 909–915. [Google Scholar] [CrossRef]
- Kikuchi, M.; Higurashi, N.; Miyazaki, S.; Itasaka, Y. Facial patterns of obstructive sleep apnea patients using Ricketts’ method. Psychiatry Clin. Neurosci. 2000, 54, 336–337. [Google Scholar] [CrossRef]
- Battagel, J.M.; L’Estrange, P.R. The cephalometric morphology of patients with obstructive sleep apnoea (OSA). Eur. J. Orthod. 1996, 18, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, B.C.; Kharbanda, O.P.; Sardana, H.K.; Balachandran, R.; Sardana, V.; Kapoor, P.; Gupta, A.; Vasamsetti, S. Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: A systematic review and meta-analysis of cephalometric studies. Sleep Med. Rev. 2017, 31, 79–90. [Google Scholar] [CrossRef]
- Osman, A.M.; Carter, S.G.; Carberry, J.C.; Eckert, D.J. Obstructive sleep apnea: Current perspectives. Nat. Sci. Sleep 2018, 10, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Li, Y.R.; Xu, W.; An, Y.S.; Wang, H.J.; Xian, J.F.; Han, D.M. Upper airway morphological changes in obstructive sleep apnoea: Effect of age on pharyngeal anatomy. J. Laryngol. Otol. 2020, 134, 354–361. [Google Scholar] [CrossRef]
- Özer, T.; Selçuk, A.; Yılmaz, Z.; Voyvoda, N.; Çam, İ.; Özel, H.E.; Özdoğan, F.; Esen, E.; Genç, G.; Genç, S. The role of upper airway morphology in apnea versus hypopnea predominant obstructive sleep apnea patients: An exploratory study. Br. J. Radiol. 2018, 91, 20170322. [Google Scholar] [CrossRef]
- Peppard, P.E.; Young, T.; Barnet, J.H.; Palta, M.; Hagen, E.W.; Hla, K.M. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.S.; Álvaro, A.R.; Moita, J.; Cavadas, C. Obstructive Sleep Apnea and Hallmarks of Aging. Trends Mol. Med. 2017, 23, 675–692. [Google Scholar] [CrossRef]
- Zinchuk, A.V.; Gentry, M.J.; Concato, J.; Yaggi, H.K. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep Med. Rev. 2017, 35, 113–123. [Google Scholar] [CrossRef]
- Bixler, E.O.; Vgontzas, A.N.; Lin, H.M.; Ten Have, T.; Rein, J.; Vela-Bueno, A.; Kales, A. Prevalence of sleep-disordered breathing in women: Effects of gender. Am. J. Respir. Crit. Care Med. 2001, 163 Pt 1, 608–613. [Google Scholar] [CrossRef]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.L.; Quan, S.F. The AASM Manual for the Scoring of Sleep Associated Events: Rules, Terminology and Technical Specifications, 1st ed.; American Academy of Sleep Medicine: Westchester, NY, USA, 2007. [Google Scholar]
- Rechtschaffen, A.; Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects; Brain Information Service/Brain Research Institute, University of California: Los Angeles, CA, USA, 1968. [Google Scholar]
- Himejima, A.; Okuno, K.; Masago, A.; Iseki, T. Factors affecting obstructive sleep apnea severity depending on craniofacial morphological type. Oral Sci. Int. 2024, 21, 99–105. [Google Scholar] [CrossRef]
- Minagi, H.O.; Okuno, K.; Nohara, K.; Sakai, T. Predictors of side effects with long-term oral appliance therapy for obstructive sleep apnea. J. Clin. Sleep Med. 2018, 14, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.M.; Bradley, T.D. Pathogenesis of obstructive sleep apnea. J. Appl. Physiol. 2005, 99, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Okuno, K.; Furuhashi, A.; Nakamura, S.; Suzuki, H.; Arisaka, T.; Taga, H.; Tamura, M.; Katahira, H.; Furuhata, M.; Iida, C. The success rate of oral appliances based on multiple criteria according to obstructive sleep apnoea severity, BMI and age: A large multicentre study. J. Oral Rehabil. 2020, 47, 1178–1183. [Google Scholar] [CrossRef]
- Joosten, S.A.; Edwards, B.A.; Wellman, A.; Turton, A.; Skuza, E.M.; Berger, P.J.; Hamilton, G.S. The Effect of Body Position on Physiological Factors that Contribute to Obstructive Sleep Apnea. Sleep 2015, 38, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Rahemi, H.; Nigam, N.; Wakeling, J.M. The effect of intramuscular fat on skeletal muscle mechanics: Implications for the elderly and obese. J. R. Soc. Interface 2015, 12, 20150365. [Google Scholar] [CrossRef]
- Li, Y.; Lin, N.; Ye, J.; Chang, Q.; Han, D.; Sperry, A. Upper airway fat tissue distribution in subjects with obstructive sleep apnea and its effect on retropalatal mechanical loads. Respir. Care 2012, 57, 1098–1105. [Google Scholar] [CrossRef]
- Bilston, L.E.; Gandevia, S.C. Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea. J. Appl. Physiol. 2014, 116, 314–324. [Google Scholar] [CrossRef]
- Sadaka, A.S.; Faisal, A.; Garner, J.L.; Elbehairy, A.F. Editorial: Future research questions for improving COPD diagnosis and care. Front. Med. 2024, 11, 1411350. [Google Scholar] [CrossRef]
- Ohayon, M.M.; Carskadon, M.A.; Guilleminault, C.; Vitiello, M.V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep 2004, 27, 1255–1273. [Google Scholar] [CrossRef]
- Dijk, D.J.; Duffy, J.F.; Czeisler, C.A. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J. Sleep Res. 1992, 1, 112–117. [Google Scholar] [CrossRef]
- Duffy, J.F.; Willson, H.J.; Wang, W.; Czeisler, C.A. Healthy older adults better tolerate sleep deprivation than young adults. J. Am. Geriatr. Soc. 2009, 57, 1245–1251. [Google Scholar] [CrossRef]
- Hood, S.; Amir, S. The aging clock: Circadian rhythms and later life. J. Clin. Investig. 2017, 127, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Logan, R.W.; Ma, T.; Lewis, D.A.; Tseng, G.C.; Sibille, E.; McClung, C.A. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc. Natl. Acad. Sci. USA 2016, 113, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Pandi-Perumal, S.R.; Zisapel, N.; Srinivasan, V.; Cardinali, D.P. Melatonin and sleep in aging population. Exp. Gerontol. 2005, 40, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Rolls, A. Hypothalamic control of sleep in aging. Neuromolecular Med. 2012, 14, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Ciavarella, D.; Campobasso, A.; Conte, E.; Burlon, G.; Guida, L.; Montaruli, G.; Cassano, M.; Laurenziello, M.; Illuzzi, G.; Tepedino, M. Correlation between dental arch form and OSA severity in adult patients: An observational study. Prog. Orthod. 2023, 24, 19. [Google Scholar] [CrossRef]
- Genta, P.R.; Schorr, F.; Eckert, D.J.; Gebrim, E.; Kayamori, F.; Moriya, H.T.; Malhotra, A.; Lorenzi-Filho, G. Upper airway collapsibility is associated with obesity and hyoid position. Sleep 2014, 37, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
Landmark | Interpretation |
---|---|
S | Midpoint of the fossa hypophysialis |
N | Anterior point of the frontonasal suture |
PNS | Most posterior point of the hard palate |
B | Deepest anterior point in the concavity of the mandible |
Go | Mid-plane point at the gonial located by bisecting the posterior borderline of the mandible |
Me | Most inferior point of the mandible |
H | Most antero-superior point of the hyoid bone |
P | Most inferior tip of the soft palate |
Measurement | Interpretation |
---|---|
Craniofacial skeletal | |
SNB (deg) | Angle between the NSL and the line from B to N |
Soft tissue | |
PNS-P (mm) | Distance between PNS and P |
Hyoid position | |
MP-H (mm) | Linear distance between the mandibular plane and H |
Airway | |
AS * (mm) | Thickness of the airway behind the soft palate along a line parallel to the Go-B point plane |
Variables | All (N = 183) | Middle-Aged Group | Older Group | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | N | Mean | SE | N | Mean | SE | t-Value | p-Value | |
Age (y) | 56.7 | 0.83 | 129 | 50.4 | 0.51 | 54 | 71.7 | 0.69 | ||
BMI (kg/m2) | 24.3 | 0.24 | 129 | 24.6 | 0.29 | 54 | 23.6 | 0.45 | 1.98 | 0.049 |
AHI (events/h) | 29.0 | 1.45 | 129 | 28.8 | 1.76 | 54 | 29.5 | 2.56 | −0.23 | 0.820 |
MinSpO2 (%) | 80.2 | 0.62 | 126 | 80.3 | 0.75 | 52 | 79.8 | 1.12 | 0.35 | 0.729 |
CT90 (%) | 3.7 | 0.46 | 114 | 3.5 | 0.52 | 42 | 4.3 | 1.01 | −0.76 | 0.448 |
Sleep Efficiency (%) | 74.4 | 1.20 | 114 | 75.5 | 1.36 | 43 | 71.5 | 2.47 | 1.52 | 0.130 |
N1 (%) | 27.1 | 1.21 | 115 | 26.3 | 1.40 | 43 | 29.1 | 2.38 | −1.03 | 0.305 |
N2 (%) | 53.0 | 3.39 | 115 | 54.3 | 4.55 | 43 | 49.4 | 2.68 | 0.64 | 0.524 |
N3 (%) | 3.9 | 0.41 | 115 | 4.2 | 0.46 | 43 | 3.0 | 0.84 | 1.31 | 0.194 |
REM (%) | 15.6 | 0.56 | 115 | 16.4 | 0.59 | 43 | 13.5 | 1.31 | 2.03 | 0.047 |
Arousal Index (events/h) | 31.5 | 1.40 | 122 | 32.4 | 1.67 | 48 | 29.4 | 2.57 | 0.96 | 0.337 |
AS (mm) | 13.1 | 0.27 | 129 | 12.0 | 0.27 | 54 | 15.8 | 0.52 | −7.07 | 0.000 |
SNB (°) | 77.9 | 0.47 | 129 | 78.4 | 0.34 | 54 | 76.7 | 1.37 | 1.71 | 0.088 |
PNS-P (mm) | 41.4 | 0.43 | 129 | 41.1 | 0.37 | 54 | 42.2 | 1.14 | −0.88 | 0.384 |
MP-H (mm) | 18.6 | 0.53 | 129 | 18.2 | 0.61 | 54 | 19.6 | 1.04 | −1.16 | 0.249 |
Variables | β | t-Value | 95% Cl | p-Value | |
---|---|---|---|---|---|
Lower | Upper | ||||
BMI (kg/m2) | 0.40 | 4.93 | 1.46 | 3.41 | 0.000 |
AS (mm) | −0.08 | −0.97 | −1.53 | 0.52 | 0.334 |
SNB (°) | −0.18 | −2.20 | −1.75 | −0.09 | 0.030 |
PNS-P (mm) | 0.06 | 0.69 | −0.49 | 1.02 | 0.492 |
MP-H (mm) | 0.19 | 2.40 | 0.10 | 1.01 | 0.018 |
Variables | β | t-Value | 95% Cl | p-Value | |
---|---|---|---|---|---|
Lower | Upper | ||||
BMI (kg/m2) | 0.27 | 1.95 | −0.05 | 3.17 | 0.058 |
AS (mm) | −0.06 | −0.42 | −1.83 | 1.20 | 0.676 |
SNB (°) | −0.16 | −1.06 | −0.87 | 0.27 | 0.294 |
PNS-P (mm) | −0.09 | −0.63 | −0.83 | 0.44 | 0.532 |
MP-H (mm) | 0.18 | 1.35 | −0.22 | 1.11 | 0.184 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wada, K.; Okuno, K.; Himejima, A.; Masago, A.; Takahashi, K. Characteristics of Morphology in Older Adult Patients with Obstructive Sleep Apnea: A Retrospective Cross-Sectional Study. Healthcare 2025, 13, 2190. https://doi.org/10.3390/healthcare13172190
Wang L, Wada K, Okuno K, Himejima A, Masago A, Takahashi K. Characteristics of Morphology in Older Adult Patients with Obstructive Sleep Apnea: A Retrospective Cross-Sectional Study. Healthcare. 2025; 13(17):2190. https://doi.org/10.3390/healthcare13172190
Chicago/Turabian StyleWang, Liqin, Keishi Wada, Kentaro Okuno, Akio Himejima, Ayako Masago, and Kazuya Takahashi. 2025. "Characteristics of Morphology in Older Adult Patients with Obstructive Sleep Apnea: A Retrospective Cross-Sectional Study" Healthcare 13, no. 17: 2190. https://doi.org/10.3390/healthcare13172190
APA StyleWang, L., Wada, K., Okuno, K., Himejima, A., Masago, A., & Takahashi, K. (2025). Characteristics of Morphology in Older Adult Patients with Obstructive Sleep Apnea: A Retrospective Cross-Sectional Study. Healthcare, 13(17), 2190. https://doi.org/10.3390/healthcare13172190