Joint Developmental Trajectories of Perinatal Depression and Anxiety and Their Predictors: A Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Research Tools
2.3.1. General Information Questionnaire
2.3.2. Patient Health Questionnaire
2.3.3. Generalized Anxiety Disorder Scale
2.3.4. Perceived Social Support Scale
2.4. Data Analysis
3. Results
3.1. Descriptive Statistical Analysis and Correlation Analysis
3.2. Latent Class Growth Analysis for Perinatal Depression and Anxiety
3.3. Parallel-Process Latent Class Growth Analysis of Perinatal Depression and Anxiety
3.4. Predictors of Joint Developmental Trajectories of Perinatal Depression and Anxiety
4. Discussion
4.1. Characteristics of Independent Developmental Trajectories of Perinatal Depression and Anxiety
4.2. Characteristics of Joint Developmental Trajectories of Perinatal Depression and Anxiety
4.3. Predictors of Joint Developmental Trajectories of Perinatal Depression and Anxiety
4.4. Strengths, Limitations, and Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nisar, A.; Yin, J.; Waqas, A.; Bai, X.; Wang, D.; Rahman, A.; Li, X. Prevalence of perinatal depression and its determinants in Mainland China: A systematic review and meta-analysis. J. Affect. Disord. 2020, 277, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.R.; Gordon, H.; Lindquist, A.; Walker, S.P.; Homer, C.S.; Middleton, A.; Cluver, C.A.; Tong, S.; Hastie, R. Prevalence of perinatal depression in low-and middle-income countries: A systematic review and meta-analysis. JAMA Psychiatry 2023, 80, 425–431. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, C.; Tang, C. Risk Factors of Perinatal Negative Mood and Its Influence on Prognosis: A Retrospective Cohort Study. Psychol. Res. Behav. Manag. 2024, 17, 853–865. [Google Scholar] [CrossRef]
- Miller, E.S.; Saade, G.R.; Simhan, H.N.; Monk, C.; Haas, D.M.; Silver, R.M.; Mercer, B.M.; Parry, S.; Wing, D.A.; Reddy, U.M. Trajectories of antenatal depression and adverse pregnancy outcomes. Am. J. Obstet. Gynecol. 2022, 226, 108.e1–108.e9. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, Y.; Zhang, Z.; Yan, W. Antenatal depressive symptoms and the risk of preeclampsia or operative deliveries: A meta-analysis. PLoS ONE 2015, 10, e0119018. [Google Scholar] [CrossRef]
- Schetter, C.D.; Tanner, L. Anxiety, depression and stress in pregnancy: Implications for mothers, children, research, and practice. Curr. Opin. Psychiatry 2012, 25, 141–148. [Google Scholar] [CrossRef]
- Goodman, J.H. Perinatal depression and infant mental health. Arch. Psychiatr. Nurs. 2019, 33, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.; Pearson, R.M.; Goodman, S.H.; Rapa, E.; Rahman, A.; McCallum, M.; Howard, L.M.; Pariante, C.M. Effects of perinatal mental disorders on the fetus and child. Lancet 2014, 384, 1800–1819. [Google Scholar] [CrossRef]
- Coo, S.; García, M.I.; Mira, A.; Valdés, V. The role of perinatal anxiety and depression in breastfeeding practices. Breastfeed. Med. 2020, 15, 495–500. [Google Scholar] [CrossRef]
- Kanekasu, H.; Shiraiwa, Y.; Taira, S.; Watanabe, H. Primiparas’ prenatal depressive symptoms, anxiety, and salivary oxytocin level predict early postnatal maternal–infant bonding: A Japanese longitudinal study. Arch. Women’s Ment. Health 2024, 27, 649–658. [Google Scholar] [CrossRef]
- Nandi, A.; Beard, J.R.; Galea, S. Epidemiologic heterogeneity of common mood and anxiety disorders over the lifecourse in the general population: A systematic review. BMC Psychiatry 2009, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Van der Waerden, J.; Galéra, C.; Saurel-Cubizolles, M.-J.; Sutter-Dallay, A.-L.; Melchior, M.; Group, E.M.C.C.S. Predictors of persistent maternal depression trajectories in early childhood: Results from the EDEN mother–child cohort study in France. Psychol. Med. 2015, 45, 1999–2012. [Google Scholar] [CrossRef]
- Ahmed, A.; Bowen, A.; Feng, C.X.; Muhajarine, N. Trajectories of maternal depressive and anxiety symptoms from pregnancy to five years postpartum and their prenatal predictors. BMC Pregnancy Childbirth 2019, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Xu, D.; Cai, Y.; Wu, Y.; Liu, H.; Gong, W. Detection rate of depression symptoms at different time points in perinatal women and influencing factors. Chin. J. Ment. Health 2021, 35, 7. [Google Scholar]
- Fairbrother, N.; Janssen, P.; Antony, M.M.; Tucker, E.; Young, A.H. Perinatal anxiety disorder prevalence and incidence. J. Affect. Disord. 2016, 200, 148–155. [Google Scholar] [CrossRef]
- Mora, P.A.; Bennett, I.M.; Elo, I.T.; Mathew, L.; Coyne, J.C.; Culhane, J.F. Distinct trajectories of perinatal depressive symptomatology: Evidence from growth mixture modeling. Am. J. Epidemiol. 2009, 169, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Pellowski, J.A.; Bengtson, A.M.; Barnett, W.; DiClemente, K.; Koen, N.; Zar, H.J.; Stein, D.J. Perinatal depression among mothers in a South African birth cohort study: Trajectories from pregnancy to 18 months postpartum. J. Affect. Disord. 2019, 259, 279–287. [Google Scholar] [CrossRef]
- Pei, Y.; Chen, Q.; Zhang, Y.; He, C.; Wang, J.; Tang, J.; Hou, H.; Zhu, Z.; Zhang, X.; Wang, W. Factors associated with the mental health status of pregnant women in China: A latent class analysis. Front. Public Health 2023, 10, 1017410. [Google Scholar] [CrossRef]
- Yu, M.; Li, H.; Xu, D.R.; Wu, Y.; Liu, H.; Gong, W. Trajectories of perinatal depressive symptoms from early pregnancy to six weeks postpartum and their risk factors—A longitudinal study. J. Affect. Disord. 2020, 275, 149–156. [Google Scholar] [CrossRef]
- Barthel, D.; Kriston, L.; Barkmann, C.; Appiah-Poku, J.; Te Bonle, M.; Doris, K.Y.E.; Esther, B.K.C.; Armel, K.E.J.; Mohammed, Y.; Osei, Y. Longitudinal course of ante-and postpartum generalized anxiety symptoms and associated factors in West-African women from Ghana and Côte d’Ivoire. J. Affect. Disord. 2016, 197, 125–133. [Google Scholar] [CrossRef]
- Ahmed, A.; Feng, C.; Bowen, A.; Muhajarine, N. Latent trajectory groups of perinatal depressive and anxiety symptoms from pregnancy to early postpartum and their antenatal risk factors. Arch. Women’s Ment. Health 2018, 21, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Fredriksen, E.; von Soest, T.; Smith, L.; Moe, V. Patterns of Pregnancy and Postpartum Depressive Symptoms: Latent Class Trajectories and Predictors. J. Abnorm. Psychol. 2017, 126, 173–183. [Google Scholar] [CrossRef]
- Liu, K.; Droncheff, B.; Warren, S.L. Predictive utility of symptom measures in classifying anxiety and depression: A machine-learning approach. Psychiatry Res. 2022, 312, 114534. [Google Scholar] [CrossRef] [PubMed]
- González-Mesa, E.; Kabukcuoglu, K.; Blasco, M.; Körükcü, O.; Ibrahim, N.; González-Cazorla, A.; Cazorla, O. Comorbid anxiety and depression (CAD) at early stages of the pregnancy. A multicultural cross-sectional study. J. Affect. Disord. 2020, 270, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.-A.; McMahon, C.; Austin, M.-P. Maternal anxiety during the transition to parenthood: A prospective study. J. Affect. Disord. 2008, 108, 101–111. [Google Scholar] [CrossRef]
- Coelho, H.F.; Murray, L.; Royal-Lawson, M.; Cooper, P.J. Antenatal anxiety disorder as a predictor of postnatal depression: A longitudinal study. J. Affect. Disord. 2011, 129, 348–353. [Google Scholar] [CrossRef]
- Roomruangwong, C.; Kanchanatawan, B.; Sirivichayakul, S.; Maes, M. Antenatal depression and hematocrit levels as predictors of postpartum depression and anxiety symptoms. Psychiatry Res. 2016, 238, 211–217. [Google Scholar] [CrossRef]
- Nagin, D.S.; Tremblay, R.E. Developmental trajectory groups: Fact or a useful statistical fiction? Criminology 2005, 43, 873–904. [Google Scholar] [CrossRef]
- Liang, Y.; Huebner, E.S.; Tian, L. Joint trajectories of loneliness, depressive symptoms, and social anxiety from middle childhood to early adolescence: Associations with suicidal ideation. Eur. Child Adolesc. Psychiatry 2023, 32, 1733–1744. [Google Scholar] [CrossRef]
- Dugre, J.R.; Dumais, A.; Dellazizzo, L.; Potvin, S. Developmental joint trajectories of anxiety-depressive trait and trait-aggression: Implications for co-occurrence of internalizing and externalizing problems. Psychol. Med. 2020, 50, 1338–1347. [Google Scholar] [CrossRef]
- Liang, K.; Huang, L.; Qu, D.; Bu, H.; Chi, X. Self-compassion predicted joint trajectories of depression and anxiety symptoms during the COVID-19 pandemic: A five-wave longitudinal study on Chinese college students. J. Affect. Disord. 2022, 319, 589–597. [Google Scholar] [CrossRef]
- Guo, X.; Guo, X.; Wang, R.; Zhang, Y. Effects of perinatal cognitive behavioral therapy on delivery mode, fetal outcome, and postpartum depression and anxiety in women. Comput. Math. Methods Med. 2022, 2022, 8304405. [Google Scholar] [CrossRef]
- Biaggi, A.; Conroy, S.; Pawlby, S.; Pariante, C.M. Identifying the women at risk of antenatal anxiety and depression: A systematic review. J. Affect. Disord. 2016, 191, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Al-Abri, K.; Edge, D.; Armitage, C.J. Prevalence and correlates of perinatal depression. Soc. Psychiatry Psychiatr. Epidemiol. 2023, 58, 1581–1590. [Google Scholar] [CrossRef]
- Navarrete, L.E.; Lara-Cantú, M.A.; Navarro, C.; Gómez, M.E.; Morales, F. Psychosocial factors predicting postnatal anxiety symptoms and their relation to symptoms of postpartum depression. Rev. Investig. Clínica 2012, 64, 625–633. [Google Scholar]
- Blackmore, E.R.; Côté-Arsenault, D.; Tang, W.; Glover, V.; Evans, J.; Golding, J.; O’Connor, T.G. Previous prenatal loss as a predictor of perinatal depression and anxiety. Br. J. Psychiatry 2011, 198, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, J.; Chen, X. Risk factors of perinatal depression in women: A systematic review and meta-analysis. Bmc Psychiatry 2022, 22, 63. [Google Scholar] [CrossRef]
- Luoma, I.; Korhonen, M.; Salmelin, R.K.; Helminen, M.; Tamminen, T. Long-term trajectories of maternal depressive symptoms and their antenatal predictors. J. Affect. Disord. 2015, 170, 30–38. [Google Scholar] [CrossRef]
- Dekel, S.; Ein-Dor, T.; Ruohomäki, A.; Lampi, J.; Voutilainen, S.; Tuomainen, T.-P.; Heinonen, S.; Kumpulainen, K.; Pekkanen, J.; Keski-Nisula, L. The dynamic course of peripartum depression across pregnancy and childbirth. J. Psychiatr. Res. 2019, 113, 72–78. [Google Scholar] [CrossRef]
- Bedaso, A.; Adams, J.; Peng, W.; Sibbritt, D. The association between social support and antenatal depressive and anxiety symptoms among Australian women. BMC Pregnancy Childbirth 2021, 21, 708. [Google Scholar] [CrossRef]
- Hong, L.; Le, T.; Lu, Y.; Shi, X.; Xiang, L.; Liu, M.; Zhang, W.; Zhou, M.; Wang, J.; Xu, D. Distinct trajectories of perinatal depression in Chinese women: Application of latent growth mixture modelling. BMC Pregnancy Childbirth 2022, 22, 24. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; An, D.; McGonigal, A.; Park, S.-P.; Zhou, D. Validation of the Generalized Anxiety Disorder-7 (GAD-7) among Chinese people with epilepsy. Epilepsy Res. 2016, 120, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Zimet, G.D.; Powell, S.S.; Farley, G.K.; Werkman, S.; Berkoff, K.A. Psychometric characteristics of the multidimensional scale of perceived social support. J. Personal. Assess. 1990, 55, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Understanding the Social Support Scale. Chin. J. Behav. Med. Sci. 2001, 10, 41–43. [Google Scholar]
- Duncan, T.E.; Duncan, S.C. The ABC’s of LGM: An introductory guide to latent variable growth curve modeling. Soc. Personal. Psychol. Compass 2009, 3, 979–991. [Google Scholar] [CrossRef]
- Berlin, K.S.; Parra, G.R.; Williams, N.A. An introduction to latent variable mixture modeling (part 2): Longitudinal latent class growth analysis and growth mixture models. J. Pediatr. Psychol. 2014, 39, 188–203. [Google Scholar] [CrossRef]
- Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Akaike, H. Information measures and model selection. Int. Stat. Inst. 1983, 44, 277–291. [Google Scholar]
- Raftery, A.E. Bayesian model selection in social research. Sociol. Methodol. 1995, 25, 111–163. [Google Scholar] [CrossRef]
- Sclove, S.L. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 1987, 52, 333–343. [Google Scholar] [CrossRef]
- Celeux, G.; Soromenho, G. An entropy criterion for assessing the number of clusters in a mixture model. J. Classif. 1996, 13, 195–212. [Google Scholar] [CrossRef]
- Wang, M.; Bodner, T.E. Growth mixture modeling—Identifying and predicting unobserved subpopulations with longitudinal data. Organ. Res. Methods 2007, 10, 635–656. [Google Scholar] [CrossRef]
- Nylund, K.L.; Asparoutiov, T.; Muthen, B.O. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct. Equ. Model. Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Lubke, G.; Muthén, B.O. Performance of Factor Mixture Models as a Function of Model Size, Covariate Effects, and Class-Specific Parameters. Struct. Equ. Model. Multidiscip. J. 2007, 14, 26–47. [Google Scholar] [CrossRef]
- Cruz, R.A.; King, K.M.; Cauce, A.M.; Conger, R.D.; Robins, R.W. Cultural Orientation Trajectories and Substance Use: Findings From a Longitudinal Study of Mexican-Origin Youth. Child Dev. 2017, 88, 555–572. [Google Scholar] [CrossRef]
- Schlomer, G.L.; Bauman, S.; Card, N.A. Best practices for missing data management in counseling psychology. J. Couns. Psychol. 2010, 57, 1–10. [Google Scholar] [CrossRef]
- Denckla, C.; Mancini, A.; Consedine, N.; Milanovic, S.; Basu, A.; Seedat, S.; Spies, G.; Henderson, D.; Bonanno, G.; Koenen, K. Distinguishing postpartum and antepartum depressive trajectories in a large population-based cohort: The impact of exposure to adversity and offspring gender. Psychol. Med. 2018, 48, 1139–1147. [Google Scholar] [CrossRef]
- Wikman, A.; Axfors, C.; Iliadis, S.I.; Cox, J.; Fransson, E.; Skalkidou, A. Characteristics of women with different perinatal depression trajectories. J. Neurosci. Res. 2020, 98, 1268–1282. [Google Scholar] [CrossRef]
- Wisner, K.L.; Sit, D.K.; McShea, M.C.; Rizzo, D.M.; Zoretich, R.A.; Hughes, C.L.; Eng, H.F.; Luther, J.F.; Wisniewski, S.R.; Costantino, M.L. Onset timing, thoughts of self-harm, and diagnoses in postpartum women with screen-positive depression findings. JAMA Psychiatry 2013, 70, 490–498. [Google Scholar] [CrossRef]
- Patton, G.C.; Romaniuk, H.; Spry, E.; Coffey, C.; Olsson, C.; Doyle, L.W.; Oats, J.; Hearps, S.; Carlin, J.B.; Brown, S. Prediction of perinatal depression from adolescence and before conception (VIHCS): 20-year prospective cohort study. Lancet 2015, 386, 875–883. [Google Scholar] [CrossRef]
- Drozd, F.; Haga, S.M.; Valla, L.; Slinning, K. Latent trajectory classes of postpartum depressive symptoms: A regional population-based longitudinal study. J. Affect. Disord. 2018, 241, 29–36. [Google Scholar] [CrossRef]
- Bayrampour, H.; Tomfohr, L.; Tough, S. Trajectories of perinatal depressive and anxiety symptoms in a community cohort. J. Clin. Psychiatry 2016, 77, 21112. [Google Scholar] [CrossRef]
- Kingston, D.; Kehler, H.; Austin, M.-P.; Mughal, M.K.; Wajid, A.; Vermeyden, L.; Benzies, K.; Brown, S.; Stuart, S.; Giallo, R. Trajectories of maternal depressive symptoms during pregnancy and the first 12 months postpartum and child externalizing and internalizing behavior at three years. PLoS ONE 2018, 13, e0195365. [Google Scholar] [CrossRef]
- Falah-Hassani, K.; Shiri, R.; Dennis, C.-L. The prevalence of antenatal and postnatal co-morbid anxiety and depression: A meta-analysis. Psychol. Med. 2017, 47, 2041–2053. [Google Scholar] [CrossRef]
- Buist, A.; Gotman, N.; Yonkers, K.A. Generalized anxiety disorder: Course and risk factors in pregnancy. J. Affect. Disord. 2011, 131, 277–283. [Google Scholar] [CrossRef]
- Ghorbani-Marghmaleki, F.; Mohebbi-Dehnavi, Z.; Beigi, M. Investigating the relationship between cognitive emotion regulation and the health of pregnant women. J. Educ. Health Promot. 2019, 8, 175. [Google Scholar]
- van der Zee-van, A.I.; Boere-Boonekamp, M.M.; Groothuis-Oudshoorn, C.G.; Reijneveld, S.A. Postpartum depression and anxiety: A community-based study on risk factors before, during and after pregnancy. J. Affect. Disord. 2021, 286, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Giardinelli, L.; Innocenti, A.; Benni, L.; Stefanini, M.; Lino, G.; Lunardi, C.; Svelto, V.; Afshar, S.; Bovani, R.; Castellini, G. Depression and anxiety in perinatal period: Prevalence and risk factors in an Italian sample. Arch. Women’s Ment. Health 2012, 15, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Dickens, M.J.; Pawluski, J.L. The HPA axis during the perinatal period: Implications for perinatal depression. Endocrinology 2018, 159, 3737–3746. [Google Scholar] [CrossRef]
- Vargas-Terrones, M.; Barakat, R.; Santacruz, B.; Fernandez-Buhigas, I.; Mottola, M.F. Physical exercise programme during pregnancy decreases perinatal depression risk: A randomised controlled trial. Br. J. Sports Med. 2019, 53, 348–353. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Soh, K.L.; Huang, F.; Khaza’ai, H.; Geok, S.K.; Vorasiha, P.; Chen, A.; Ma, J. The impact of physical activity intervention on perinatal depression: A systematic review and meta-analysis. J. Affect. Disord. 2023, 321, 304–319. [Google Scholar] [CrossRef]
- Bourke-Taylor, H.; Howie, L.; Law, M. Barriers to maternal workforce participation and relationship between paid work and health. J. Intellect. Disabil. Res. 2011, 55, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Kay, T.L.; Moulson, M.C.; Vigod, S.N.; Schoueri-Mychasiw, N.; Singla, D.R. The Role of Social Support in Perinatal Mental Health and Psychosocial Stimulation. Yale J. Biol. Med. 2024, 97, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Field, R.J.; Schuldberg, D. Social-support moderated stress: A nonlinear dynamical model and the stress buffering hypothesis. Nonlinear Dyn. Psychol. Life Sci. 2011, 15, 53. [Google Scholar]
- Evans, L.M.; Myers, M.M.; Monk, C. Pregnant women’s cortisol is elevated with anxiety and depression—But only when comorbid. Arch. Women’s Ment. Health 2008, 11, 239–248. [Google Scholar] [CrossRef]
- Kofman, Y.B.; Eng, Z.E.; Busse, D.; Godkin, S.; Campos, B.; Sandman, C.A.; Wing, D.; Yim, I.S. Cortisol reactivity and depressive symptoms in pregnancy: The moderating role of perceived social support and neuroticism. Biol. Psychol. 2019, 147, 107656. [Google Scholar] [CrossRef]
- O’Neill, P.; Cycon, A.; Friedman, L. Seeking social support and postpartum depression: A pilot retrospective study of perceived changes. Midwifery 2019, 71, 56–62. [Google Scholar] [CrossRef]
- Accortt, E.E.; Wong, M.S. It Is Time for Routine Screening for Perinatal Mood and Anxiety Disorders in Obstetrics and Gynecology Settings. Obstet. Gynecol. Surv. 2017, 72, 553–568. [Google Scholar] [CrossRef]
Variables | Categories | Mean ± SD/N (%) | Variables | Categories | Mean ± SD/N (%) |
---|---|---|---|---|---|
Age | 29.203 ± 3.853 | Number of births | 0 | 607 (57.2) | |
Monthly income | <5000 CNY | 211 (19.9) | ≥1 | 455 (42.8) | |
5000–10,000 CNY | 562 (52.9) | Gestational diabetes | Yes | 151 (14.2) | |
>10,000 CNY | 289 (27.2) | No | 911 (85.8) | ||
Education level | College and below | 604 (56.9) | Gestational hypertension | Yes | 133 (12.5) |
Undergraduate | 405 (38.1) | No | 929 (87.5) | ||
Master and above | 53 (5.0) | History of anxiety | Yes | 56 (5.3) | |
Planned pregnancy | Yes | 671 (63.2) | No | 1006 (94.7) | |
No | 391 (36.8) | History of depression | Yes | 66 (6.2) | |
Regular exercise | Yes | 303 (28.5) | No | 996 (93.8) | |
No | 759 (71.5) | Preterm birth | Yes | 92 (8.7) | |
Paid work | Yes | 599 (56.4) | No | 970 (91.3) | |
No | 463 (43.6) | Newborn sex | Male | 537 (50.6) | |
Work stress | Yes | 256 (24.1) | Female | 525 (49.4) | |
No | 806 (75.9) | Delivery mode | Cesarean section | 473 (44.5) | |
Adverse maternal history | Yes | 381 (35.9) | Vaginal delivery | 589 (55.5) | |
No | 681 (64.1) |
Class | AIC | BIC | a-BIC | BLRT | VLMR | Entropy | Numbers of Each Class |
---|---|---|---|---|---|---|---|
Dep | |||||||
1 | 23,603.303 | 23,643.046 | 23,617.637 | ||||
2 | 20,138.057 | 20,192.704 | 20,157.766 | <0.001 | <0.001 | 0.954 | 751/311 |
3 | 18,837.218 | 18,906.769 | 18,862.303 | <0.001 | 0.0005 | 0.961 | 679/111/272 |
4 | 18,335.062 | 18,419.517 | 18,365.522 | <0.001 | 0.008 | 0.933 | 186/204/596/76 |
5 | 17,945.721 | 18,045.079 | 17,981.555 | <0.001 | 0.0198 | 0.933 | 200/176/570/89/27 |
Anx | |||||||
1 | 21,733.744 | 21,773.487 | 21,748.078 | ||||
2 | 19,028.138 | 19,082.785 | 19,047.847 | <0.001 | <0.001 | 0.939 | 248/814 |
3 | 18,022.738 | 18,092.289 | 18,047.823 | <0.001 | 0.0079 | 0.908 | 125/323/614 |
4 | 17,535.358 | 17,619.813 | 17,565.818 | <0.001 | 0.0060 | 0.909 | 539/318/50/155 |
5 | 17,374.588 | 17,473.946 | 17,410.422 | <0.001 | 0.1224 | 0.875 | 292/159/471/100/40 |
Number of Class | AIC | BIC | a-BIC | BLRT | VLMR | Entropy | Number of Each Class |
---|---|---|---|---|---|---|---|
1 | 35,497.061 | 35,591.451 | 35,531.104 | ||||
2 | 35,110.937 | 35,230.167 | 35,153.939 | <0.001 | 0.0023 | 0.866 | 779/283 |
3 | 34,699.258 | 34,843.327 | 34,751.218 | <0.001 | <0.001 | 0.926 | 33/754/275 |
4 | 34,474.581 | 34,643.490 | 34,535.500 | <0.001 | 0.1428 | 0.928 | 716/252/32/62 |
5 | 34,446.357 | 34,640.105 | 34,516.234 | <0.001 | 0.3715 | 0.938 | 62/1/717/251/31 |
Predictor Variables | High–Slightly Decreasing Depression and High Decreasing Anxiety Group | Moderate–Slightly Increasing Depression and Moderate–Decreasing Anxiety Group | ||
---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |
Age | 1.070 | 0.921–1.244 | 0.974 | 0.918–1.033 |
Monthly income (>10,000 CNY as reference): | ||||
<5000 CNY | 5.658 | 0.641–49.967 | 0.717 | 0.350–1.472 |
5000–10,000 CNY | 7.444 | 1.003–55.245 | 0.718 | 0.408–1.261 |
Educational level (Master and above as reference): | ||||
College and below | 0.257 | 0.010–6.554 | 0.899 | 0.266–3.032 |
Undergraduate | 0.738 | 0.029–18.719 | 0.904 | 0.276–2.956 |
Planned pregnancy: yes vs. no | 0.523 | 0.121–2.256 | 0.993 | 0.583–1.693 |
Regular exercise: yes vs. no | 1.035 | 0.192–5.566 | 0.533 * | 0.308–0.923 |
Paid work: yes vs. no | 0.49 | 0.112–2.137 | 0.369 *** | 0.214–0.638 |
Work stress: yes vs. no | 2.211 | 0.665–7.347 | 5.251 *** | 3.061–9.010 |
Adverse maternal history: yes vs. no | 4.875 * | 1.260–18.857 | 1.674 | 0.975–2.873 |
Number of births: 0 vs. ≥1 | 1.345 | 0.332–5.451 | 0.743 | 0.466–1.185 |
Gestational diabetes: yes vs. no | 0.508 | 0.059–4.358 | 0.941 | 0.488–1.814 |
Gestational hypertension: yes vs. no | 0.977 | 0.156–6.112 | 1.403 | 0.694–2.835 |
History of anxiety: yes vs. no | 10.069 * | 1.289–78.679 | 12.165 *** | 3.470–42.645 |
History of depression: yes vs. no | 9.515 * | 1.437–63.007 | 4.127 * | 1.340–12.708 |
Preterm birth a: yes vs. no | 1.078 | 0.088–13.213 | 1.083 | 0.488–2.407 |
Newborn sex a: male vs. female | 2.275 | 0.501–10.340 | 0.677 | 0.432–1.083 |
Delivery mode a: cesarean section vs. vaginal delivery | 0.421 | 0.128–1.390 | 0.98 | 0.599–1.605 |
Social support | 0.556 *** | 0.500–0.620 | 0.754 *** | 0.724–0.786 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Zheng, H.; Bao, Z.; Wu, Z.; Zheng, X.; Feng, Y. Joint Developmental Trajectories of Perinatal Depression and Anxiety and Their Predictors: A Longitudinal Study. Healthcare 2025, 13, 1251. https://doi.org/10.3390/healthcare13111251
Jiang M, Zheng H, Bao Z, Wu Z, Zheng X, Feng Y. Joint Developmental Trajectories of Perinatal Depression and Anxiety and Their Predictors: A Longitudinal Study. Healthcare. 2025; 13(11):1251. https://doi.org/10.3390/healthcare13111251
Chicago/Turabian StyleJiang, Minhui, Han Zheng, Zhaohua Bao, Zhenhong Wu, Xiaomin Zheng, and Yaling Feng. 2025. "Joint Developmental Trajectories of Perinatal Depression and Anxiety and Their Predictors: A Longitudinal Study" Healthcare 13, no. 11: 1251. https://doi.org/10.3390/healthcare13111251
APA StyleJiang, M., Zheng, H., Bao, Z., Wu, Z., Zheng, X., & Feng, Y. (2025). Joint Developmental Trajectories of Perinatal Depression and Anxiety and Their Predictors: A Longitudinal Study. Healthcare, 13(11), 1251. https://doi.org/10.3390/healthcare13111251