The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Main Outcome Measures
2.3.1. Single Leg Stance Test
2.3.2. Y Balance Test
2.3.3. Causes of Re-Injury Worry Questionnaire (CR-IWQ)—Fear of Re-Injury
2.3.4. Vividness of Movement Imagery Questionnaire-2
2.3.5. Intervention Protocol
2.3.6. Statistical Analysis
3. Results
3.1. Static Balance—SLST
3.2. Dynamic Balance—YBT
3.3. Causes of Re-Injury Worry Questionnaire (CR-IWQ)—Fear of Re-Injury
3.4. Vividness of Movement Imagery Questionnaire—VMIQ-GR
3.5. SPO2 and Heart Rate
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Demographic Characteristics Ν = 58 | 1st ΜΙ Group n = 29 | 2nd Placebo Group n = 29 | Statistical Analysis p Value |
---|---|---|---|
Μ ± SD | Μ ± SD | t-Test for Independent | |
Age | 20.5 ± 3.3 | 21.2 ± 3.1 | ΝS, p = 0.37 α, p > 0.05 |
BMI (kg/m2) | 22.8 ± 1.7 | 21.8 ± 2.1 | NS, p = 0.05 α, p < 0.05 |
Yrs of training | 11.0 ± 2.8 | 11.2 ± 2.6 | ΝS, p = 0.81 α, p > 0.05 |
Hrs of training/wk | 11.9 ± 1.6 | 12.3 ± 1.4 | ΝS, p = 0.26 α, p > 0.05 |
Dominant Leg | Frequencies % | Frequencies % | Chi-square |
Right | Ν = 25, 86.2% | Ν = 21, 72.4% | ΝS, p = 0.19 β, p > 0.05 |
Left | Ν = 4, 13.8% | Ν = 8, 27.6% | |
Grade II LAS—Leg | |||
Right | Ν = 21, 72.4% | Ν = 18,62.1% | ΝS, p = 0.40 β, p > 0.05 |
Left | Ν = 8, 27.6% | Ν = 11, 37.9% | |
Previous LAS—Leg | t-test for Independent | ||
Right | Ν = 17, 58.6% | Ν = 21, 72.4% | ΝS, p = 0.30 α, p > 0.05 |
Left | Ν = 6, 20.7% | Ν = 6, 20.7% | |
Both | Ν = 6, 20.7% | Ν = 2, 6.9% | |
Total number of previous LAS | Chi-square for Trends | ||
1 | Ν = 17, 58.6% | Ν = 13, 44.8% | ΝS, p = 0.35 γ, p > 0.05 |
2 | Ν = 9, 31.0% | Ν = 12, 41.4% | |
≥3 | Ν = 3, 10.3% | Ν = 4, 13.8% |
HR (Final Value)—Intersessions | ||||
---|---|---|---|---|
Groups N = 58 | Μ ± SD (bpm) Intersessions | Mean Difference (bpm) | Confidence Interval (CI) 95% | Sign (2-Tailed) |
1st—ΜΙ (n = 29)—1st session | 78.70 ± 9.04 | 6.44 | 0.64–12.24 | t = 2.22 S * = 0.030 p < 0.05 |
2nd—Placebo (n = 29)—1st session | 72.25 ± 12.70 | |||
1st—ΜΙ (n = 29)—2nd session | 78.27 ± 9.49 | 12.43 | 7.58–17.29 | t = 5.13 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—2nd session | 65.83 ± 8.94 | |||
1st—ΜΙ (n = 29)—3rd session | 79.95 ± 7.36 | 14.83 | 10.65–19.01 | t = 7.10 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—3rd session | 65.12 ± 8.49 | |||
1st—ΜΙ (n = 29)—4th session | 78.86 ± 6.20 | 14.85 | 11.24–18.46 | t = 8.24 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—4th session | 64.00 ± 7.45 | |||
1st—ΜΙ (n = 29)—5th session | 79.06 ± 7.97 | 14.68 | 10.91–18.44 | t = 7.80 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—5th session | 64.38 ± 6.25 | |||
1st—ΜΙ (n = 29)—6th session | 78.07 ± 6.49 | 14.68 | 11.46–17.89 | t = 9.14 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29)—6th session | 63.39 ± 5.70 |
References
- Qader, M.A.; Zaidan, B.B.; Zaidan, A.A.; Ali, S.K.; Kamaluddin, M.A.; Radzi, W.B. A methodology for football players selection problem based on multi-measurements criteria analysis. Meas. J. Int. Meas. Confed. 2017, 111, 38–50. [Google Scholar] [CrossRef]
- Sadigursky, D.; Braid, J.A.; De Lira, D.N.L.; Machado, B.A.B.; Carneiro, R.J.F.; Colavolpe, P.O. The FIFA 11+ injury prevention program for soccer players: A systematic review. BMC Sports Sci. Med. Rehabil. 2017, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.A.; León, J.F.; Serón, R.; Mesana, M.I.; Fleta, J. Body composition in young male football (soccer) players. Nutr. Res. 2004, 24, 235–242. [Google Scholar] [CrossRef]
- Junge, A.; Dvorak, J. Soccer injuries: A review on incidence and prevention. Sports Med. 2004, 34, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Stares, J.; Dawson, B.; Peeling, P.; Heasman, J.; Rogalski, B.; Drew, M.; Colby, M.; Dupont, G.; Lester, L. Identifying high risk loading conditions for in-season injury in elite Australian football players. J. Sci. Med. Sport 2018, 21, 46–51. [Google Scholar] [CrossRef] [PubMed]
- McCriskin, B.J.; Cameron, K.L.; Orr, J.D.; Waterman, B.R. Management and prevention of acute and chronic lateral ankle instability in athletic patient populations. World J. Orthop. 2015, 6, 161–171. [Google Scholar] [CrossRef]
- Halabchi, F.; Hassabi, M. Acute ankle sprain in athletes: Clinical aspects and algorithmic approach. World J. Orthop. 2020, 1, 534–558. [Google Scholar] [CrossRef] [PubMed]
- Wikstrom, E.A.; Tillman, M.D.; Borsa, P.A. Detection of dynamic stability deficits in subjects with functional ankle instability. Med. Sci. Sports Exerc. 2005, 37, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Petersen, W.; Rembitzki, I.V.; Koppenburg, A.G.; Ellermann, A.; Liebau, C.; Brüggemann, G.P.; Best, R. Treatment of acute ankle ligament injuries: A systematic review. Arch. Orthop. Trauma Surg. 2013, 133, 1129–1141. [Google Scholar] [CrossRef]
- Mattacola, C.G.; Dwyer, M.K. Rehabilitation of the ankle after acute sprain or chronic instability. J. Athl. Train. 2002, 37, 413–429. [Google Scholar]
- Al Bimani, S.A.; Gates, L.S.; Warner, M.; Bowen, C. Factors influencing return to play following conservatively treated ankle sprain: A systematic review. Physician Sportsmed. 2019, 47, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Alawna, M.; Unver, B.; Yuksel, E. Effect of ankle taping and bandaging on balance and proprioception among healthy volunteers. Sport Sci. Health 2021, 17, 665–676. [Google Scholar] [CrossRef]
- Gribble, P.A.; Hertel, J.; Plisky, P. Using the star excursion balance test to assess dynamic postural-control deficits and outcomes in lower extremity injury: A literature and systematic review. J. Athl. Train. 2012, 47, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, B.; Garrett, M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clin. Biomech. 2004, 19, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Abassi, M.; Bleakley, C.; Whiteley, R. Athletes at late stage rehabilitation have persisting deficits in plantar- and dorsiflexion, and inversion (but not eversion) after ankle sprain. Phys. Ther. Sport 2019, 38, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Meras Serrano, H.; Mottet, D.; Caillaud, K. Validity and Reliability of Kinvent Plates for Assessing Single Leg Static and Dynamic Balance in the Field. Sensors 2023, 23, 2354. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.E.; Guskiewicz, K.M.; Gross, M.T.; Yu, B. Balance measures for discriminating between functionally unstable and stable ankles. Med. Sci. Sports Exerc. 2009, 41, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, E.; Van Der Beek, A.; Twisk, J.; Bouter, L.; Bahr, R.; Van Mechelen, W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: A prospective controlled trial. Am. J. Sports Med. 2004, 32, 1385–1393. [Google Scholar] [CrossRef]
- Bullock, G.S.; Arnold, T.W.; Plisky, P.J.; Butler, R.J. Basketball Players’ Dynamic Performance Across Competition Levels. J. Strength Cond. Res. 2018, 32, 3528–3533. [Google Scholar] [CrossRef]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The reliability of an instrumented device for measuring components of the star excursion balance test. N. Am. J. Sports Phys. Ther. 2009, 4, 92–99. [Google Scholar]
- Fischerauer, S.F.; Talaei-Khoei, M.; Bexkens, R.; Ring, D.C.; Oh, L.S.; Vranceanu, A.M. What is the relationship of fear avoidance to physical function and pain intensity in injured athletes? Clin. Orthop. Relat. Res. 2018, 476, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Vereijken, A.; Aerts, I.; Jetten, J.; Tassignon, B.; Verschueren, J.; Meeusen, R.; van Trijffel, E. Association between functional performance and return to performance in high-impact sports after lower extremity injury: A systematic review. J. Sports Sci. Med. 2020, 19, 564–576. [Google Scholar] [PubMed]
- Hsu, C.J.; Meierbachtol, A.; George, S.Z.; Chmielewski, T.L. Fear of Reinjury in Athletes: Implications for Rehabilitation. Sports Health 2017, 9, 162–167. [Google Scholar] [CrossRef]
- Christakou, A.; Zervas, Y.; Stavrou, N.A.; Psychountaki, M. Development and validation of the causes of re-injury worry questionnaire. Psychol. Health Med. 2011, 16, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Plakoutsis, G.; Paraskevopoulos, E.; Zavvos, A.; Papandreou, M. The Effects of Motor Imagery on Pain in Lower Limb Sports Injuries: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 2545. [Google Scholar] [CrossRef]
- Evans, L.; Hare, R.; Mullen, R. Imagery Use During Rehabilitation from Injury. J. Imag. Res. Sport Phys. Act. 2006, 1, 1–21. [Google Scholar] [CrossRef]
- Christakou, A.; Zervas, Y. The effectiveness of imagery on pain, edema, and range of motion in athletes with a grade II ankle sprain. Phys. Ther. Sport 2007, 8, 130–140. [Google Scholar] [CrossRef]
- Christakou, A.; Zervas, Y.; Lavallee, D. The adjunctive role of imagery on the functional rehabilitation of a grade II ankle sprain. Hum. Mov. Sci. 2007, 26, 141–154. [Google Scholar] [CrossRef]
- Plakoutsis, G.; Fousekis, K.; Tsepis, E.; Papandreou, M. Cross cultural adaptation, validity and reliability of the Greek version of the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2). Discov. Psychol. 2023, 2, 30. [Google Scholar] [CrossRef]
- Paravlic, A.H.; Maffulli, N.; Kovač, S.; Pisot, R. Home-based motor imagery intervention improves functional performance following total knee arthroplasty in the short term: A randomized controlled trial. J. Orthop. Surg. Res. 2020, 15, 451. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Martínez, F.; Reina-Varona, Á.; Castillo-García, J.; La Touche, R.; Angulo-Díaz-Parreño, S.; Suso-Martí, L. Pain relief by movement representation strategies: An umbrella and mapping review with meta-meta-analysis of motor imagery, action observation and mirror therapy. Eur. J. Pain 2022, 26, 284–309. [Google Scholar] [CrossRef] [PubMed]
- Javdaneh, N.; Molayei, F.; Kamranifraz, N. Effect of adding motor imagery training to neck stabilization exercises on pain, disability and kinesiophobia in patients with chronic neck pain. Complement. Ther. Clin. Pract. 2021, 42, 101263. [Google Scholar] [CrossRef] [PubMed]
- Driskell, J.E.; Copper, C.; Moran, A. Does mental practice enhance performance? J. Appl. Psychol. 1994, 79, 481–492. [Google Scholar] [CrossRef]
- Nunes, G.; de Noronha, M. Imagética motora no tratamento da entorse lateral de tornozelo em atletas de futebol de campo: Um estudo piloto. Fisioter. Pesqui. 2015, 22, 282–290. [Google Scholar]
- Tsekoura, M.; Billis, E.; Samada, E.K.; Savvidou, I.; Fousekis, K.; Xergia, S.; Lampropoulou, S.; Tsepis, E. Cross cultural adaptation, reliability and validity of the Greek version of Identification of Functional Ankle Instability (IdFAI) questionnaire. Foot Ankle Surg. 2021, 27, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Plakoutsis, G.; Zapantis, D.; Panagiotopoulou, E.M.; Paraskevopoulos, E.; Moutzouri, M.; Koumantakis, G.A.; Papandreou, M. Reliability and Validity of the Portable KForce Plates for Measuring Countermovement Jump (CMJ). Appl. Sci. 2023, 13, 11200. [Google Scholar] [CrossRef]
- Brumitt, J.; Patterson, C.; Dudley, R.; Sorenson, E.; Hill, G.; Peterson, C. Comparison of Lower Quarter Y-Balance Test Scores for Female Collegiate Volleyball Players Based on Competition Level, Position, and Starter Status. Int. J. Sports Phys. Ther. 2019, 14, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Hartley, E.M.; Hoch, M.C.; Boling, M.C. Y-balance test performance and BMI are associated with ankle sprain injury in collegiate male athletes. J. Sci. Med. Sport 2018, 21, 676–680. [Google Scholar] [CrossRef]
- McGuine, T.A.; Keene, J.S. The effect of a balance training program on the risk of ankle sprains in high school athletes. Am. J. Sports Med. 2006, 34, 1103–1111. [Google Scholar] [CrossRef]
- Eils, E.; Schröter, R.; Schröderr, M.; Gerss, J.; Rosenbaum, D. Multistation proprioceptive exercise program prevents ankle injuries in basketball. Med. Sci. Sports Exerc. 2010, 42, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.A.; Mintken, P.; McDevitt, A.; Bieniek, M.; Carpenter, K.; Kulp, K.; Whitman, J.M. Manual physical therapy and exercise versus supervised home exercise in the management of patients with inversion ankle sprain: A multicenter randomized clinical trial. J. Orthop. Sports Phys. Ther. 2013, 43, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Dunsky, A.; Barzilay, I.; Fox, O. Effect of a specialized injury prevention program on static balance, dynamic balance and kicking accuracy of young soccer players. World J. Orthop. 2017, 8, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Mchugh, M.L. The Chi-square test of independence Lessons in biostatistics. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Cho, M.; Ki, C.S. Correct use of repeated measures analysis of variance. Korean J. Lab. Med. 2009, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Taherzadeh Chenani, K.; Madadizadeh, F. Popular Statistical Tests for Investigating the Relationship between Two Variables in Medical Research. J. Commun. Health Res. 2020, 9, 1–3. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Cupal, D.; Brewer, B. Relaxation and Imagery on Knee Strength and Re-Injury. Rehabil. Phychol. 2001, 46, 28–43. [Google Scholar] [CrossRef]
- Guerra, Z.F.; Lucchetti, A.L.G.; Lucchetti, G. Motor Imagery Training after Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Neurol. Phys. Ther. 2017, 41, 205–214. [Google Scholar] [CrossRef]
- Bae, Y.H.; Ko, Y.J.; Ha, H.G.; Ahn, S.Y.; Lee, W.H.; Lee, S.M. An efficacy study on improving balance and gait in subacute stroke patients by balance training with additional motor imagery: A pilot study. J. Phys. Ther. Sci. 2015, 27, 3245–3248. [Google Scholar] [CrossRef] [PubMed]
- Jansen, P.; Lehmann, J.; Fellner, B.; Huppertz, G.; Loose, O.; Achenbach, L.; Krutsch, W. Relation of injuries and psychological symptoms in amateur soccer players. BMJ Open Sport Exerc. Med. 2019, 5, e000522. [Google Scholar] [CrossRef] [PubMed]
- Grimson, S.; Brickley, G.; Smeeton, N.J.; Abbott, W.; Brett, A. The effects of injury, contextual match factors and training load upon psychological wellbeing in English Premier League soccer players via season-long tracking. Eur. J. Sport Sci. 2023, 23, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Callow, N.; Hardy, L.; Hall, C. The effects of a motivational general-mastery imagery intervention on the sport confidence of high-level badminton players. Res. Q. Exerc. Sport 2001, 72, 389–400. [Google Scholar] [CrossRef]
- Di Rienzo, F.; Debarnot, U.; Daligault, S.; Saruco, E.; Delpuech, C.; Doyon, J.; Collet, C.; Guillot, A. Online and offline performance gains following motor imagery practice: A comprehensive review of behavioral and neuroimaging studies. Front. Hum. Neurosci. 2016, 10, 315. [Google Scholar] [CrossRef]
- Mahoney, M.J.; Avener, M. Psychology of the elite athlete: An exploratory study. Cogn. Ther. Res. 1977, 1, 135–141. [Google Scholar] [CrossRef]
- Hardy, L.; Callow, N. Efficacy of external and internal visual imagery perspectives for the enhancement of performance on tasks in which form is important. J. Sport Exerc. Psychol. 1999, 21, 95–112. [Google Scholar] [CrossRef]
- Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A. Autonomic nervous system correlates in movement observation and motor imagery. Front. Hum. Neurosci. 2013, 7, 52563. [Google Scholar] [CrossRef]
- Decety, J.; Jeannerod, M.; Germain, M.; Pastene, J. Vegetative response during imagined movement is proportional to mental effort. Behav. Brain Res. 1991, 42, 1–5. [Google Scholar] [CrossRef]
- Ferreira Dias Kanthack, T.; Guillot, A.; Saboul, D.; Debarnot, U.; Di Rienzo, F. Breathing with the mind: Effects of motor imagery on breath-hold performance. Physiol. Behav. 2019, 208, 27–29. [Google Scholar]
- Formenti, D.; Rossi, A.; Bongiovanni, T.; Campa, F.; Cavaggioni, L.; Alberti, G.; Longo, S.; Trecroci, A. Effects of Non-Sport-Specific Versus Sport-Specific Training on Physical Performance and Perceptual Response in Young Football Players. Int. J. Environ. Res. Public Health 2021, 18, 1962. [Google Scholar] [CrossRef] [PubMed]
- Pagan, J.I.; Bradshaw, B.A.; Bejte, B.; Hart, J.N.; Perez, V.; Knowles, K.S.; Beausejour, J.P.; Luzadder, M.; Menger, R.; Osorio, C.; et al. Task-specific resistance training adaptations in older adults: Comparing traditional and functional exercise interventions. Front. Aging 2024, 5, 1335534. [Google Scholar] [CrossRef] [PubMed]
- Manouras, N.; Batatolis, C.; Ioakimidis, P.; Karatrantou, K.; Gerodimos, V. The Reliability of Linear Speed with and without Ball Possession of Pubertal Soccer Players. J. Funct. Morphol. Kinesiol. 2023, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Trecroci, A.; Bongiovanni, T.; Cavaggioni, L.; Pasta, G.; Formenti, D.; Alberti, G. Agreement Between Dribble and Change of Direction Deficits to Assess Directional Asymmetry in Young Elite Football Players. Symmetry 2020, 12, 787. [Google Scholar] [CrossRef]
Static Balance in the OE Condition of the Left Leg for Measuring CoP (mm2) | |||||
Groups N = 58 | Μ ± SD (mm2) Pre | Μ ± SD (mm2) Post | Mean Difference (mm2) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 615.10 ± 190.09 | 496.57 ± 183.17 | 101.82 | 37.47; 166.17 | F = 10.049 S * = 0.002 p < 0.05 |
2nd—Placebo (n = 29) | 628.54 ± 261.48 | 543.42 ± 232.02 | |||
Static balance in the OE condition of the right leg for measuring CoP (mm2) | |||||
Groups N = 58 | Μ ± SD (mm2) Pre | Μ ± SD (mm2) Post | Mean Difference (mm2) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 447.68 ± 157.10 | 387.77 ± 176.09 | 206.5 | 98.4; 314.6 | F = 5.523 S * = 0.022 p < 0.05 |
2nd—Placebo (n = 29) | 655.52 ± 261.52 | 592.95 ± 290.15 | |||
t-test for independent samples for the static balance in the OE condition of the right leg for measuring CoP (mm2) | |||||
Groups N= 58 | Μ ± SD (mm2) Post | Mean Difference (MD) (mm2) | Confidence Interval (CI) 95% | Significance (2-tailed) | |
1st—ΜΙ (n = 29) | 387.77 ± 176.09 | 205.17 | 78.92; 331.43 | t = 3.255 S * = 0.002 p < 0.05 | |
2nd—Placebo (n = 29) | 592.95 ± 290.15 |
Dynamic Balance of the Left Leg (YBT) through the Composite Score (%) | |||||
Groups N = 58 | Μ ± SD (%) Pre | Μ ± SD (%) Post | Mean Difference (%) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 97.19 ± 8.38 | 99.39 ± 8.85 | 2.42 | 1.74; 6.58 | F = 7.622 S * = 0.008 p < 0.05 |
2nd—Placebo (n = 29) | 95.2 ± 7.74 | 96.54 ± 8.08 | |||
Dynamic balance of the right leg (YBT) through the composite score (%) | |||||
Groups N = 58 | Μ ± SD (%) Pre | Μ ± SD (%) Post | Mean Difference (%) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 96.96 ± 8 | 100.77 ± 8.49 | 2.65 | 1.14; 6.46 | F = 11.451 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29) | 95.45 ± 6.72 | 96.97 ± 7.99 |
Fear of Re-Injury Due to the Rehabilitation through the CR-IWQ (Score) | |||||
Groups N = 58 | Μ ± SD (Score) Pre | Μ ± SD (Score) Post | Mean Difference (Score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 22.79 ± 12.87 | 16.24 ± 10.94 | 2.29 | −3.22; 7.81 | F = 13.488 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29) | 23.00 ± 11.47 | 20.62 ± 10.41 | |||
Fear of Re-injury due to the opponent’s ability through the CR-IWQ (score) | |||||
Groups N = 58 | Μ ± SD (score) Pre | Μ ± SD (score) Post | Mean Difference (score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 11.37 ± 4.82 | 8.72 ± 5.2 | 0.12 | −2.09; 2.33 | F = 4.737 S * = 0.034 p < 0.05 |
2nd—Placebo (n = 29) | 10.17 ± 5.39 | 10.17 ± 3.57 |
EVI Perspective of the VMIQ-2-GR (Score) | |||||||||
Groups N = 58 | Μ ± SD (Score) 1st | Μ ± SD (Score) 2nd | Μ ± SD (Score) 3rd | Μ ± SD (Score) 4th | Μ ± SD (Score) 5th | Μ ± SD (Score) 6th | Mean Difference (Score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 28.06 ± 9.80 | 26.34 ± 8.58 | 24.24 ± 8.26 | 23.27 ± 7.67 | 21.75 ± 7.21 | 20.06 ± 6.84 | 2.46 | –1.34; 6.26 | F = 13.697 S * = 0.000 p < 0.05 |
2nd—Placebo (n = 29) | 30.51 ± 9.27 | 30.06 ± 8.57 | 26.13 ± 7.25 | 25.13 ± 7.69 | 23.58 ± 6.97 | 23.06 ± 7.93 | |||
IVI perspective of the VMIQ-2-GR (score) | |||||||||
Groups N = 58 | Μ ± SD (score) 1st | Μ ± SD (score) 2nd | Μ ± SD (score) 3rd | Μ ± SD (score) 4th | Μ ± SD (score) 5th | Μ ± SD (score) 6th | Mean Difference (score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 20.86 ± 7.83 | 21.58 ± 7.92 | 20.86 ± 8.10 | 19.41 ± 7.17 | 17.96 ± 6.58 | 16.17 ± 5.73 | 0.27 | –3.19; 3.74 | F = 12.191 S * = 0.000 p < 0.05 |
2nd—Placebo (n = 29) | 23.20 ± 5.39 | 22.72 ± 7.27 | 20 ± 6.65 | 18.72 ± 6.69 | 17.17 ± 7.14 | 16.68 ± 7.10 | |||
KVI perspective of the VMIQ-2GR (score) | |||||||||
Groups N = 58 | Μ ± SD (score) 1st | Μ ± SD (score) 2nd | Μ ± SD (score) 3rd | Μ ± SD (score) 4th | Μ ± SD (score) 5th | Μ ± SD (score) 6th | Mean Difference (score) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 23.34 ± 8.13 | 21.51 ± 7.27 | 20.75 ± 7.09 | 19.24 ± 6.47 | 18.24 ± 5.71 | 17.27 ± 5.02 | 2.48 | −0.97; 5.95 | F = 6.996 S * = 0.000 p < 0.05 |
2nd—Placebo (n = 29) | 24.82 ± 8.92 | 23.41 ± 8.02 | 22.96 ± 7.76 | 21.89 ± 7.48 | 21.82 ± 8.10 | 20.37 ± 8.29 |
SPO2 (%) Final Value | |||||||||
Groups N = 58 | Μ ± SD (%) 1st | Μ ± SD (%) 2nd | Μ ± SD (%) 3rd | Μ ± SD (%) 4th | Μ ± SD (%) 5th | Μ ± SD (%) 6th | Mean Difference (%) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 97.50 ± 0.70 | 97.55 ± 0.78 | 97.87 ± 0.73 | 97.92 ± 0.61 | 98.17 ± 0.48 | 98.17 ± 0.62 | 0.007 | –0.19; 0.20 | F = 5.136 S * = 0.001 p < 0.05 |
2nd—Placebo (n = 29) | 97.92 ± 0.64 | 97.80 ± 0.60 | 97.86 ± 0.89 | 97.87 ± 0.72 | 98.10 ± 0.53 | 97.68 ± 0.59 | |||
HR (bpm) initial value | |||||||||
Groups N = 58 | Μ ± SD (bpm) 1st | Μ ± SD (bpm) 2nd | Μ ± SD (bpm) 3rd | Μ ± SD (bpm) 4th | Μ ± SD (bpm) 5th | Μ ± SD (bpm) 6th | Mean Difference (bpm) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 72.93 ± 8.40 | 74.44 ± 11.15 | 73.20 ± 9.36 | 70.17 ± 8.33 | 71.37 ± 8.24 | 71.00 ± 6.08 | −1.27 | −5.51; 2.97 | F = 7.601 S * = 0.000 p < 0.05 |
2nd—Placebo (n = 29) | 75.75 ± 14.30 | 72.72 ± 11.39 | 70.27 ± 8.68 | 68.72 ± 9.27 | 69.93 ± 7.10 | 68.10 ± 6.62 | |||
HR (bpm) final value | |||||||||
Groups N= 58 | Μ ± SD (bpm) 1st | Μ ± SD (bpm) 2nd | Μ ± SD (bpm) 3rd | Μ ± SD (bpm) 4th | Μ ± SD (bpm) 5th | Μ ± SD (bpm) 6th | Mean Difference (bpm) | Confidence Interval (CI) 95% | Sign |
1st—ΜΙ (n = 29) | 78.70 ± 9.04 | 78.27 ± 9.49 | 79.95 ± 7.36 | 78.86 ± 6.20 | 79.06 ± 7.97 | 78.07 ± 6.49 | −12.99 | −16.64; −9.33 | F = 3.838 S * = 0.005 p < 0.05 |
2nd—Placebo (n = 29) | 72.25 ± 12.70 | 65.83 ± 8.94 | 65.12 ± 8.49 | 64.00 ± 7.45 | 64.38 ± 6.25 | 63.39 ± 5.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plakoutsis, G.; Tsepis, E.; Fousekis, K.; Paraskevopoulos, E.; Papandreou, M. The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains. Healthcare 2024, 12, 1432. https://doi.org/10.3390/healthcare12141432
Plakoutsis G, Tsepis E, Fousekis K, Paraskevopoulos E, Papandreou M. The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains. Healthcare. 2024; 12(14):1432. https://doi.org/10.3390/healthcare12141432
Chicago/Turabian StylePlakoutsis, George, Elias Tsepis, Konstantinos Fousekis, Eleftherios Paraskevopoulos, and Maria Papandreou. 2024. "The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains" Healthcare 12, no. 14: 1432. https://doi.org/10.3390/healthcare12141432
APA StylePlakoutsis, G., Tsepis, E., Fousekis, K., Paraskevopoulos, E., & Papandreou, M. (2024). The Effects of Motor Imagery on Static and Dynamic Balance and on the Fear of Re-Injury in Professional Football Players with Grade II Ankle Sprains. Healthcare, 12(14), 1432. https://doi.org/10.3390/healthcare12141432