Molecular Characterization and Antibiogram of Acinetobacter baumannii Clinical Isolates Recovered from the Patients with Ventilator-Associated Pneumonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Ethics and Consent
2.3. Specimen Collection and Processing
2.4. The Antimicrobial Susceptibility Testing
Kirby–Bauer Disk Diffusion Method
2.5. Phenotypic Detection of Carbapenemase Enzyme Production by Modified Hodge Test (MHT)
2.6. Molecular Identification and Characterization of the Acinetobacter baumannii Clinical Isolates
2.6.1. DNA Extraction
2.6.2. Molecular Characterization of Antimicrobial Resistance Genes by PCR
2.7. Statistical Analysis
3. Results
3.1. Bacterial Isolates
3.2. Antibiotic Susceptibility Testing
4. Discussion
5. Limitations, Benefits, and Future Approaches
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalanuria, A.A.; Ziai, W.; Mirski, M. Ventilator-associated pneumonia in the ICU. Crit. Care 2014, 18, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, K.A. Ventilator-associated pneumonia: A review. J. Intensive Care Med. 2006, 21, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Cilloniz, C.; Martin-Loeches, I.; Garcia-Vidal, C.; San Jose, A.; Torres, A. Microbial Etiology of Pneumonia: Epidemiology, Diagnosis and Resistance Patterns. Int. J. Mol. Sci. 2016, 17, 2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Chen, B.; Liu, G.; Ran, J.; Lian, X.; Huang, X.; Wang, N.; Huang, Z. A multi-center study on the risk factors of infection caused by multi-drug resistant Acinetobacter baumannii. BMC Infect. Dis. 2018, 18, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassi, G.L.; Ferrer, M.; Saucedo, L.M.; Torres, A. Do guidelines change outcomes in ventilator-associated pneumonia? Curr. Opin. Infect. Dis. 2010, 23, 171–177. [Google Scholar] [CrossRef]
- Ceparano, M.; Baccolini, V.; Migliara, G.; Isonne, C.; Renzi, E.; Tufi, D.; De Vito, C.; De Giusti, M.; Trancassini, M.; Alessandri, F.; et al. Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors. Microorganisms 2022, 10, 722. [Google Scholar] [CrossRef]
- Nie, D.; Hu, Y.; Chen, Z.; Li, M.; Hou, Z.; Luo, X.; Mao, X.; Xue, X. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J. Biomed. Sci. 2020, 27, 26. [Google Scholar] [CrossRef] [Green Version]
- Khalil, M.A.F.; Ahmed, F.A.; Elkhateeb, A.F.; Mahmoud, E.E.; Ahmed, M.I.; Ahmed, R.I.; Hosni, A.; Alghamdi, S.; Kabrah, A.; Dablool, A.S.; et al. Virulence Characteristics of Biofilm-Forming Acinetobacter baumannii in Clinical Isolates Using a Galleria mellonella Model. Microorganisms 2021, 9, 2365. [Google Scholar] [CrossRef]
- Mietto, C.; Pinciroli, R.; Patel, N.; Berra, L. Ventilator associated pneumonia: Evolving definitions and preventive strategies. Respir. Care 2013, 58, 990–1007. [Google Scholar] [CrossRef] [Green Version]
- Grgurich, P.E.; Hudcova, J.; Lei, Y.; Sarwar, A.; Craven, D.E. Diagnosis of ventilator-associated pneumonia: Controversies and working toward a gold standard. Curr. Opin. Infect. Dis. 2013, 26, 140–150. [Google Scholar] [CrossRef]
- Antunes, L.C.; Imperi, F.; Carattoli, A.; Visca, P. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS ONE 2011, 6, e22674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roson, B.; Carratala, J.; Verdaguer, R.; Dorca, J.; Manresa, F.; Gudiol, F. Prospective study of the usefulness of sputum Gram stain in the initial approach to community-acquired pneumonia requiring hospitalization. Clin. Infect. Dis. 2000, 31, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-beta-lactamase (NDM): A threat to public health. BMC Microbiol. 2017, 17, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, B.; Perveen, K.; Olsen, B.; Zahra, R. Emergence of carbapenem-resistant Acinetobacter baumannii in hospitals in Pakistan. J. Med. Microbiol. 2014, 63, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Zheng, Y.; Sun, B.; Tang, X.; Wang, R.; Tong, Z. Tigecycline combination for ventilator-associated pneumonia caused by extensive drug-resistant Acinetobacter baumannii. J. Thorac. Dis. 2016, 8, 2784–2792. [Google Scholar] [CrossRef] [Green Version]
- Nhu, N.T.K.; Lan, N.P.H.; Campbell, J.I.; Parry, C.M.; Thompson, C.; Tuyen, H.T.; Hoang, N.V.M.; Tam, P.T.T.; Le, V.M.; Nga, T.V.T.; et al. Emergence of carbapenem-resistant Acinetobacter baumannii as the major cause of ventilator-associated pneumonia in intensive care unit patients at an infectious disease hospital in southern Vietnam. J. Med. Microbiol. 2014, 63, 1386–1394. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; 46p. [Google Scholar]
- Rynga, D.; Shariff, M.; Deb, M. Phenotypic and molecular characterization of clinical isolates of Acinetobacter baumannii isolated from Delhi, India. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 40. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.N.; Ferraro, M.J.; Reller, L.B.; Schreckenberger, P.C.; Swenson, J.M.; Sader, H.S. Multicenter studies of tigecycline disk diffusion susceptibility results for Acinetobacter spp. J. Clin. Microbiol. 2007, 45, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Abouelfetouh, A.; Torky, A.S.; Aboulmagd, E. Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrob. Resist. Infect. Control 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.; Ejaz, H.; Zafar, A.; Hamid, H. Phenotypic Detection of Metallo-Beta-Lactamases in Carbapenem Resistant Acinetobacter baumannii Isolated from Pediatric Patients in Pakistan. J. Pathog. 2016, 2016, 8603964. [Google Scholar] [CrossRef]
- Moulana, Z.; Babazadeh, A.; Eslamdost, Z.; Shokri, M.; Ebrahimpour, S. Phenotypic and genotypic detection of metallo-beta-lactamases in Carbapenem resistant Acinetobacter baumannii. Casp. J. Intern. Med. 2020, 11, 171–176. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Afshari, A.; Pagani, L.; Harbarth, S. Year in review 2011: Critical Care—Infection. Crit. Care 2012, 16, 242. [Google Scholar] [CrossRef] [Green Version]
- American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef] [Green Version]
- Garnacho-Montero, J.; Ortiz-Leyba, C.; Fernandez-Hinojosa, E.; Aldabo-Pallas, T.; Cayuela, A.; Marquez-Vacaro, J.A.; Garcia-Curiel, A.; Jimenez-Jimenez, F.J. Acinetobacter baumannii ventilator-associated pneumonia: Epidemiological and clinical findings. Intensive Care Med. 2005, 31, 649–655. [Google Scholar] [CrossRef]
- Espinal, P.; Marti, S.; Vila, J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J. Hosp. Infect. 2012, 80, 56–60. [Google Scholar] [CrossRef]
- Royer, S.; Faria, A.L.; Seki, L.M.; Chagas, T.P.; Campos, P.A.; Batistao, D.W.; Asensi, M.D.; Gontijo Filho, P.P.; Ribas, R.M. Spread of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clones in patients with ventilator-associated pneumonia in an adult intensive care unit at a university hospital. Braz. J. Infect. Dis. 2015, 19, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Chaari, A.; Mnif, B.; Bahloul, M.; Mahjoubi, F.; Chtara, K.; Turki, O.; Gharbi, N.; Chelly, H.; Hammami, A.; Bouaziz, M. Acinetobacter baumannii ventilator-associated pneumonia: Epidemiology, clinical characteristics, and prognosis factors. Int. J. Infect. Dis. 2013, 17, e1225–e1228. [Google Scholar] [CrossRef] [Green Version]
- Ciginskiene, A.; Dambrauskiene, A.; Rello, J.; Adukauskiene, D. Ventilator-Associated Pneumonia due to Drug-Resistant Acinetobacter baumannii: Risk Factors and Mortality Relation with Resistance Profiles, and Independent Predictors of In-Hospital Mortality. Medicina 2019, 55, 49. [Google Scholar] [CrossRef] [Green Version]
- Lachhab, Z.; Frikh, M.; Maleb, A.; Kasouati, J.; Doghmi, N.; Ben Lahlou, Y.; Belefquih, B.; Lemnouer, A.; Elouennass, M. Bacteraemia in Intensive Care Unit: Clinical, Bacteriological, and Prognostic Prospective Study. Can. J. Infect. Dis. Med. Microbiol. 2017, 2017, 4082938. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef] [PubMed]
- Timsit, J.F.; Soubirou, J.F.; Voiriot, G.; Chemam, S.; Neuville, M.; Mourvillier, B.; Sonneville, R.; Mariotte, E.; Bouadma, L.; Wolff, M. Treatment of bloodstream infections in ICUs. BMC Infect. Dis. 2014, 14, 489. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef] [Green Version]
- Azimi, L.; Motevallian, A.; Ebrahimzadeh Namvar, A.; Asghari, B.; Lari, A.R. Nosocomial infections in burned patients in motahari hospital, tehran, iran. Dermatol. Res. Pract. 2011, 2011, 436952. [Google Scholar] [CrossRef]
- Azimi, L.; Talebi, M.; Pourshafie, M.R.; Owlia, P.; Rastegar Lari, A. Characterization of Carbapenemases in Extensively Drug Resistance Acinetobacter baumannii in a Burn Care Center in Iran. Int. J. Mol. Cell. Med. 2015, 4, 46–53. [Google Scholar] [PubMed]
- Asadian, M.; Azimi, L.; Alinejad, F.; Ostadi, Y.; Lari, A.R. Molecular Characterization of Acinetobacter baumannii Isolated from Ventilator-Associated Pneumonia and Burn Wound Colonization by Random Amplified Polymorphic DNA Polymerase Chain Reaction and the Relationship between Antibiotic Susceptibility and Biofilm Production. Adv. Biomed. Res. 2019, 8, 58. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Castaldo, N.; Righi, E.; Peghin, M. New antibiotics for ventilator-associated pneumonia. Curr. Opin. Infect. Dis. 2018, 31, 177–186. [Google Scholar] [CrossRef]
- Nowak, P.; Paluchowska, P.; Budak, A. Distribution of blaOXA genes among carbapenem-resistant Acinetobacter baumannii nosocomial strains in Poland. New Microbiol. 2012, 35, 317–325. [Google Scholar]
- Helal, S.; El Anany, M.; Ghaith, D.; Rabeea, S. The Role of MDR-Acinetobacter baumannii in Orthopedic Surgical Site Infections. Surg. Infect. 2015, 16, 518–522. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratala, J.; et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Galani, I.; Kontopidou, F.; Souli, M.; Rekatsina, P.D.; Koratzanis, E.; Deliolanis, J.; Giamarellou, H. Colistin susceptibility testing by Etest and disk diffusion methods. Int. J. Antimicrob. Agents 2008, 31, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Montero, A.; Ariza, J.; Corbella, X.; Domenech, A.; Cabellos, C.; Ayats, J.; Tubau, F.; Ardanuy, C.; Gudiol, F. Efficacy of colistin versus beta-lactams, aminoglycosides, and rifampin as monotherapy in a mouse model of pneumonia caused by multiresistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2002, 46, 1946–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Vazquez, E.; Marcos, M.A.; Mensa, J.; de Roux, A.; Puig, J.; Font, C.; Francisco, G.; Torres, A. Assessment of the usefulness of sputum culture for diagnosis of community-acquired pneumonia using the PORT predictive scoring system. Arch. Intern. Med. 2004, 164, 1807–1811. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, H.; Kitsios, G.D.; Iwata, M.; Terasawa, T. Sputum Gram Stain for Bacterial Pathogen Diagnosis in Community-acquired Pneumonia: A Systematic Review and Bayesian Meta-analysis of Diagnostic Accuracy and Yield. Clin. Infect. Dis. 2020, 71, 499–513. [Google Scholar] [CrossRef]
- Saukkoriipi, A.; Palmu, A.A.; Jokinen, J. Culture of all sputum samples irrespective of quality adds value to the diagnosis of pneumococcal community-acquired pneumonia in the elderly. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1249–1254. [Google Scholar] [CrossRef]
Characteristics | Mean (Min–Max) |
---|---|
Age | 57.2 years (19–95) |
Sex | |
Male | 61.20% |
Female | 38.80% |
BMI | 27.3 (17.8–38.2) |
Underlying disease/Diagnosis | |
Acute cardiovascular accident | 17% |
Septic Shock | 12% |
Hypertension, old CVA | 11% |
Acute respiratory failure | 10% |
Head Trauma | 9% |
Aspiration pneumonia | 8% |
Pneumonia | 4% |
Others | 27% |
S. No. | Antibiotics | 2019—Total A. baumannii = 35 n (%) | 2020—Total A. baumannii = 47 n (%) |
---|---|---|---|
1 | Colistin (10 µg) | 35 (100) | 43 (91.4) |
2 | Amikacin (30 µg) | 4 (11.4) | 22 (48.9) |
3 | Piperacillin-Tazobactam (100 µg/10 µg) | R | 1 (2.1) |
4 | Piperacillin (100 µg) | 1 (2.8) | R |
5 | Gentamicin (10 µg) | 4 (11.4) | 8 (17) |
6 | Meropenem (10 µg) | R | 1 (2.1) |
7 | Imipenem (10 µg) | R | 1 (2.1) |
8 | Ciprofloxacin (5 µg) | R | R |
9 | Teicoplanin (30 µg) | 1 (2.8) | 9 (19.1) |
10 | Aztreonam (30 µg) | R | R |
11 | Cefepime (30 µg) | R | 5 (10.6) |
12 | Ceftazidime (30 µg) | 1 (2.8) | R |
13 | Amoxicillin/clavulanic acid (20/10 µg) | R | R |
14 | Trimethoprim/Sulfamethoxazole (1.25/23.75 µg) | 2 (5.7) | R |
15 | Cefoxitin (30 µg) | R | R |
16 | Ertapenem (10 µg) | R | R |
17 | Cefuroxime (30 µg) | R | R |
18 | Ampicillin (10 µg) | R | R |
19 | Tigecycline (15 µg) | 1 (2.8) | 7 (14.8) |
20 | Levofloxacin (5 µg) | R | 1 (2.1) |
21 | Ceftriaxone (30 µg) | R | R |
S. No. | Types of Infection | n (%)—2019 | n (%)—2020 |
---|---|---|---|
1 | Ventilator-associated pneumonia | 18 (51.4) | 25 (53.2) |
2 | Catheter-associated Urinary Tract Infection | 2 (5.7) | 2 (4.3) |
3 | Central Line-associated Bloodstream Infection | 4 (11.4) | 2 (4.3) |
4 | Bloodstream Infection | 1 (2.8) | 2 (4.3) |
5 | Surgical Site Infection (SSI) | 9 (25.7) | 6 (12.8) |
6 | Non-SSI | 1 (2.8) | 8 (17) |
7 | Respiratory tract infections | -- | 2 (4.3) |
Total | 35 | 47 |
S. No. | Gene | n (%)—2019 | n (%)—2020 |
---|---|---|---|
1 | blaVIM-2 | 9 (25.7%) | 12 (25.5%) |
2 | blaIMP-1 | 11 (31.4%) | 8 (17%) |
3 | blaNDM-1 | 3 (8.5%) | 7 (14.8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, M.; Syed Khaja, A.S.; Hossain, A.; Alenazi, F.; Said, K.B.; Moursi, S.A.; Almalaq, H.A.; Mohamed, H.; Rakha, E. Molecular Characterization and Antibiogram of Acinetobacter baumannii Clinical Isolates Recovered from the Patients with Ventilator-Associated Pneumonia. Healthcare 2022, 10, 2210. https://doi.org/10.3390/healthcare10112210
Saleem M, Syed Khaja AS, Hossain A, Alenazi F, Said KB, Moursi SA, Almalaq HA, Mohamed H, Rakha E. Molecular Characterization and Antibiogram of Acinetobacter baumannii Clinical Isolates Recovered from the Patients with Ventilator-Associated Pneumonia. Healthcare. 2022; 10(11):2210. https://doi.org/10.3390/healthcare10112210
Chicago/Turabian StyleSaleem, Mohd, Azharuddin Sajid Syed Khaja, Ashfaque Hossain, Fahaad Alenazi, Kamaleldin B. Said, Soha Abdallah Moursi, Homoud Abdulmohsin Almalaq, Hamza Mohamed, and Ehab Rakha. 2022. "Molecular Characterization and Antibiogram of Acinetobacter baumannii Clinical Isolates Recovered from the Patients with Ventilator-Associated Pneumonia" Healthcare 10, no. 11: 2210. https://doi.org/10.3390/healthcare10112210
APA StyleSaleem, M., Syed Khaja, A. S., Hossain, A., Alenazi, F., Said, K. B., Moursi, S. A., Almalaq, H. A., Mohamed, H., & Rakha, E. (2022). Molecular Characterization and Antibiogram of Acinetobacter baumannii Clinical Isolates Recovered from the Patients with Ventilator-Associated Pneumonia. Healthcare, 10(11), 2210. https://doi.org/10.3390/healthcare10112210