Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case
Abstract
:1. Introduction
2. A Method for Long-Term Prediction
2.1. The One-Year Case
2.2. The T-year Case
2.3. The Local-Linear Smoother for the T-Year Horizon
2.4. A Principle of Validation for Model Selection and Smoothing Parameter Choice
3. Empirical Results and Discussion
3.1. The Data Set
3.2. Descriptive Analysis
3.3. The Single Benchmarking Approach
3.4. The Full Benchmarking Approach
3.5. Real-Income Long-Term Pension Prediction
3.6. One-Year ahead Real-Time Predictions
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Lioui, A.; Poncet, P. Long horizon predictability: An asset allocation perspective. Eur. J. Oper. Res. 2019, 278, 961–975. [Google Scholar] [CrossRef]
- Møller, S.; Rangvid, J. End-of-the-Year Economic Growth and Time-varying Expected Returns. J. Financ. Econ. 2015, 115, 136–154. [Google Scholar] [CrossRef] [Green Version]
- Lettau, M.; Van Nieuwerburgh, S. Reconciling the return predictability evidence. Rev. Financ. Stud. 2008, 21, 1601–1652. [Google Scholar] [CrossRef]
- Chen, Q.; Hong, Y. Predictability of Equity Returns over Different Time Horizons: A Nonparametric Approach; Working Paper; Department of Economics, Cornell University: Ithaca, NY, USA, 2009. [Google Scholar]
- Cheng, T.; Gao, J.; Linton, O. Nonparametric Predictive Regressions for Stock Return Predictions; Cambridge Working Papers in Economics; 1932; Faculty of Economics, University of Cambridge: Cambridge, UK, 2019. [Google Scholar]
- Kyriakou, I.; Mousavi, P.; Nielsen, J.P.; Scholz, M. Forecasting Benchmarks of Long-Term Stock Returns via Machine Learning. Ann. Oper. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.; Sperlich, S. Prediction of stock returns: A new way to look at it. ASTIN Bull. 2003, 33, 399–417. [Google Scholar] [CrossRef] [Green Version]
- Scholz, M.; Nielsen, J.; Sperlich, S. Nonparametric prediction of stock returns based on yearly data: The long-term view. Insur. Math. Econ. 2015, 65, 143–155. [Google Scholar] [CrossRef]
- Scholz, M.; Sperlich, S.; Nielsen, J. Nonparametric long term prediction of stock returns with generated bond yields. Insur. Math. Econ. 2016, 69, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Rapach, D.; Zhou, G. Forecasting Stock Returns. In Handbook of Economic Forecasting, 2A ed.; Elliott, G., Timmerman, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 328–383. [Google Scholar]
- Munk, C.; Rangvid, J. New Assumptions of a pension forecast model: Background, level and consequences for individuals forecasted pension. Finans/Invest 2018, 6, 6–14. [Google Scholar]
- Xiao, Z.; Linton, O.B.; Carroll, R.J.; Mammen, E. More efficient local polynomial estimation in nonparametric regression with autocorrelated errors. J. Am. Stat. Assoc. 2003, 98, 980–992. [Google Scholar] [CrossRef]
- Su, L.; Ullah, A. More efficient estimation in nonparametric regression with nonparametric autocorrelated errors. Econ. Theory 2006, 22, 98–126. [Google Scholar] [CrossRef]
- De Brabanter, K.; De Brabanter, J.; Suykens, J.; De Moor, B. Kernel regression in the presence of correlated errors. J. Mach. Learn. Res. 2011, 12, 1955–1976. [Google Scholar]
- Bergmeir, C.; Hyndman, R.J.; Koo, B. A note on the validity of cross-validation for evaluating autoregressive time series predictions. Comput. Stat. Data Anal. 2018, 120, 70–83. [Google Scholar] [CrossRef]
- Linton, O.B.; Mammen, E. Nonparametric transformation to white noise. J. Econ. 2008, 142, 241–264. [Google Scholar] [CrossRef] [Green Version]
- Geller, J.; Neumann, M.H. Improved local polynomial estimation in time series regression. J. Nonparametric Stat. 2018, 30, 1–27. [Google Scholar] [CrossRef]
- Burman, P.; Chow, E.; Nolan, D. A cross-validatory method for dependent data. Biometrika 1994, 81, 351–358. [Google Scholar] [CrossRef]
- Opsomer, J.; Wang, Y.; Yang, Y. Nonparametric regression with correlated errors. Stat. Sci. 2001, 16, 134–153. [Google Scholar]
- Chu, C.K.; Marron, J.S. Comparison of two bandwidth selectors with dependent errors. Ann. Stat. 1991, 19, 1906–1918. [Google Scholar] [CrossRef]
- Shiller, R. Market Volatility; MIT Press: Cambridge, MA, USA, 1989. [Google Scholar]
- Welch, I.; Goyal, A. A comprehensive look at the empirical performance of equity premium prediction. Rev. Financ. Stud. 2008, 21, 1455–1508. [Google Scholar] [CrossRef]
- Mammen, E.; Nielsen, J.P.; Scholz, M.; Sperlich, S. Conditional Variance Forecasts for Long-Term Stock Returns. Risks 2019, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Cont, R. Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Financ. 2001, 1, 223–236. [Google Scholar] [CrossRef]
- Pesaran, H.; Timmermann, A. Market Timing and Return Predictability under Model Instability. J. Empir. Financ. 2002, 8, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Rapach, D.; Wohar, M. Structural Change and the Predictability of Stock Returns; Working Paper; University of Nebraska-Omaha: Omaha, NE, USA, 2004. [Google Scholar]
- Resnick, B.G.; Shoesmith, G.L. Using the yield curve to time the stock market. Financ. Anal. J. 2002, 58, 82–90. [Google Scholar] [CrossRef]
- Merton, R. The crisis in retirement planning. Harv. Bus. Rev. 2014, 92, 43–50. [Google Scholar]
- Gerrard, R.; Hiabu, M.; Kyriakou, I.; Nielsen, J.P. Communication and personal selection of pension saver’s financial risk. Eur. J. Oper. Res. 2019, 274, 1102–1111. [Google Scholar] [CrossRef]
- Gerrard, R.; Hiabu, M.; Kyriakou, I.; Nielsen, J.P. Self-selection and risk sharing in a modern world of life-long annuities. Br. Actuar. J. 2019, 23. [Google Scholar] [CrossRef] [Green Version]
- González-Manteiga, W.; Crujeiras, R. An updated review of Goodness-of-Fit tests for regression models. TEST Off. J. Span. Soc. Stat. Oper. Res. 2013, 22, 361–411. [Google Scholar] [CrossRef]
Max | Min | Mean | Sd | Skew | Exc. Kurt | |
---|---|---|---|---|---|---|
S&P stock price index | 2789.80 | 3.25 | 277.58 | 558.13 | 2.43 | 5.50 |
Dividend accruing to index | 53.75 | 0.18 | 6.04 | 10.56 | 2.45 | 6.00 |
Earnings accruing to index | 132.39 | 0.16 | 13.96 | 26.31 | 2.43 | 5.35 |
One-year excess stock returns | 42.39 | −58.26 | 4.58 | 17.28 | −0.57 | 0.68 |
Five-year excess stock returns | 107.27 | −78.54 | 23.49 | 36.69 | −0.14 | −0.37 |
Dividend-by-price | 9.88 | 1.17 | 4.31 | 1.71 | 0.46 | 0.25 |
Earnings-by-price | 17.75 | 1.72 | 7.28 | 2.75 | 1.05 | 1.39 |
Short-term interest rate | 14.93 | 0.07 | 3.97 | 2.50 | 0.96 | 2.34 |
Long-term interest rate | 14.59 | 1.88 | 4.53 | 2.27 | 1.81 | 3.63 |
Inflation | 20.69 | −15.65 | 2.23 | 5.96 | 0.26 | 1.60 |
Spread | 3.64 | −3.71 | 0.56 | 1.32 | −0.05 | 0.02 |
Benchmark | Explanatory Variable(s) | ||||||
---|---|---|---|---|---|---|---|
d | e | r | l | s | |||
Short-term rate | −1.6 | −1.1 | −0.6 | 3.0 | 0.0 | −1.4 | 9.7 |
Long-term rate | −1.8 | -0.8 | -0.4 | 1.9 | 0.0 | −1.4 | 6.2 |
Earnings-by-price | −1.7 | −1.2 | −1.4 | 0.0 | −0.8 | −1.2 | 7.5 |
Inflation | −1.4 | −0.2 | −1.5 | 0.8 | −0.8 | 10.3 | 7.2 |
Short-term rate | −2.6 | −2.4 | 0.9 | −2.4 | −2.9 | 6.3 | |
Long-term rate | −2.4 | −2.3 | −0.2 | −2.4 | −3.1 | 2.7 | |
Earnings-by-price | −3.5 | −3.7 | −2.0 | −2.8 | −2.8 | 4.5 | |
Inflation | −1.6 | −3.4 | −0.9 | −2.5 | 9.7 | 4.8 | |
Short-term rate | −2.9 | 2.1 | −1.6 | −2.6 | 9.3 | ||
Long-term rate | −2.7 | 1.3 | −1.3 | −2.3 | 5.8 | ||
Earnings-by-price | −3.7 | −1.4 | −2.2 | −2.4 | 6.0 | ||
Inflation | −1.9 | 0.8 | −1.2 | 9.5 | 7.9 | ||
Short-term rate | 4.0 | −1.1 | −1.6 | 9.1 | |||
Long-term rate | 3.2 | −0.5 | −1.3 | 5.5 | |||
Earnings-by-price | −1.4 | −2.3 | −2.7 | 5.4 | |||
Inflation | −0.4 | −2.5 | 10.9 | 5.4 | |||
Short-term rate | 8.5 | 1.4 | 10.0 | ||||
Long-term rate | 4.9 | 0.3 | 6.5 | ||||
Earnings-by-price | 6.0 | −1.5 | 7.2 | ||||
Inflation | 5.2 | 9.5 | 7.4 | ||||
Short-term rate | −2.1 | 10.1 | |||||
Long-term rate | −2.0 | 6.6 | |||||
Earnings-by-price | −2.0 | 7.0 | |||||
Inflation | 9.9 | 7.4 | |||||
Short-term rate | 7.7 | ||||||
Long-term rate | 4.1 | ||||||
Earnings-by-price | 5.2 | ||||||
Inflation | 15.4 |
Benchmark | Explanatory Variable(s) | ||||||
---|---|---|---|---|---|---|---|
d | e | r | l | s | |||
Short-term rate | 0.9 | 1.1 | −1.5 | 7.8 | 1.4 | −1.8 | 15.5 |
Long-term rate | 1.1 | 4.6 | 0.5 | 3.9 | 1.0 | −1.0 | 8.0 |
Earnings-by-price | 1.4 | −3.8 | −3.6 | −4.7 | −1.4 | −1.4 | 11.5 |
Inflation | 1.3 | 7.6 | −3.9 | −6.7 | −3.5 | 6.8 | 0.8 |
Short-term rate | −1.5 | −2.8 | 8.2 | 2.2 | −1.7 | 16.4 | |
Long-term rate | 2.4 | −0.3 | 4.4 | 1.6 | −0.5 | 9.0 | |
Earnings-by-price | −4.5 | −3.9 | −4.9 | −0.6 | −0.4 | 14.1 | |
Inflation | 5.9 | −4.8 | −5.7 | −3.0 | 7.3 | 2.2 | |
Short-term rate | −3.1 | 6.4 | −4.1 | −2.3 | 26.2 | ||
Long-term rate | 1.0 | 5.8 | −0.1 | 1.6 | 21.0 | ||
Earnings-by-price | −7.5 | −12.1 | −6.6 | −6.1 | 12.0 | ||
Inflation | 3.4 | 0.3 | 1.8 | 10.8 | 13.7 | ||
Short-term rate | 8.1 | −4.5 | −1.5 | 19.1 | |||
Long-term rate | 7.9 | −3.3 | 1.7 | 12.6 | |||
Earnings-by-price | −11.4 | −8.8 | −4.5 | 10.4 | |||
Inflation | −9.5 | −12.5 | 9.7 | −1.1 | |||
Short-term rate | 14.7 | 5.6 | 14.8 | ||||
Long-term rate | 6.5 | 2.7 | 7.0 | ||||
Earnings-by-price | 9.2 | −6.5 | 9.0 | ||||
Inflation | −6.4 | 0.9 | −5.9 | ||||
Short-term rate | −1.4 | 13.4 | |||||
Long-term rate | −0.5 | 5.8 | |||||
Earnings-by-price | −1.8 | 9.2 | |||||
Inflation | 7.5 | −5.8 | |||||
Short-term rate | 15.4 | ||||||
Long-term rate | 8.8 | ||||||
Earnings-by-price | 11.0 | ||||||
Inflation | 8.5 |
Benchmark | Explanatory Variable(s) | ||||||
---|---|---|---|---|---|---|---|
Short-term rate | −1.6 | 3.1 | 5.2 | – | 9.5 | −1.3 | 9.5 |
Long-term rate | −1.8 | −0.2 | 0.7 | 6.1 | – | −1.5 | 6.1 |
Earnings-by-price | −1.7 | −2.3 | – | −0.2 | −1.0 | −0.7 | 7.4 |
Inflation | −1.4 | 10.4 | 12.2 | 7.2 | 10.5 | – | 6.5 |
Short-term rate | 1.8 | 3.2 | – | 6.0 | −2.9 | 6.0 | |
Long-term rate | −1.9 | −1.1 | 2.6 | – | −3.1 | 2.6 | |
Earnings-by-price | −4.1 | – | −2.3 | −3.2 | −2.7 | 4.3 | |
Inflation | 10.8 | 11.5 | 6.2 | 9.6 | – | 4.1 | |
Short-term rate | 2.4 | – | 9.8 | 1.5 | 9.8 | ||
Long-term rate | −1.6 | 6.3 | – | −1.8 | 6.3 | ||
Earnings-by-price | – | −3.2 | −3.6 | −3.5 | 4.0 | ||
Inflation | 10.3 | 9.5 | 10.0 | – | 15.7 | ||
Short-term rate | – | 10.7 | 3.3 | 10.7 | |||
Long-term rate | 7.1 | – | −0.5 | 7.1 | |||
Earnings-by-price | – | – | – | – | |||
Inflation | 11.4 | 11.3 | – | 17.8 | |||
Short-term rate | – | – | – | ||||
Long-term rate | – | 3.6 | – | ||||
Earnings-by-price | 4.9 | −2.1 | 5.7 | ||||
Inflation | 13.9 | – | 14.8 | ||||
Short-term rate | 7.2 | – | |||||
Long-term rate | – | – | |||||
Earnings-by-price | −2.4 | 5.4 | |||||
Inflation | – | 14.7 | |||||
Short-term rate | 7.2 | ||||||
Long-term rate | 3.6 | ||||||
Earnings-by-price | 5.1 | ||||||
Inflation | – |
Benchmark | Explanatory Variable(s) | ||||||
---|---|---|---|---|---|---|---|
Short-term rate | 0.9 | 12.1 | 10.4 | – | 15.5 | −2.5 | 15.5 |
Long-term rate | 1.1 | 8.5 | 0.8 | 8.0 | – | −1.6 | 8.0 |
Earnings-by-price | 1.4 | 8.4 | – | −4.9 | −3.7 | −0.7 | 11.4 |
Inflation | 1.3 | 10.9 | 12.4 | 5.7 | 8.7 | – | 0.8 |
Short-term rate | 10.8 | 9.9 | – | 16.5 | −1.5 | 16.5 | |
Long-term rate | 3.2 | -0.1 | 9.2 | – | -1.1 | 9.2 | |
Earnings-by-price | 5.3 | – | −5.3 | −5.1 | −0.2 | 14.0 | |
Inflation | 11.1 | 12.4 | 5.8 | 9.0 | – | 2.2 | |
Short-term rate | 8.5 | – | 21.9 | 7.3 | 21.9 | ||
Long-term rate | 1.4 | 13.8 | – | 5.0 | 13.8 | ||
Earnings-by-price | – | −1.6 | 4.1 | 5.4 | 15.5 | ||
Inflation | 9.5 | 4.1 | 1.7 | – | 13.0 | ||
Short-term rate | – | 21.4 | 8.2 | 21.4 | |||
Long-term rate | 16.4 | – | 2.5 | 16.4 | |||
Earnings-by-price | – | – | – | – | |||
Inflation | 8.6 | 4.9 | – | 14.7 | |||
Short-term rate | – | – | – | ||||
Long-term rate | – | 9.5 | – | ||||
Earnings-by-price | 5.9 | −6.2 | 6.0 | ||||
Inflation | 10.8 | – | 10.0 | ||||
Short-term rate | 16.0 | – | |||||
Long-term rate | – | – | |||||
Earnings-by-price | −6.4 | 6.0 | |||||
Inflation | – | 10.1 | |||||
Short-term rate | 16.0 | ||||||
Long-term rate | 9.5 | ||||||
Earnings-by-price | 11.9 | ||||||
Inflation | – |
US Stock Market Data | Predictions | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | P | D | E | R | L | s | d | e | |||||
2018-09 | 2901.50 | 52.34 | 130.39 | 2.47 | 3.00 | 0.53 | 2.28 | 1.80 | 4.49 | 1.78 | 6.18 | 3.90 | 3.71 |
2018-10 | 2785.46 | 52.81 | 131.06 | 2.56 | 3.15 | 0.59 | 2.52 | 1.90 | 4.71 | 1.97 | 6.57 | 4.05 | 4.01 |
2018-11 | 2723.23 | 53.28 | 131.72 | 2.60 | 3.12 | 0.52 | 2.18 | 1.96 | 4.84 | 1.75 | 6.47 | 4.30 | 3.87 |
2018-12 | 2567.31 | 53.75 | 132.39 | 2.57 | 2.83 | 0.26 | 1.91 | 2.09 | 5.16 | 0.88 | 5.91 | 4.00 | 3.34 |
2019-01 | 2607.39 | 54.15 | 133.06 | 2.50 | 2.71 | 0.21 | 1.55 | 2.08 | 5.10 | 0.70 | 5.68 | 4.13 | 3.18 |
2019-02 | 2754.86 | 54.54 | 133.72 | 2.47 | 2.68 | 0.21 | 1.52 | 1.98 | 4.85 | 0.70 | 5.44 | 3.92 | 2.97 |
2019-03 | 2803.98 | 54.94 | 134.39 | 2.41 | 2.57 | 0.16 | 1.86 | 1.96 | 4.79 | 0.53 | 5.21 | 3.34 | 2.80 |
2019-04 | 2903.80 | 55.32 | 134.68 | 2.34 | 2.53 | 0.19 | 2.00 | 1.91 | 4.64 | 0.63 | 5.17 | 3.17 | 2.83 |
2019-05 | 2854.71 | 55.70 | 134.98 | 2.27 | 2.40 | 0.13 | 1.79 | 1.95 | 4.73 | 0.42 | 5.04 | 3.25 | 2.77 |
2019-06 | 2890.17 | 56.08 | 135.27 | 1.94 | 2.07 | 0.13 | 1.65 | 1.94 | 4.68 | 0.42 | 4.99 | 3.34 | 3.05 |
2019-07 | 2996.11 | 56.46 | 134.48 | 1.91 | 2.06 | 0.15 | 1.81 | 1.88 | 4.49 | 0.49 | 4.88 | 3.07 | 2.97 |
2019-08 | 2897.45 | 56.84 | 133.69 | 1.73 | 1.63 | −0.10 | 1.75 | 1.96 | 4.61 | −0.44 | 4.07 | 2.32 | 2.34 |
2019-09 | 2982.16 | 57.22 | 132.90 | 1.75 | 1.70 | −0.05 | 1.71 | 1.92 | 4.46 | −0.25 | 4.11 | 2.40 | 2.36 |
2019-10 | 2977.68 | 57.56 | 135.09 | 1.57 | 1.71 | 0.14 | 1.76 | 1.93 | 4.54 | 0.45 | 4.89 | 3.13 | 3.32 |
2019-11 | 3104.90 | 57.90 | 137.28 | 1.53 | 1.81 | 0.28 | 2.05 | 1.86 | 4.42 | 0.95 | 5.27 | 3.22 | 3.74 |
2019-12 | 3176.75 | 58.24 | 139.47 | 1.51 | 1.86 | 0.35 | 2.29 | 1.83 | 4.39 | 1.19 | 5.48 | 3.20 | 3.97 |
2020-01 | 3278.20 | 58.69 | 138.43 | 1.49 | 1.76 | 0.27 | 2.49 | 1.79 | 4.22 | 0.91 | 5.05 | 2.56 | 3.56 |
2020-02 | 3277.31 | 59.13 | 137.39 | 1.37 | 1.50 | 0.13 | 2.33 | 1.80 | 4.19 | 0.42 | 4.52 | 2.19 | 3.15 |
2020-03 | 2652.39 | 59.58 | 136.35 | 0.32 | 0.87 | 0.55 | 1.54 | 2.25 | 5.14 | 1.85 | 6.86 | 5.32 | 6.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakou, I.; Mousavi, P.; Nielsen, J.P.; Scholz, M. Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case. Mathematics 2020, 8, 927. https://doi.org/10.3390/math8060927
Kyriakou I, Mousavi P, Nielsen JP, Scholz M. Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case. Mathematics. 2020; 8(6):927. https://doi.org/10.3390/math8060927
Chicago/Turabian StyleKyriakou, Ioannis, Parastoo Mousavi, Jens Perch Nielsen, and Michael Scholz. 2020. "Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case" Mathematics 8, no. 6: 927. https://doi.org/10.3390/math8060927
APA StyleKyriakou, I., Mousavi, P., Nielsen, J. P., & Scholz, M. (2020). Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case. Mathematics, 8(6), 927. https://doi.org/10.3390/math8060927