# Conformal and Geodesic Mappings onto Some Special Spaces

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Concepts of Conformal Mappings

## 3. Conformal Mappings of Riemannian Spaces onto Ricci-2-Symmetric Riemannian Spaces

**Theorem**

**1.**

## 4. Basic Concepts of Geodesic Mappings

## 5. Geodesic Mappings of Spaces with Affine Connections onto Ricci-2-Symmetric Spaces

**Theorem**

**2.**

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Denisov, V.I. Special conformal mappings in general relativity. J. Soviet Math.
**1990**, 48, 36–40. [Google Scholar] [CrossRef] - Eisenhart, L.P. Non-Riemannian geometry. In Reprint of the 1927 Original. American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1990; Volume 8, p. viii+184. ISBN 0-8218-1008-1. [Google Scholar]
- Petrov, A.Z. New Methods in the General Theory of Relativity; Nauka: Moscow, Russia, 1966; p. 496. [Google Scholar]
- Schouten, J.A.; Struik, D.J. Einfuhrung in Die Neueren Methoden der Differentialgeometrie. B. 1; Noordhoff: Groningen, The Netherlands, 1935. [Google Scholar]
- Schouten, J.A.; Struik, D.J. Einfuhrung in Die Neueren Methoden der Differentialgeometrie. B. 2; Noordhoff: Groningen, The Netherlands, 1938. [Google Scholar]
- Brinkmann, H.W. Einstein spaces which are mapped conformally on each other. Math. Ann.
**1925**, 94, 119–145. [Google Scholar] [CrossRef] - Evtushik, L.E.; Hinterleitner, I.; Guseva, N.I.; Mikeš, J. Conformal mappings onto Einstein spaces. Russ. Math.
**2016**, 60, 5–9. [Google Scholar] [CrossRef] - Mikeš, J.; Gavril’chenko, M.L.; Gladysheva, E.I. On Conformal Mappings onto Einstein Spaces. Vestnik Moscow Univ.
**1994**, 3, 13–17. [Google Scholar] - Berezovskii, V.E.; Hinterleitner, I.; Guseva, N.I.; Mikeš, J. Conformal Mappings of Riemannian Spaces onto Ricci Symmetric Spaces. Math. Notes
**2018**, 103, 304–307. [Google Scholar] [CrossRef] - Kaigorodov, V.R. 2-symmetric and 2-recurrent gravitational fields. Gravitacija i Teor. Otnositelnosti
**1973**, 9, 25–32. [Google Scholar] - Kaigorodov, V.R. On Riemannian spaces ${D}_{n}^{m}$. Tr. Geom. Semin. VINITI
**1974**, 5, 359–373. [Google Scholar] - Kaigorodov, V.R. A structure of space-time curvature. Ltogi Nauki i Tekhn. VINITI Probl. Geometrii
**1983**, 14, 177–204. [Google Scholar] [CrossRef] - Lcvi-Civita, T. Sulle trasformazioni delle equazioni dinamiche. Annali di Matematica Ser. 2
**1896**, 24, 255–300. [Google Scholar] [CrossRef] [Green Version] - Mikeš, J.; Stepanova, E.; Vanžurová, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M.; et al. Differential Geometry of Special Mappings; Palacky University: Olomouc, Czech Republic, 2015; p. 568. ISBN 978-80-244-4671-4. [Google Scholar]
- Mikeš, J.; Vanžurová, A.; Hinterleitner, I. Geodesic Mappings and Some Generalizations; Palacky University Press: Olomouc, Czech Republic, 2009; p. 304. ISBN 978-80-244-2524-5. [Google Scholar]
- Sinyukov, N.S. Geodesic Mappings of Riemannian Spaces; Nauka: Moscow, Russia, 1979; p. 256. [Google Scholar]
- Mikeš, J.; Berezovskii, V.E. Geodesic mappings of affine-connected spaces onto Riemannian spaces. In Proceedings of the Differential Geometry and Its Applications, Eger, Hungary, 20–25 August 1989; pp. 491–494. [Google Scholar]
- Mikeš, J. On geodesic mappings of 2-Ricci symmetric Riemannian spaces. Math. Notes
**1980**, 28, 622–624. [Google Scholar] [CrossRef] - Berezovski, V.E.; Hinterleitner, I.; Mikeš, J. Geodesic mappings of manifolds with affine connection onto the Ricci symmetric manifolds. Filomat
**2018**, 32, 379–385. [Google Scholar] [CrossRef] [Green Version]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Berezovski, V.; Cherevko, Y.; Rýparová, L.
Conformal and Geodesic Mappings onto Some Special Spaces. *Mathematics* **2019**, *7*, 664.
https://doi.org/10.3390/math7080664

**AMA Style**

Berezovski V, Cherevko Y, Rýparová L.
Conformal and Geodesic Mappings onto Some Special Spaces. *Mathematics*. 2019; 7(8):664.
https://doi.org/10.3390/math7080664

**Chicago/Turabian Style**

Berezovski, Volodymyr, Yevhen Cherevko, and Lenka Rýparová.
2019. "Conformal and Geodesic Mappings onto Some Special Spaces" *Mathematics* 7, no. 8: 664.
https://doi.org/10.3390/math7080664