Fuzzy Multi-Criteria Decision-Making Model for Supplier Evaluation and Selection in a Wind Power Plant Project
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Research Development
3.2. Methodology
3.2.1. Supply Chain Operations Reference (SCOR) Metrics
3.2.2. Fuzzy Sets and Fuzzy Number
3.2.3. Analytic Network Process (ANP)
- Calculation of the Consistency Index (CI):CI = (λmax-q)/(q-1).
- Calculation of the Consistency Ratio (CR), using a random index is as following:CR = CI/UI.
- Formation of the supermatrix which is the result of the priority vector from the paired comparisons between clusters including goal, criteria, sub-criteria, and alternatives.
3.2.4. The Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)
Determining the TOPSIS Needs Performance Ranking in Every Ai Option Over Every Normalized Cj Factor
Calculate the Normalized Weighted Decision Matrix
Calculate PIS Matrix and NIS Matrix
Identifying the Gap between the Values of Each Options with the PIS Matrix and NIS Matrix
Calculating the Preference Value for Every Alternative ()
4. Case Study
- α = 0.5 and β = 0.5.
- g0.5,0.5 = [(0.5 × 2.5) + (1 − 0.5) × 3.5] = 3
- f0.5(LAM,CO) = (3 – 2) × 0.5 + 2 = 2.5
- f0.5(UAM,CO) = 4 – (4 – 3) × 0.5 = 3.5
- g0.5,0.5 = 1/3
- MT1 = (1 × 1 × 4 × 2 × 4)1/5 = 2
- MT2 = (1 × 1 × 3 × 2 × 4)1/5 = 1.89
- MT3 = (1/4 × 1/3 × 1 × 1/3 × 1/2)1/5 = 0.43
- MT4 = (1/2 × 1/2 × 3 × 1 × 3)1/5 = 1.18
- MT5 = (1/4 × 1/4 × 2 × 1/3 × 1)1/5 = 0.53
- = 6.03
- 0.31
5. Results and Discussion
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Diez, J.R. Vietnam 30 years after Doi Moi: Achievements and challenges. Z. Wirtsch. 2016, 60, 121–133. [Google Scholar]
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Bratley, J. Clean-Energy-Ideas. Available online: https://www.clean-energy-ideas.com/wind/wind-energy/advantages-and-disadvantages-of-wind-energy/ (accessed on 22 October 2018).
- Small Wind Turbines for Homes & Businesses. Bergey. Available online: http://bergey.com/wind-school/residential-wind-energy-systems (accessed on 22 October 2018).
- Sarja, J.; Halonen, V. Wind Turbine Selection Criteria: A Customer Perspective. J. Power Energy Eng. 2013, 7, 1795–1802. [Google Scholar]
- Gupta, A.K.; Singh, O.P.; Garg, R.K. Analytic Network Process (ANP): An Approach for Supplier. Eur. J. Adv. Eng. Technol. 2015, 2, 83–89. [Google Scholar]
- Adhikary, P.; Mazumdar, A.; Roy, P.K. Turbine Supplier Selection For Small Hydro Project: Application Of Multi-Criteria Optimization Technique. Int. J. Appl. Eng. Res. 2015, 10, 13109–13122. [Google Scholar]
- Samut, P.K. Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector. J. Bus. Econ. Manag. 2017, 18, 427–450. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H. Study on the Selection of Equipment Suppliers for Wind Power Generation EPC Project. IOP Conf. Ser. Earth Environ. Sci. 2017, 100, 012153. [Google Scholar] [CrossRef] [Green Version]
- Dinmohammadi, A. Determination of the Most Suitable Technology Transfer Strategy for Wind Turbines Using an Integrated AHP-TOPSIS Decision Model. Energies 2017, 10, 642. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, V.; Thai, H.T.N.; Duong, D.H. Multi-Criteria Decision Making (MCDM) Approaches for Solar Power Plant Location Selection in Viet Nam. Energies 2018, 11, 1504. [Google Scholar] [CrossRef]
- Wang, T.; Tsai, S. Solar Panel Supplier Selection for the Photovoltaic System Design by Using Fuzzy Multi-Criteria Decision Making (MCDM) Approaches. Energies 2018, 11, 1989. [Google Scholar] [CrossRef]
- Lee, A.H.; Hung, M.; Kang, H.; Pearn, W.L. A wind turbine evaluation model under a multi-criteria decision making environment. Energy Convers. Manag. 2012, 64, 289–300. [Google Scholar] [CrossRef]
- Chen, H.H.; Kang, H.; Lee, A.H. Strategic selection of suitable projects for hybrid solar-wind power generation systems. Renew. Sustain. Energy Rev. 2010, 14, 413–421. [Google Scholar] [CrossRef]
- Patlitzianas, K.D.; Ntotas, K.; Doukas, H.; Psarras, J. Assessing the renewable energy producers’ environment in EU accession member states. Energy Convers. Manag. 2007, 48, 890–897. [Google Scholar] [CrossRef]
- Önüt, S.; Tuzkaya, U.R.; Saadet, N. Multiple criteria evaluation of current energy resources for Turkish manufacturing industry. Energy Convers. Manag. 2008, 49, 1480–1492. [Google Scholar] [CrossRef]
- Lee, A.H.; Chen, H.H.; Kang, H. Multi-criteria decision making on strategic selection of wind farms. Renew. Energy 2009, 34, 120–126. [Google Scholar] [CrossRef]
- Cristóbal, J.R.S. Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method. Renew. Energy 2011, 36, 498–502. [Google Scholar] [CrossRef]
- Kolios, A.; Collu, M.; Chahardehi, A.; Brennan, F.; Patel, M. A multi-criteria decision making method to compare support structures for offshore wind turbines. Eur. Wind Energy Conf. Exhib. 2010, 6, 4778–4787. [Google Scholar]
- Wang, C.N.; Nguyen, V.T.; Duong, D.H.; Do, H.T. A Hybrid FANP and DEA Approach for Supplier Evaluation and Selection in the Rice Supply Chain. Symmetry 2018, 10, 221. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, v.; Duong, D.H.; Thai, H.T.N. A Hybrid Fuzzy Analysis Network Process (FANP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Approaches for Solid Waste to Energy Plant Location Selection in Vietnam. Appl. Sci. 2018, 8, 1100. [Google Scholar] [CrossRef]
- Wang, C.; Huang, Y.; Chai, Y.; Nguyen, V. A Multi-Criteria Decision Making (MCDM) for Renewable Energy Plants Location Selection in Vietnam under a Fuzzy Environment. Appl. Sci. 2018, 8, 2069. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, S.P.; Glardon, R. An integer linear program for integrated supplier selection: A sustainable flexible framework. Glob. J. Flex. Syst. Manag. 2016, 17, 113–134. [Google Scholar] [CrossRef]
- Lamba, K.; Singh, S.P. Dynamic supplier selection and lot-sizing problem considering carbon emissions in a big data environment. Technol. Forecast. Soc. Chang. 2018, in press. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Ali, S.S. Exploring the relationship between leadership, operational practices, institutional pressures and environmental performance: A framework for green supply chain. Int. J. Prod. Econ. 2015, 160, 120–132. [Google Scholar] [CrossRef]
- Lamba, K.; Singh, S.P.; Mishra, N. Integrated decisions for supplier selection and lot-sizing considering different carbon emission regulations in Big Data environment. Comput. Ind. Eng. 2019, 128, 1052–1062. [Google Scholar] [CrossRef]
- Carter, C.R.; Dresner, M. Purchasing’s role in environmental management: Cross-functional development of grounded theory. J. Supply Chain Manag. 2001, 37, 12–27. [Google Scholar] [CrossRef]
- Ciaramella, A.; Staiano, A.; Cervone, G.; Alessandrini, S. A bayesian-based neural network model for solar photovoltaic power forecasting. In Advances in Neural Networks Smart Innovation, Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2016; Volume 54, pp. 169–177. [Google Scholar]
- Perera, K.S.; Aung, Z.; Woon, W.L. Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8817, pp. 81–96. [Google Scholar]
- Cavone, G. A Game-theoretical Design Technique for Multi-stage Supply Chains under Uncertainty. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 24–28 August 2018; pp. 528–533. [Google Scholar]
- Ho, W.; Xu, X.; Dey, P.K. Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. Eur. J. Oper. Res. 2010, 202, 16–24. [Google Scholar] [CrossRef]
- Govindan, K.; Rajendran, S.; Sarkis, J.; Murugesan, P. Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. J. Clean. Prod. 2015, 98, 66–83. [Google Scholar] [CrossRef]
- Kahraman, C.; Cebeci, U.; Ulukan, Z. Multi-criteria supplier selection using fuzzy AHP. Logist. Inf. Manag. 2003, 16, 382–394. [Google Scholar] [CrossRef]
- Lambert, D.M. Supply Chain Management: Processes, Partnerships, Performance, Supply Chain Management; Supply Chain Management Institute: Sarasota, FL, USA, 2005. [Google Scholar]
- Bolstorff, P.; Rosenbaum, R. Supply Chain Excellence: A Handbook for Dramatic Improvement Using the SCOR Model; AMACOM: New York, NY, USA, 2011. [Google Scholar]
- Saaty, T.L. Fundamentals of the analytic network process. In Proceedings of the ISAHP, Kobe, Japan, 12–14 August 1999. [Google Scholar]
- Zhu, X.; Wang, F.; Liang, C.; Li, J.; Sun, X. Quality Credit Evaluation based on TOPSIS: Evidence from Air-conditioning Market in China. Procedia Comput. Sci. 2012, 9, 1256–1262. [Google Scholar] [CrossRef] [Green Version]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Kusumadewi, S.; Hartati, S.; Harjoko, A.; Wardoyo, R. Fuzzy Multi-Attribute Decision Making (Fuzzy MADM); Graha Ilmu: Yogyakarta, Indonesia, 2006; pp. 78–79. [Google Scholar]
- Toán, D.V. Năng lượng tái tạo trên biển và định hướng phát triển tại Việt Nam; Viện Nghiên cứu biển và hải đảo, Tổng cục Biển và Hải đảo Việt Nam: Hà Nội, Vietnam, 2018. Available online: http://www.vasi.gov.vn/uploaded/8/655_NANG_LUONG_TAI_TAO_TREN_BIEN_VA_DINH_HUONG_PHAT_TRIEN_TAI_VIET_NAM.pdf (accessed on 22 October 2018).
Matrix Size (q) | UI Value |
---|---|
1.0 | 0.00 |
2.0 | 0.00 |
3.0 | 0.58 |
4.0 | 0.90 |
5.0 | 1.12 |
6.0 | 1.24 |
7.0 | 1.32 |
8.0 | 1.41 |
9.0 | 1.45 |
10.0 | 1.49 |
Criteria | AG | AM | CO | RE | RL |
---|---|---|---|---|---|
AG | (1,1,1) | (1,1,1) | (3,4,5) | (1,2,3) | (3,4,5) |
AM | (1,1,1) | (1,1,1) | (2,3,4) | (1,2,3) | (3,4,5) |
CO | (1/3,1/4,1/2) | (1/4,1/3,1/2) | (1,1,1) | (1/4,1/3,1/2) | (1/3,1/2,1) |
RE | (1/3,1/2,1) | (1/3,1/2,1) | (2,3,4) | (1,1,1) | (2,3,4) |
RL | (1/3,1/4,1/2) | (1/3,1/4,1/2) | (1,2,3) | (1/4,1/3,1/2) | (1,1,1) |
Criteria | AG | AM | CO | RE | RL |
---|---|---|---|---|---|
AG | 1 | 1 | 4 | 2 | 4 |
AM | 1 | 1 | 3 | 2 | 4 |
CO | 1/4 | 1/3 | 1 | 1/3 | ½ |
RE | 1/2 | 1/2 | 3 | 1 | 3 |
RL | 1/4 | 1/4 | 2 | 1/3 | 1 |
No | Sub-Criteria | Weight |
---|---|---|
1 | BOF | 0.0704 |
2 | QUD | 0.0747 |
3 | CCO | 0.0715 |
4 | OFC | 0.0931 |
5 | SCR | 0.0416 |
6 | RET | 0.0906 |
7 | USF | 0.0805 |
8 | SUA | 0.1917 |
9 | DSA | 0.1596 |
10 | MOS | 0.0406 |
11 | TRC | 0.0384 |
12 | SMS | 0.0455 |
13 | CCT | 0.0009 |
14 | RFA | 0.0007 |
15 | RWC | 0.0005 |
DMU-1 | DMU-2 | DMU-3 | DMU-4 | DMU-5 | DMU-6 | DMU-7 | DMU-8 | DMU-9 | DMU-10 | |
---|---|---|---|---|---|---|---|---|---|---|
BOF | 0.2882 | 0.3294 | 0.3705 | 0.3705 | 0.2470 | 0.2470 | 0.3294 | 0.2882 | 0.3705 | 0.2882 |
QUD | 0.2816 | 0.3218 | 0.3218 | 0.2816 | 0.2816 | 0.3620 | 0.2414 | 0.3218 | 0.3620 | 0.3620 |
CCO | 0.2892 | 0.3305 | 0.3305 | 0.3305 | 0.2479 | 0.2892 | 0.3718 | 0.2892 | 0.2892 | 0.3718 |
OFC | 0.3360 | 0.2940 | 0.3360 | 0.3360 | 0.2940 | 0.3360 | 0.3360 | 0.2940 | 0.2520 | 0.3360 |
SCR | 0.2654 | 0.3097 | 0.3097 | 0.3539 | 0.2654 | 0.3097 | 0.3981 | 0.3097 | 0.3097 | 0.3097 |
RET | 0.3316 | 0.3731 | 0.3316 | 0.2902 | 0.3316 | 0.2902 | 0.2902 | 0.2902 | 0.2902 | 0.3316 |
USF | 0.3824 | 0.2974 | 0.3399 | 0.2974 | 0.2549 | 0.3399 | 0.2974 | 0.2974 | 0.3399 | 0.2974 |
SUA | 0.2902 | 0.3316 | 0.2902 | 0.2902 | 0.3316 | 0.2902 | 0.3316 | 0.2902 | 0.3316 | 0.3731 |
DSA | 0.3724 | 0.3310 | 0.3310 | 0.3310 | 0.3310 | 0.2897 | 0.3310 | 0.2897 | 0.2483 | 0.2897 |
MOS | 0.3052 | 0.3052 | 0.3052 | 0.3488 | 0.2616 | 0.3924 | 0.3052 | 0.3052 | 0.2616 | 0.3488 |
TRC | 0.3336 | 0.3753 | 0.2919 | 0.2502 | 0.2919 | 0.3753 | 0.2919 | 0.3753 | 0.2502 | 0.2919 |
SMS | 0.3577 | 0.3180 | 0.3577 | 0.3180 | 0.2385 | 0.3180 | 0.2782 | 0.3577 | 0.3180 | 0.2782 |
CCT | 0.3490 | 0.2714 | 0.3102 | 0.3102 | 0.2327 | 0.3490 | 0.3102 | 0.3490 | 0.3102 | 0.3490 |
RFA | 0.3456 | 0.3072 | 0.3456 | 0.3072 | 0.2688 | 0.3456 | 0.3072 | 0.3456 | 0.2688 | 0.3072 |
RWC | 0.3530 | 0.3530 | 0.3530 | 0.3138 | 0.2353 | 0.3138 | 0.2746 | 0.2746 | 0.3138 | 0.3530 |
Di+ | Di- | |
---|---|---|
DMU001 | 0.0253 | 0.0225 |
DMU002 | 0.0178 | 0.0239 |
DMU003 | 0.0174 | 0.0263 |
DMU004 | 0.0205 | 0.0242 |
DMU005 | 0.0321 | 0.0160 |
DMU006 | 0.0263 | 0.0216 |
DMU007 | 0.0207 | 0.0290 |
DMU008 | 0.0258 | 0.0166 |
DMU009 | 0.0234 | 0.0254 |
DMU010 | 0.0176 | 0.0304 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Yang, C.-Y.; Cheng, H.-C. Fuzzy Multi-Criteria Decision-Making Model for Supplier Evaluation and Selection in a Wind Power Plant Project. Mathematics 2019, 7, 417. https://doi.org/10.3390/math7050417
Wang C-N, Yang C-Y, Cheng H-C. Fuzzy Multi-Criteria Decision-Making Model for Supplier Evaluation and Selection in a Wind Power Plant Project. Mathematics. 2019; 7(5):417. https://doi.org/10.3390/math7050417
Chicago/Turabian StyleWang, Chia-Nan, Ching-Yu Yang, and Hung-Chun Cheng. 2019. "Fuzzy Multi-Criteria Decision-Making Model for Supplier Evaluation and Selection in a Wind Power Plant Project" Mathematics 7, no. 5: 417. https://doi.org/10.3390/math7050417
APA StyleWang, C.-N., Yang, C.-Y., & Cheng, H.-C. (2019). Fuzzy Multi-Criteria Decision-Making Model for Supplier Evaluation and Selection in a Wind Power Plant Project. Mathematics, 7(5), 417. https://doi.org/10.3390/math7050417