# Chaos Control in Three Dimensional Cancer Model by State Space Exact Linearization Based on Lie Algebra

## Abstract

**:**

## 1. Introduction

## 2. State Space Exact Linearization

## 3. Problem Formulation

## 4. Control of the Chaotic System

**Lemma 1.**

**Proof**.

**Lemma 2.**

**Proof.**

**Theorem 1 [8].**

**Theorem 2 [8].**

_{3}goes to the goal x

_{g}, the state vector x goes to ${\overrightarrow{x}}_{g1}={\left(\begin{array}{ccc}18.87& -17.87+2.5{x}_{g}& {x}_{g}\end{array}\right)}^{T}$ or ${\overrightarrow{x}}_{g2}={\left(\begin{array}{ccc}0.13& 0.87+2.5{x}_{g}& {x}_{g}\end{array}\right)}^{T}$.

## 5. Numerical Simulations

## 6. Conclusions

## Conflicts of Interest

## References

- Itik, M.; Banks, S.P. Chaos in a three dimensional cancer model. IJBC
**2010**, 20, 71–79. [Google Scholar] [CrossRef] - De Pillis, L.G.; Radunskaya, A. The dynamics of an optimally controlled tumor model: A case study. Math. Comput. Model.
**2003**, 37, 1221–1244. [Google Scholar] [CrossRef] - Kirschner, D.; Panetta, J.C. Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol.
**1998**, 37, 235–252. [Google Scholar] [CrossRef] [PubMed] - D’Onofrio, A. A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences. Phys. D Nonlinear Phenom.
**2005**, 208, 220–235. [Google Scholar] [CrossRef] - El-Gohary, A.; Alwasel, I.A. The chaos and optimal control of cancer model with complete unknown parameters. Chaos Solitons Fractals
**2009**, 42, 2865–2874. [Google Scholar] [CrossRef] - El-Gohary, A. Chaos and optimal control of cancer self-remission and tumor system steady states. Chaos Solitons Fractals
**2008**, 37, 1305–1316. [Google Scholar] [CrossRef] - Baghernia, P.; Moghaddam, R.K.; Kobravi, H. Cancer sliding mode control considering to chaotic manners of system. J. Med. Imaging Health Inform.
**2015**, 5, 448–457. [Google Scholar] [CrossRef] - Islam, M.; Islam, B.; Islam, N. Chaos control in Shimizu Morioka system by Lie algebraic exact linearization. Int. J. Dyn. Control
**2014**, 2, 386–394. [Google Scholar] [CrossRef] - Andrievskii, B.R.; Fradkov, A.L. Control of chaos: Methods and applications. Autom. Remote Control
**2003**, 64, 673–713. [Google Scholar] [CrossRef] - Chen, L.Q.; Liu, Y.Z. A modified exact linearization control for chaotic oscillators. Nonlinear Dyn.
**1999**, 20, 309–317. [Google Scholar] [CrossRef] - Liqun, C.; Yanzhu, L. Control of Lorenz chaos by the exact linearization. Appl. Math. Mech.
**1998**, 19, 67–73. [Google Scholar] [CrossRef] - Tsagas, G.R.; Mazumdar, H.P. On the control of a dynamical system by a linearization method via Lie Algebra. Rev. Bull. Calcutta Math. Soc.
**2000**, 8, 25–32. [Google Scholar] - Alvarez-Gallegos, J. Non-linear regulation of a Lorenz system by feedback linearization techniques. Dyn. Control
**1994**, 4, 272–289. [Google Scholar] - Shinbrot, T.; Grebogi, C.; Ott, E.; Yorkee, J.A. Using small perturbation to control chaos. Nature
**1993**, 363, 411–474. [Google Scholar] [CrossRef]

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shahzad, M.
Chaos Control in Three Dimensional Cancer Model by State Space Exact Linearization Based on Lie Algebra. *Mathematics* **2016**, *4*, 33.
https://doi.org/10.3390/math4020033

**AMA Style**

Shahzad M.
Chaos Control in Three Dimensional Cancer Model by State Space Exact Linearization Based on Lie Algebra. *Mathematics*. 2016; 4(2):33.
https://doi.org/10.3390/math4020033

**Chicago/Turabian Style**

Shahzad, Mohammad.
2016. "Chaos Control in Three Dimensional Cancer Model by State Space Exact Linearization Based on Lie Algebra" *Mathematics* 4, no. 2: 33.
https://doi.org/10.3390/math4020033