You are currently viewing a new version of our website. To view the old version click .
Mathematics
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

2 January 2026

A Tuning-Free Constrained Team-Oriented Swarm Optimizer (CTOSO) for Engineering Problems

and
College of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Intelligent and Nature-Inspired Heuristics for Optimization and Decision-Making Problems

Abstract

Constrained optimization problems (COPs) are frequent in engineering design yet remain challenging due to complex search spaces and strict feasibility requirements. Existing swarm-based optimizers often rely on penalty functions or algorithm-specific control parameters, whose performance is sensitive to problem-dependent tuning and may lead to premature convergence or infeasible solutions when feasible regions are narrow. This paper introduces the Constrained Team-Oriented Swarm Optimizer (CTOSO), a tuning-free metaheuristic that adapts the ETOSO framework by replacing linear exploiter movement with spiral search and integrating Deb’s feasibility rule. The population divides into Explorers, promoting diversity through neighbor-guided navigation, and Exploiters, performing intensified local search around the global best solution. Extensive evaluation on twelve constrained engineering benchmark problems shows that CTOSO achieves a 100% feasibility rate and attains the highest overall composite performance score among the compared algorithms under limited function-evaluation budgets. On the CEC 2017 constrained benchmark suite, CTOSO attains an average feasibility rate of 79.78%, generating feasible solutions on 14 out of 15 problems. Statistical analysis using Wilcoxon signed-rank tests and Friedman ranking with Nemenyi post hoc comparison indicates that CTOSO performs significantly better than several baseline optimizers, while exhibiting no statistically significant differences with leading evolutionary methods under the same experimental conditions. The algorithm’s design, requiring no tuning of algorithm-specific control parameters, makes it suitable for real-world engineering applications where tuning effort must be minimized.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.