Next Article in Journal
On the Uniform Projection and Covering Problems in Descriptive Set Theory Under the Axiom of Constructibility
Previous Article in Journal
The Proximal Alternating Direction Method of Multipliers for a Class of Nonlinear Constrained Optimization Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Extension of a Formula of F. S. Rofe-Beketov

1
Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. 4th Street, Waco, TX 76706, USA
2
Department of Mathematics, The University of Tennessee at Chattanooga, 615 McCallie Avenue (Dept. 6956), Chattanooga, TN 37403, USA
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(3), 408; https://doi.org/10.3390/math13030408
Submission received: 26 December 2024 / Revised: 19 January 2025 / Accepted: 22 January 2025 / Published: 26 January 2025

Abstract

:
We address the following problem in this study: given a nontrivial solution, y 1 , of a four-coefficient Sturm–Liouville eigenvalue differential equation, construct a second solution, y 2 , linearly independent of y 1 . In the process of describing the solution of this problem, we review the approaches by d’Alembert and Rofe-Beketov in the case of three-coefficient Sturm–Liouville eigenvalue differential equations.

1. Introduction

A classical problem in the theory of Sturm–Liouville eigenvalue differential equations can be stated as follows: given one nontrivial solution, y 1 , construct a second solution, y 2 , linearly independent of y 1 .
A celebrated solution in the context of three-coefficient Sturm–Liouville eigenvalue differential equations of the form τ y = z y , where the differential expression τ is of the form
τ = r 1 [ ( d / d x ) p ( d / d x ) + q ] on an interval ( a , b ) ,
due to Jean le Rond d’Alembert, reads as follows: suppose y 1 satisfies τ y = z y , z C , in the interval ( a , b ) ; then, a second solution, y 2 , of τ y = z y , linearly independent of y 1 , is of the form
y 2 ( z , x ) = y 1 ( z , x ) x d x p ( x ) y 1 ( z , x ) 2 , x ( a , b ) .
In this case, the Wronskian of y 2 and y 1 is normalized to equal 1.
Clearly, y 2 ( z , · ) in (2) has “issues” at the zeros of y 1 ( z , · ) in the interval ( a , b ) . A solution of these issues was presented by Fedor S. Rofe-Beketov [1,2], ([3], Sect. 6.4) (see also [4]), who found the following formula for y 2 :
y 2 ( z , x ) = y 1 ( z , x ) x d x { p ( x ) 1 + q ( x ) ¯ z r ( x ) ¯ y 1 ( z , x ) ¯ 2 p ( x ) ¯ 1 + q ( x ) z r ( x ) y 1 [ 1 ] ( z , x ) ¯ 2 } × | y 1 ( z , x ) | 2 + | y 1 [ 1 ] ( z , x ) | 2 2 y 1 [ 1 ] ( z , x ) ¯ | y 1 ( z , x ) | 2 + | y 1 [ 1 ] ( z , x ) | 2 1 , x ( a , b ) .
Here, y [ 1 ] abbreviates the first quasi-derivative of y adapted to τ in (1) and is given by y [ 1 ] = p y , and now the denominators in (3) can no longer vanish. Once again, the Wronskian of y 2 and y 1 is normalized to equal 1.
The principal result of this study then consists in an extension of Rofe-Beketov’s Formula (2) to the case of four-coefficient Sturm–Liouville eigenvalue equations. More precisely, τ is then of the form
τ = r 1 { ( d / d x ) p [ ( d / d x ) + s ] + s p [ ( d / d x ) + s ] + q } on an interval ( a , b ) ,
and if y 1 satisfies τ y = z y , z C , in the interval ( a , b ) , then a second solution, y 2 , of τ y = z y , linearly independent of y 1 , is of the form
y 2 ( z , x , x 0 ) = y 1 ( z , x ) x 0 x d x { p ( x ) 1 + q ( x ) z r ( x ) y 1 ( z , x ) 2 y 1 [ 1 ] ( z , x ) 2 + 4 s ( x ) y 1 ( z , x ) y 1 [ 1 ] ( z , x ) } y 1 ( z , x ) 2 + y 1 [ 1 ] ( z , x ) 2 2 + y 1 [ 1 ] ( z , x ) y 1 ( z , x ) 2 + y 1 [ 1 ] ( z , x ) 2 , x , x 0 ( a , b ) ,
Here, the first quasi-derivative of y adapted to τ in (4) is given by y [ 1 ] = p [ y + s y ] . Once more, the denominators in (5) cannot vanish and the Wronskian of y 2 and y 1 is normalized to equal 1.
In Section 2, we very succinctly review four-coefficient Sturm–Liouville eigenvalue equations; Section 3 is devoted to various results from F. S. Rofe-Beketov in the three-coefficient context, and finally, Section 4 presents our extension of Rofe-Beketov’s formulas for y 2 to the case of four-coefficient Sturm–Liouville eigenvalue equations.

2. Four-Coefficient Sturm–Liouville Equations in a Nutshell

We briefly summarize the essentials of four- (and hence, three-) coefficient Sturm–Liouville eigenvalue equations and for this purpose assume the following hypotheses throughout this paper.
Hypothesis 1.
Let a < b and suppose that p, q, r, and s are Lebesgue measurable in ( a , b ) with p 1 , q , r , s L l o c 1 ( ( a , b ) ; d x ) (in particular, p, q, r, and s need not be real-valued ).
Assuming Hypothesis 1, we introduce the set
D τ ( ( a , b ) ) = g A C l o c ( ( a , b ) ) | p [ g + s g ] A C l o c ( ( a , b ) )
and the four-coefficient Sturm–Liouville differential expression  τ τ ( p , q , r , s ) defined by
τ f = 1 r p [ f + s f ] + s p [ f + s f ] + q f L l o c 1 ( ( a , b ) ; r d x ) , f D τ ( ( a , b ) ) .
In addition, if we introduce the first quasi-derivative of f adapted to the four-coefficient differential expression τ via
f [ 1 ] = p [ f + s f ] , f D τ ( ( a , b ) ) ,
then D τ ( ( a , b ) ) = g A C l o c ( ( a , b ) ) | g [ 1 ] A C l o c ( ( a , b ) ) and
τ y = 1 r y [ 1 ] + s y [ 1 ] + q y = z y a . e . on ( a , b ) , z C , y D τ ( ( a , b ) ) ,
is a four-coefficient Sturm–Liouville differential equation. At times, it will be advantageous to rewrite (9) in an equivalent form,
y [ 1 ] = s y [ 1 ] + [ q z r ] y a . e . on ( a , b ) , z C , y D τ ( ( a , b ) ) .
The special case s = 0 a.e. on ( a , b ) in (8), (9), or (10), in obvious notation, will then be called a three-coefficient Sturm–Liouville eigenvalue differential equation. For a detailed treatment of three-coefficient (i.e., s = 0 ) Sturm–Liouville eigenvalue differential equations and their associated operators, we refer to ([5], Ch. 6), [6,7], ([8], Sect. 8.4), [9,10,11].
We note that τ is called regular at a if, in addition to Hypothesis 1, p 1 , q , r , s L 1 ( ( a , c ) ; d x ) for some (and hence for all) c ( a , b ) ; the regularity of τ at the endpoint b is defined analogously.
Definition 1.
Assume Hypothesis 1 and let z C . A function, y, is a solution of the Sturm–Liouville equation τ f = z f in ( a , b ) if y D τ ( ( a , b ) ) and τ y = z y pointwise a.e. in ( a , b ) . A solution y of τ f = z f in ( a , b ) is nontrivial if y is not the zero function in ( a , b ) .
For each f , g D τ ( ( a , b ) ) , the (modified) Wronskian of f and g adapted to τ is defined by
W ( f , g ) ( x ) = f ( x ) g [ 1 ] ( x ) f [ 1 ] ( x ) g ( x ) , x ( a , b ) .
Remark  1.
One infers that for f , g D τ ( ( a , b ) ) , W ( f , g ) is locally absolutely continuous in ( a , b ) and its derivative is
[ W ( f , g ) ] ( x ) = g ( x ) ( τ f ) ( x ) f ( x ) ( τ g ) ( x ) r ( x ) for a . e . x ( a , b ) .
In particular, if z C , then the Wronskian of two solutions, y j ( z , · ) D τ ( ( a , b ) ) and j { 1 , 2 } , of (9) in ( a , b ) is constant. Moreover, W ( y 1 ( z , · ) , y 2 ( z , · ) ) 0 if and only if y 1 ( z , · ) and y 2 ( z , · ) are linearly independent.
We recall the following special case of the existence and uniqueness result ([7], Theorem 14.2.2) (the real-valuedness and positivity a.e. assumptions made there are not needed) and ([12], Theorem 1, p. 51) for initial-value problems corresponding to the differential Equation (9).
Theorem 1.
Assume Hypothesis 1. If z C , c ( a , b ) , and α, β C , then there is a unique solution, y D τ ( ( a , b ) ) , of (9) in ( a , b ) that satisfies y ( c ) = α and y [ 1 ] ( c ) = β . If, in addition, α , β , z R , then the solution y is real-valued.
Remark 2.
To simplify matters, we choose p = r = 1 in addition to Hypothesis 1. Then, with
f A C l o c ( ( a , b ) ) , f [ 1 ] = [ f + s f ] A C l o c ( ( a , b ) ,
one infers that
( τ f ) = { [ f + s f ] + s [ f + s f ] + q f } L l o c 1 ( ( a , b ) ; d x ) .
Next, we also assume that
s L l o c 2 ( ( a , b ) ; d x ) ,
that is, s 2 L l o c 1 ( ( a , b ) ; d x ) . In this case,
f [ 1 ] = [ f + s f ] A C l o c ( ( a , b ) ) and s f L l o c 2 ( ( a , b ) ; d x ) implies f L l o c 2 ( ( a , b ) ; d x ) , f H l o c 1 ( ( a , b ) ) .
In addition, s f L l o c 1 ( ( a , b ) ; d x ) , f , s f H l o c 1 ( ( a , b ) ) , and
f [ 1 ] = [ f + s f ] = [ f + s f ] + s f L l o c 1 ( ( a , b ) ; d x )
as well as s 2 f , q f L l o c 1 ( ( a , b ) ; d x ) yield
( τ f ) = f + s f + s 2 + q f L l o c 1 ( ( a , b ) ; d x ) .
This process generates the H l o c 1 ( ( a , b ) ) -potential coefficient
s H l o c 1 ( ( a , b ) ) .
See ([7], Remark 14.3.10) for additional details.
For more background in connection with four-coefficient differential expressions and the underlying Sturm–Liouville operators and their Weyl–Titchmarsh and oscillation theory, we refer, for instance, to [13], ([7], Ch. 14), and the extensive literature cited therein.
To close this section, we provide two examples to illustrate how Schrödinger-type equations with distributional potentials may be naturally defined and studied within the framework of four-coefficient Sturm–Liouville differential equations.
Example 1.
(Delta function potential). Let x 0 R , α R { 0 } be fixed, and recall the sign function sgn x 0 centered at x 0 :
sgn x 0 ( x ) = 1 , x > x 0 , 1 , x < x 0 .
Taking ( a , b ) = ( , ) and
p = r = 1 , s = ( α / 2 ) sgn x 0 , q = α 2 / 4 ,
in Hypothesis 1, one obtains the differential expression τ τ x 0 with action given according to (7) by
( τ x 0 f ) ( x ) = [ f + s f ] ( x ) + s ( x ) f ( x ) α 2 / 4 f ( x ) = f ( x ) , x R { x 0 } ,
for any function, f, that satisfies
f A C l o c ( R ) , [ f + s f ] A C l o c ( R ) .
Formally carrying out the differentiation in (22) and using s = α δ x 0 (in the distributional sense ), one infers that the action of τ x 0 is (again, formally ) given by
τ x 0 f = f + α δ x 0 f .
Therefore, under the choices in (21), the four-coefficient differential expression (7) formally corresponds to a point interaction with the strength α centered at x 0 .
Example 2
(Miura-type potential). Choosing ( a , b ) = ( , ) and
p = r = 1 , q = 0 , s L l o c 2 ( R ; d x ) ,
in Hypothesis 1, one obtains the differential expression τ τ s with action given according to (7) by
τ s f = [ f + s f ] + s [ f + s f ] ,
for any function, f, that satisfies
f A C l o c ( R ) , [ f + s f ] A C l o c ( R ) .
Formally carrying out the differentiation in (26), one infers that the action of τ s is (again, formally) given by
τ s f = f + s 2 s f .
Since s L l o c 2 ( R ; d x ) , s is interpreted in the distributional sense. Therefore, (28) represents a differential expression of the Schrödinger-type with a distributional potential coefficient,
s 2 s H l o c 1 ( R ) = W l o c 1 , 2 ( R ) ,
which is known as a Miura-type potential.

3. Rofe-Beketov’s Formula for the Case of Three-Coefficient Sturm–Liouville Equations

In this section, we recall Rofe-Beketov’s formula for a second linearly independent solution, y 2 , of a three-coefficient Sturm–Liouville equation, given one solution, y 1 .
In this three-coefficient context, s = 0 a.e. in ( a , b ) , and hence f [ 1 ] in (8) simplifies to
f [ 1 ] = p f , f D τ ( ( a , b ) ) .
Lemma 1.
In addition to Hypothesis 1 with s = 0 a.e. in ( a , b ) , let z C , and assume that y 1 ( z , · ) D τ ( ( a , b ) ) .
(i)
Suppose that  y 1 ( z , · ) 0  in  ( a , b )  and  y 2 ( z , · ) D τ ( ( a , b ) ) . Then,
y 2 ( z , · ) y 1 ( z , · ) = 1 p y 1 ( z , · ) 2 is equivalent to W ( y 2 ( z , · ) , y 1 ( z , · ) ) = 1 .
(ii)
Suppose that  y 2 ( z , · ) D τ ( ( a , b ) )  and  W ( y 2 ( z , · ) , y 1 ( z , · ) ) = 1 . Then,
τ y 1 ( z , · ) = z y 1 ( z , · ) is equivalent to τ y 2 ( z , · ) = z y 2 ( z , · ) ,
that is, if W ( y 2 ( z , · ) , y 1 ( z , · ) ) = 1 , then
( p y 1 ) = [ q z r ] y 1 a . e . on ( a , b ) is equivalent to ( p y 2 ) = [ q z r ] y 2 a . e . on ( a , b ) .
(iii)
Suppose that  y 1 ( z , · ) 0  in  ( a , b )  and  τ y 1 ( z , · ) = z y 1 ( z , · )  (i.e., ( p y 1 ) = [ q z r ] y 1 ) a.e. in ( a , b ) . Then, d’Alembert’s formula,
y 2 ( z , x , x 0 ) = y 1 ( z , x ) x 0 x d x 1 p ( x ) y 1 ( z , x ) 2 , x , x 0 ( a , b ) ,
yields
y 2 ( z , · , x 0 ) D τ ( ( a , b ) ) , τ y 2 ( z , · , x 0 ) = z y 2 ( z , · , x 0 ) , and W ( y 2 ( z , · , x 0 ) , y 1 ( z , · ) ) = 1 .
In particular, the general solution y ( z , · ) of τ y ( z , · ) = z y ( z , · ) a.e. in ( a , b ) is of the form
y ( z , x ) = C 1 y 1 ( z , x ) + C 2 y 2 ( z , x , x 0 ) = C 1 y 1 ( z , x ) C 2 y 1 ( z , x ) x 0 x d x 1 p ( x ) y 1 ( z , x ) 2 , C 1 , C 2 C , x , x 0 ( a , b ) .
Moreover, if p is real-valued a.e. in ( a , b ) and also y 1 ( z , · ) is real-valued, so is y 2 ( z , · , x 0 ) . Finally, if for some (or all )  x ( a , b ) , y 1 ( z , x ) is analytic (resp., entire ) with respect to z Ω , Ω C open, then so is y 2 ( z , x , x 0 ) .
Proof. 
Item ( i ) is verified in an elementary manner and item ( i i ) follows from differentiating W ( y 2 , y 1 ) = 1 with respect to x, implying that
y 2 ( p y 1 ) + y 2 ( p y 1 ) ( p y 2 ) y 1 ( p y 2 ) y 1 = y 2 ( p y 1 ) ( p y 2 ) y 1 = 0 for a . e . x ( a , b ) .
Item ( i i i ) follows from
y 2 [ 1 ] = y 1 [ 1 ] x d x ( p y 1 2 ) ( x ) + 1 y 1 ,
which, after a short computation, yields y 2 [ 1 ] = [ q z r ] y 2 . The analyticity of y 2 is clear from that of y 1 , utilizing (34). □
Lemma 2
([3], Lemma 6.6, p. 209). Assume Hypothesis 1 with s = 0 a.e. in ( a , b ) , let z C , and suppose that y j ( z , · ) D τ ( ( a , b ) ) , j = 1 , 2 . Moreover, assume the normalized Wronskian W ( y 2 ( z , · ) , y 1 ( z , · ) ) = 1 and that y 1 ( z , · ) 2 + y 1 [ 1 ] ( z , · ) 2 0 in ( a , b ) . If τ y 1 ( z , · ) = z y 1 ( z , · )  (i.e., ( p y 1 ) = [ q z r ] y 1 ( z , · ) ) a.e. in ( a , b ) , then
y 2 ( z , · ) p y 1 ( z , · ) y 1 ( z , · ) 2 + y 1 [ 1 ] ( z , · ) 2 y 1 ( z , · ) = y 1 y 2 + ( p y 1 ) ( p y 2 ) y 1 ( z , · ) 2 + y 1 [ 1 ] ( z , · ) 2 = p 1 + q z r y 1 ( z , · ) 2 y 1 [ 1 ] ( z , · ) 2 y 1 ( z , · ) 2 + y 1 [ 1 ] ( z , · ) 2 .
Proof. 
Regarding (39), one first verifies, upon employing W ( y 2 , y 1 ) = 1 and utilizing a cancellation, that
y 2 ( z , · ) p y 1 ( z , · ) y 1 ( z , · ) 2 + y 1 [ 1 ] ( z , · ) 2 y 1 ( z , · ) = y 1 y 2 + ( p y 1 ) ( p y 2 ) y 1 ( z , · ) 2 + y 1 [ 1 ] ( z , · ) 2 ,
and hence the left-hand side of (40) is well defined.
The second equality in (39), then, is a straightforward, yet nasty, computation that once more employs W ( y 2 , y 1 ) = 1 and repeatedly takes advantage of cancellations. □
Lemma 2 indicates why the following result due to F. S. Rofe-Beketov [1,2], ([3], Sect. 6.4), see also K. M. Schmidt [4], is plausible.
Theorem 2.
Assume Hypothesis 1 with s = 0 a.e. in ( a , b ) , let z C , and assume that y 1 ( z , · ) D τ ( ( a , b ) ) . In addition, suppose that y 1 ( z , · ) 2 + y 1 [ 1 ] ( z , · ) 2 0 in ( a , b ) and that τ y 1 ( z , · ) = z y 1 ( z , · )  (i.e., ( p y 1 ) = [ q z r ] y 1 ) a.e. in ( a , b ) . Then, Rofe-Beketov’s formula,
y 2 ( z , x , x 0 ) = y 1 ( z , x ) x 0 x d x p ( x ) 1 + q ( x ) z r ( x ) y 1 ( z , x ) 2 y 1 [ 1 ] ( z , x ) 2 y 1 ( z , x ) 2 + y 1 [ 1 ] ( z , x ) 2 2 + y 1 [ 1 ] ( z , x ) y 1 ( z , x ) 2 + y 1 [ 1 ] ( z , x ) 2 , x , x 0 ( a , b ) ,
yields
y 2 ( z , · , x 0 ) D τ ( ( a , b ) ) , τ y 2 ( z , · , x 0 ) = z y 2 ( z , · , x 0 ) , and W ( y 2 ( z , · , x 0 ) , y 1 ( z , · ) ) = 1 .
In particular, the general solution y ( z , · ) of τ y ( z , · ) = z y ( z , · ) is of the form
y ( z , x ) = C 1 y 1 ( z , x ) + C 2 y 2 ( z , x , x 0 ) , C 1 , C 2 C , x , x 0 ( a , b ) .
Moreover, if z R , p , q , r are real-valued a.e. in ( a , b ) , and y 1 ( z , · ) is real-valued, so is y 2 ( z , · , x 0 ) . Finally, if for some (or all )  x ( a , b ) , y 1 ( z , x ) is analytic (resp., entire ) with respect to z Ω , Ω C open, then so is y 2 ( z , x , x 0 ) .
Remark 3.
( i ) In a sense, Theorem 2 kicks the can down the road since not only can y 1 ( z , · ) have zeros in (a,b) (rendering (34) suspicious), but so can y 1 ( z , · ) 2 + y 1 [ 1 ] ( z , · ) 2 in the denominators of (41). Of course, if z R , p is real-valued a.e. in ( a , b ) , and y 1 ( z , · ) is real-valued (as it typically is in the context of oscillation theory), then y 1 ( z , x ) 2 + y 1 [ 1 ] ( z , x ) 2 0 in ( a , b ) .
  • (ii) In the end, d’Alembert’s Formula (36) and Rofe-Beketov’s Formula (41) are equivalent in the sense that they differ only by a constant (possibly z-dependent) multiple of y 1 . In fact, at a zero of y 1 ( z , · ) in ( a , b ) , a second-order singularity integrates to a first-order singularity that is multiplied by y 1 which has a first-order zero. Thus, a certain “renormalization” in d’Alembert’s Formula (36) is made explicit in Rofe-Beketov’s Formula (41). Moreover, (39) implies that
d d x y 2 y 1 = d d x p y 1 / y 1 y 1 2 + ( p y 1 ) 2 p 1 + q z r y 1 2 ( p y 1 ) 2 y 1 2 + ( p y 1 ) 2 = 1 p W ( y 2 , y 1 ) y 1 2 = 1 p y 1 2 ,
illustrating the point just made.
  • (iii) Dobrokhotov [14] obtains (41) for the Schrödinger equation y + q y = 0 as an application of the general result ([14], Theorem 1) for constructing a fundamental matrix of a 2 n × 2 n first-order system when n skew-orthogonal solutions are known. In the context of canonical systems, we also refer to Rofe-Beketov [15] and Rofe-Beketov and Kholkin ([3], Sect. 6.2). See also Roitberg and Sakhnovich [16] for a discussion of general first-order systems in the context of d’Alembert’s formula.
The following result of Rofe-Beketov [1] rectifies this situation in general, yielding a nonzero denominator in the analog of (41):
Theorem 3.
Assume Hypothesis 1 with s = 0 a.e. in ( a , b ) , let z C , and assume that 0 y 1 ( z , · ) D τ ( ( a , b ) ) . In addition, suppose that τ y 1 ( z , · ) = z y 1 ( z , · )  (i.e., ( p y 1 ) = [ q z r ] y 1 ) a.e. in ( a , b ) . Then, Rofe-Beketov’s formula,
y 2 ( z , x , x 0 ) = y 1 ( z , x ) x 0 x d x { p ( x ) 1 + q ( x ) ¯ z r ( x ) ¯ y 1 ( z , x ) ¯ 2 p ( x ) ¯ 1 + q ( x ) z r ( x ) y 1 [ 1 ] ( z , x ) ¯ 2 } × | y 1 ( z , x ) | 2 + | y 1 [ 1 ] ( z , x ) | 2 2 y 1 [ 1 ] ( z , x ) ¯ | y 1 ( z , x ) | 2 + | y 1 [ 1 ] ( z , x ) | 2 1 , x , x 0 ( a , b ) ,
yields
y 2 ( z , · , x 0 ) D τ ( ( a , b ) ) , τ y 2 ( z , · , x 0 ) = z y 2 ( z , · , x 0 ) , and W ( y 2 ( z , · , x 0 ) , y 1 ( z , · ) ) = 1 .
In particular, the general solution y ( z , · ) of τ y ( z , · ) = z y ( z , · ) is of the form
y ( z , x ) = C 1 y 1 ( z , x ) + C 2 y 2 ( z , x , x 0 ) , C 1 , C 2 C , x , x 0 ( a , b ) .
We postpone the proofs of Theorems 2 and 3 to Section 4, where more general four-coefficient analogs will be proved in Theorems 4 and 5.

4. The Extension of Rofe-Beketov’s Formula to the Case of Four-Coefficient Sturm–Liouville Equations

In our principal section, we now describe the extension of Rofe-Beketov’s formula to four-coefficient Sturm–Liouville equations.
We start by noting that Lemma 1 extends essentially verbatim to the present four-coefficient situation:
Lemma 3.
In addition to Hypothesis 1, let z C , and assume that y 1 ( z , · ) D τ ( ( a , b ) ) .
(i)
Suppose that y 1 ( z , · ) 0 in ( a , b ) and y 2 ( z , · ) D τ ( ( a , b ) ) . Then,
y 2 ( z , · ) y 1 ( z , · ) = 1 p y 1 ( z , · ) 2 is equivalent to W ( y 2 ( z , · ) , y 1 ( z , · ) ) = 1 .
(ii)
Suppose that y 2 ( z , · ) D τ ( ( a , b ) ) and W ( y 2 ( z , · ) , y 1 ( z , · ) ) = 1 . Then,
τ y 1 ( z , · ) = z y 1 ( z , · ) is equivalent to τ y 2 ( z , · ) = z y 2 ( z , · ) ,
that is, if W ( y 2 ( z , · ) , y 1 ( z , · ) ) = 1 , then
y 1 [ 1 ] = s y 1 [ 1 ] + [ q z r ] y 1 a . e . on ( a , b ) is equivalent to y 2 [ 1 ] = s y 2 [ 1 ] + [ q z r ] y 2 a . e . on ( a , b ) .
(iii)
Suppose that y 1 ( z , · ) 0 in ( a , b ) and τ y 1 ( z , · ) = z y 1 ( z , · )  (i.e., ( y 1 [ 1 ] ) = s y 1 [ 1 ] + [ q z r ] y 1 ) a.e. in ( a , b ) . Then, d’Alembert’s formula extends to the present four-coefficient setting, that is,
y 2 ( z , x , x 0 ) = y 1 ( z , x ) x 0 x d x 1 p ( x ) y 1 ( z , x ) 2 , x , x 0 ( a , b ) ,
satisfies
y 2 ( z , · , x 0 ) D τ ( ( a , b ) ) , τ y 2 ( z , · , x 0 ) = z y 2 ( z , · , x 0 ) , and W ( y 2 ( z , · , x 0 ) , y 1 ( z , · ) ) = 1 .
In particular, the general solution y ( z , · ) of τ y ( z , · ) = z y ( z , · ) a.e. in ( a , b ) is of the form
y ( z , x ) = C 1 y 1 ( z , x ) + C 2 y 2 ( z , x , x 0 ) = C 1 y 1 ( z , x ) C 2 y 1 ( z , x ) x 0 x d x 1 p ( x ) y 1 ( z , x ) 2 , C 1 , C 2 C , x , x 0 ( a , b ) .
Moreover, if p is real-valued a.e. in ( a , b ) and also y 1 ( z , · ) is real-valued, so is y 2 ( z , · , x 0 ) . Finally, if for some (or all )  x ( a , b ) , y 1 ( z , x ) is analytic (resp., entire ) with respect to z Ω , Ω C open, then so is y 2 ( z , x , x 0 ) .
We omit the proof of Lemma 3 as it is essentially that of Lemma 1, replacing ( p y j ) = [ q z r ] y j in Lemma 1 with y j [ 1 ] = s y j [ 1 ] + [ q z r ] y j , j = 1 , 2 .
The analog of Theorem 2 then reads as follows:
Theorem 4.
Assume Hypothesis 1, let z C , and assume that y 1 ( z , · ) D τ ( ( a , b ) ) . In addition, suppose that y 1 ( z , · ) 2 + y 1 [ 1 ] ( z , · ) 2 0 in ( a , b ) and τ y 1 ( z , · ) = z y 1 ( z , · )  (i.e., ( p y 1 ) = [ q z r ] y 1 ) a.e. in ( a , b ) . Then,
y 2 ( z , x , x 0 ) = y 1 ( z , x ) x 0 x d x { p ( x ) 1 + q ( x ) z r ( x ) y 1 ( z , x ) 2 y 1 [ 1 ] ( z , x ) 2 + 4 s ( x ) y 1 ( z , x ) y 1 [ 1 ] ( z , x ) } y 1 ( z , x ) 2 + y 1 [ 1 ] ( z , x ) 2 2 + y 1 [ 1 ] ( z , x ) y 1 ( z , x ) 2 + y 1 [ 1 ] ( z , x ) 2 , x , x 0 ( a , b ) ,
satisfies
y 2 ( z , · , x 0 ) D τ ( ( a , b ) ) , τ y 2 ( z , · , x 0 ) = z y 2 ( z , · , x 0 ) , and W ( y 2 ( z , · , x 0 ) , y 1 ( z , · ) ) = 1 .
In particular, the general solution y ( z , · ) of τ y ( z , · ) = z y ( z , · ) is of the form
y ( z , x ) = C 1 y 1 ( z , x ) + C 2 y 2 ( z , x , x 0 ) , C 1 , C 2 C , x , x 0 ( a , b ) .
Moreover, if z R , p , q , r , s are real-valued a.e. in ( a , b ) , and y 1 ( z , · ) is real-valued, so is y 2 ( z , · , x 0 ) . Finally, if for some (or all )  x ( a , b ) , y 1 ( z , x ) is analytic (resp., entire ) with respect to z Ω , Ω C open, then so is y 2 ( z , x , x 0 ) .
Proof. 
For notational convenience, we introduce the abbreviation
I x 0 ( z , x ) = x 0 x d x { p ( x ) 1 + q ( x ) z r ( x ) y 1 ( z , x ) 2 y 1 [ 1 ] ( z , x ) 2 + 4 s ( x ) y 1 ( z , x ) y 1 [ 1 ] ( z , x ) } y 1 ( z , x ) 2 + y 1 [ 1 ] ( z , x ) 2 2 , x ( a , b ) ,
and for brevity, we will suppress the z and x dependencies of I x 0 ( z , x ) and y j ( z , x ) , j { 1 , 2 } and simply write I x 0 and y j , j { 1 , 2 } , throughout the proof. Since y 1 is a solution of (9) in ( a , b ) ,
y 1 [ 1 ] = ( q z r ) y 1 + s y 1 [ 1 ] a . e . on ( a , b ) .
Differentiating (54) and making use of (58), one computes
y 2 = y 1 I x 0 + y 1 2 + y 1 [ 1 ] 2 2 { y 1 2 y 1 [ 1 ] 2 s y 1 [ 1 ] p 1 y 1 2 y 1 y 1 y 1 [ 1 ] 4 s y 1 2 y 1 [ 1 ] } = y 1 I x 0 + y 1 2 + y 1 [ 1 ] 2 2 s y 1 2 y 1 [ 1 ] p 1 y 1 3 s y 1 [ 1 ] 3 p 1 y 1 y 1 [ 1 ] 2
= y 1 I x 0 s y 1 [ 1 ] + p 1 y 1 y 1 2 + y 1 [ 1 ] 2 1 .
Therefore,
y 2 [ 1 ] = y 1 [ 1 ] I x 0 y 1 y 1 2 + y 1 [ 1 ] 2 1 ,
which also implies that y 2 [ 1 ] A C l o c ( ( a , b ) ) . Furthermore, differentiating (61) and using (58), one obtains
y 2 [ 1 ] = ( q z r ) y 1 + s y 1 [ 1 ] I x 0 + y 1 2 + y 1 [ 1 ] 2 2 { p 1 y 1 2 y 1 [ 1 ] ( q z r ) y 1 2 y 1 [ 1 ] + p 1 + q z r y 1 [ 1 ] 3 2 s y 1 y 1 [ 1 ] 2 y 1 y 1 2 y 1 y 1 [ 1 ] 2 + 2 y 1 2 y 1 + 2 ( q z r ) y 1 2 y 1 [ 1 ] } = ( q z r ) y 1 + s y 1 [ 1 ] I x 0 + y 1 2 + y 1 [ 1 ] 2 2 ( q z r ) y 1 [ 1 ] 3 s y 1 y 1 [ 1 ] 2 s y 1 3 + ( q z r ) y 1 2 y 1 [ 1 ] = ( q z r ) y 1 + s y 1 [ 1 ] I x 0 + y 1 2 + y 1 [ 1 ] 2 1 ( q z r ) y 1 [ 1 ] s y 1 .
Combining (61) with (62) and taking the obvious cancellations into account, one obtains
y 2 [ 1 ] + s y 2 [ 1 ] = ( q z r ) y 1 I x 0 + y 1 [ 1 ] y 1 2 + y 1 [ 1 ] 2 1 = ( q z r ) y 2 a . e . on ( a , b ) .
Hence, y 2 is a solution of (9) in ( a , b ) . By (54), one computes
W ( y 2 , y 1 ) ( x 0 ) = y 2 ( z , x 0 ) y 1 [ 1 ] ( z , x 0 ) y 2 [ 1 ] ( z , x 0 ) y 1 ( z , x 0 ) = y 1 [ 1 ] ( z , x 0 ) 2 y 1 ( x 0 ) 2 + y 1 [ 1 ] ( z , x 0 ) 2 + y 1 ( z , x 0 ) 2 y 1 ( x 0 ) 2 + y 1 [ 1 ] ( z , x 0 ) 2 = 1 .
The constancy of the Wronskian of solutions (cf. Remark 1) implies that W ( y 2 , y 1 ) = 1 .
The real-valuedness of y 2 ( z , · ) if z R , p , q , r , s are real-valued a.e. in ( a , b ) and y 1 ( z , · ) is real-valued is clear from (54).
Finally, if y 1 ( z , · ) is analytic (resp., entire ) in some open set Ω C , then we next show that y 1 [ 1 ] ( z , · ) is also analytic (resp., entire ) in Ω C , and, hence, so is y 2 ( z , · ) by (54). To show that the analyticity of y 1 ( z , · ) for z Ω implies that of y 1 [ 1 ] ( z , · ) , one can argue as follows: clearly, ( τ y 1 ( z , · ) ) ( x ) = z y 1 ( z , x ) ; equivalently,
y 1 [ 1 ] ( z , x ) s ( x ) y 1 [ 1 ] ( z , x ) = [ q ( x ) z r ( x ) ] y 1 ( z , x ) , z Ω , a . e . x , x 0 ( a , b ) ,
implies that
y 1 [ 1 ] ( z , x ) = y 1 [ 1 ] ( z , x 0 ) + x 0 x d x [ q ( x ) z r ( x ) ] y 1 ( z , x ) e x 0 x d x s ( x ) × e x 0 x d x s ( x ) , z Ω , a . e . x , x 0 ( a , b ) .
Hence, if for all x ( a , b ) , y 1 ( z , x ) is analytic with respect to z Ω , then the expression
Y ( z , x , x 0 ) = y 1 ( z , x ) [ p ( x 0 ) / p ( x ) ] y 1 ( z , x 0 ) e x 0 x d x s ( x ) for a . e . x , x 0 ( a , b ) ,
is also analytic with respect to z Ω . Integrating Y ( z , x , x 0 ) with respect to x yields
y 1 ( z , x ) y 1 ( z , x 0 ) p ( x 0 ) y 1 ( z , x 0 ) x 0 x d x p ( x ) 1 e x 0 x d x s ( x ) for a . e . x , x 0 ( a , b ) ,
and, thus,
p ( x 0 ) y 1 ( z , x 0 ) for a . e . x 0 ( a , b ) ,
as well as
p ( x 0 ) [ y 1 ( z , x 0 ) + s ( x 0 ) y 1 ( z , x 0 ) ] for all x 0 ( a , b ) ,
are also analytic for z Ω . Since x 0 ( a , b ) is arbitrary, this implies that for all x ( a , b ) , y 1 [ 1 ] ( z , x ) is analytic for z Ω . □
Remark 4.
To the best of our knowledge, (54) is the first instance in which the extension of a result from three-coefficient to four-coefficient Sturm–Liouville equations yields an explicit dependence on the fourth coefficient s (as opposed to the s-dependence simply being encoded only into the quasi-derivative) in the statement of the result.
Finally, the analog of Theorem 3 now reads as follows:
Theorem 5.
Assume Hypothesis 1, let z C , and assume that 0 y 1 ( z , · ) D τ ( ( a , b ) ) . In addition, suppose that τ y 1 ( z , · ) = z y 1 ( z , · )  (i.e., ( p y 1 ) = [ q z r ] y 1 ) a.e. in ( a , b ) . Then,
y 2 ( z , x , x 0 ) = y 1 ( z , x ) x 0 x d x { p ( x ) 1 + q ( x ) ¯ z ¯ r ( x ) ¯ ( y 1 ( z , x ) ) 2 + 2 s ( x ) + s ( x ) ¯ y 1 ( z , x ) ¯ y 1 [ 1 ] ( z , x ) ¯ p ( x ) ¯ 1 + q ( x ) z r ( x ) y 1 [ 1 ] ( z , x ) 2 } × | y 1 ( z , x ) | 2 + | y 1 [ 1 ] ( z , x ) | 2 2 + y 1 [ 1 ] ( z , x ) ¯ | y 1 ( z , x ) | 2 + | y 1 [ 1 ] ( z , x ) | 2 , x , x 0 ( a , b ) ,
satisfies
y 2 ( z , · , x 0 ) D τ ( ( a , b ) ) , τ y 2 ( z , · , x 0 ) = z y 2 ( z , · , x 0 ) , and W ( y 2 ( z , · , x 0 ) , y 1 ( z , · ) ) = 1 .
In particular, the general solution y ( z , · ) of τ y ( z , · ) = z y ( z , · ) is of the form
y ( z , x ) = C 1 y 1 ( z , x ) + C 2 y 2 ( z , x , x 0 ) , C 1 , C 2 C , x , x 0 ( a , b ) .
Proof. 
For notational convenience, we introduce the abbreviation
J x 0 ( z , x ) = x 0 x d x { p ( x ) 1 + q ( x ) ¯ z ¯ r ( x ) ¯ ( y 1 ( z , x ) ) 2 + 2 s ( x ) + s ( x ) ¯ y 1 ( z , x ) ¯ y 1 [ 1 ] ( z , x ) ¯ p ( x ) ¯ 1 + q ( x ) z r ( x ) y 1 [ 1 ] ( z , x ) 2 } × | y 1 ( z , x ) | 2 + | y 1 [ 1 ] ( z , x ) | 2 2 , x , x 0 ( a , b ) .
In lieu of directly verifying that (71) is a solution of (9) (as is performed with (54) in the proof of Theorem 4), we will instead show how the right-hand side of (71) is constructed so as to be a solution of (9) in ( a , b ) . This approach illustrates how formulas such as (54) and (71) arise. (Directly verifying that the right-hand side of (71) is a solution of (9) is entirely analogous to the proof of Theorem 4.) For brevity, we will suppress the z and x dependencies of J x 0 ( z , x ) and y j ( z , x ) , j { 1 , 2 } and simply write J x 0 and y j , j { 1 , 2 } , throughout the proof.
Equation (9) is equivalent to the system
f f [ 1 ] = s p 1 q z r s f f [ 1 ] .
We look for a second solution, Y 2 = Y 2 ( z , · ) (the reasoning behind the capital “Y” notation will become clear in the last step of the proof), in the form
Y 2 Y 2 [ 1 ] = c 1 y 1 y 1 [ 1 ] + c 2 y 1 [ 1 ] ¯ y 1 ¯ ,
where the scalar-valued functions c j = c j ( z , · ) , j { 1 , 2 } , are to be determined subject to the condition
W ( Y 2 , y 1 ) ( x ) = 1 , x ( a , b ) .
The condition in (77) requires
c 2 = | y 1 | 2 + | y 1 [ 1 ] | 2 1 .
Furthermore, differentiating (77) and using the fact that y 1 is a solution of (9), one obtains
Y 2 [ 1 ] y 1 = [ q z r ] Y 2 + s Y 2 [ 1 ] y 1 .
As a consequence,
Y 2 [ 1 ] = [ q z r ] Y 2 + s Y 2 [ 1 ] ,
and it follows that Y 2 satisfies the equation that results from equating the second components in (76), independent of the choice for c 1 . Thus, in order for Y 2 to solve (76), we need to find c 1 so that Y 2 satisfies the equation that results from equating the first components in (76). That is, we need to find c 1 so that
Y 2 = p 1 Y 2 [ 1 ] s Y 2 .
Using (75), the equation in (81) is equivalent to
Y 2 = p 1 c 1 y 1 [ 1 ] + c 2 y 1 ¯ c 1 s y 1 + c 2 s y 1 [ 1 ] ¯ ;
that is,
c 1 y 1 + c 1 y 1 c 2 y 1 [ 1 ] ¯ c 2 y 1 [ 1 ] ¯ = p 1 c 1 y 1 [ 1 ] + c 2 y 1 ¯ c 1 s y 1 + c 2 s y 1 [ 1 ] ¯ .
Since
y 1 = p 1 y 1 [ 1 ] s y 1 ,
(83) reduces to
c 1 y 1 = c 2 p 1 y 1 ¯ + y 1 [ 1 ] ¯ + s y 1 [ 1 ] ¯ + c 2 y 1 [ 1 ] ¯ .
By (78) and (84),
c 2 = c 2 2 y 1 y 1 ¯ + y 1 y 1 ¯ + y 1 [ 1 ] y 1 [ 1 ] ¯ + y 1 [ 1 ] y 1 [ 1 ] ¯ = c 2 2 p 1 y 1 ¯ + y 1 [ 1 ] ¯ y 1 [ 1 ] + c 2 2 p ¯ 1 y 1 + y 1 [ 1 ] y 1 [ 1 ] ¯ c 2 2 s + s ¯ | y 1 | 2 .
Equations (85) and (86) combine to yield
c 1 y 1 = c 2 2 { | y 1 | 2 + | y 1 [ 1 ] | 2 p 1 y 1 ¯ + y 1 [ 1 ] ¯ + s y 1 [ 1 ] ¯ + p 1 y 1 ¯ + y 1 [ 1 ] ¯ | y 1 [ 1 ] | 2 + p ¯ 1 y 1 + y 1 [ 1 ] y 1 [ 1 ] ¯ 2 s + s ¯ y 1 [ 1 ] ¯ } = c 2 2 { p 1 y 1 ¯ + y 1 [ 1 ] ¯ + s y 1 [ 1 ] ¯ + s + s ¯ y 1 [ 1 ] ¯ | y 1 | 2 s y 1 [ 1 ] ¯ | y 1 [ 1 ] | 2 + p ¯ 1 y 1 + [ q z r ] y 1 + s y 1 [ 1 ] y 1 [ 1 ] ¯ 2 } = c 2 2 y 1 p 1 + q ¯ z ¯ r ¯ y 1 ¯ 2 2 s + s ¯ y 1 [ 1 ] ¯ y 1 ¯ + p ¯ 1 + q z r y 1 [ 1 ] ¯ 2 .
Therefore,
c 1 = c 2 2 p 1 + q ¯ z ¯ r ¯ y 1 ¯ 2 2 s + s ¯ y 1 [ 1 ] ¯ y 1 ¯ + p ¯ 1 + q z r y 1 [ 1 ] ¯ 2 ,
and upon integrating from x 0 to x, one obtains
c 1 = c 1 ( x 0 ) + J x 0 .
In turn, (76) then implies that
Y 2 = c 1 ( x 0 ) y 1 + y 1 J x 0 c 2 y 1 [ 1 ] ¯ .
Solutions of (9) form a subspace, and since W ( c 1 ( x 0 ) y 1 , y 1 ) 0 , the c 1 ( x 0 ) y 1 term may be removed from (90) without affecting the value of the Wronskian. Hence, one chooses
y 2 = Y 2 c 1 ( x 0 ) y 1 = y 1 J x 0 c 2 y 1 [ 1 ] ¯ ,
which is (71). □
Under certain additional conditions in p , q , r , s (for instance, if τ is regular at a and/or b), then x 0 = a and/or x 0 = b are permissible in (54) and (71).

Author Contributions

Investigation, F.G. and R.N. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No data sets were used or generated in the current study.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Rofe-Beketov, F.S. Spectrum perturbations, the Kneser-type constants and the effective masses of zone-type potentials. In Proceedings of the Conference: Constructive Theory of Functions, Varna, Bulgaria, 27 May–2 June 1984; pp. 757–766. (In Russian). [Google Scholar]
  2. Rofe-Beketov, F.S. Constants of Kneser type and effective masses for zone potentials. Sov. Phys. Dokl. 1984, 29, 391–393. [Google Scholar]
  3. Rofe-Beketov, F.; Kholkin, A. Spectral Analysis of Differential Operators: Interplay Between Spectral and Oscillatory Properties; World Scientific Monograph Series in Mathematics; World Scientific Publishing Co. Ptc. Ltd.: Singapore, 2005; Volume 7. [Google Scholar]
  4. Schmidt, K.M. Critical coupling constants and eigenvalue asymptotics of perturbed periodic Sturm–Liouville operators. Commun. Math. Phys. 2000, 211, 465–485. [Google Scholar] [CrossRef]
  5. Behrndt, J.; Hassi, S.; de Snoo, H. Boundary Value Problems, Weyl Functions, and Differential Operators; Monographs Math; Birkhäuser; Springer: Berlin/Heidelberg, Germany, 2020; Volume 108. [Google Scholar]
  6. Bennewitz, C.; Brown, M.; Weikard, R. Spectral and Scattering Theory for Ordinary Differential Equations. Vol. I: Sturm–Liouville Equations; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
  7. Gesztesy, F.; Nichols, R.; Zinchenko, M. Sturm–Liouville Operators, Their Spectral Theory, and Some Applications; Colloquium Publications: Amer. Math. Soc.: Providence, RI, USA, 2024; Volume 67. [Google Scholar]
  8. Weidmann, J. Linear Operators in Hilbert Spaces; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1980; Volume 68. [Google Scholar]
  9. Weidmann, J. Spectral Theory of Ordinary Differential Operators; Lecture Notes Math; Springer: Berlin/Heidelberg, Germany, 1987; Volume 1258. [Google Scholar]
  10. Zettl, A. Sturm–Liouville Theory; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2005; Volume 121. [Google Scholar]
  11. Zettl, A. Recent Developments in Sturm–Liouville Theory; Studies Math; De Gruyter: Berlin, Germany, 2021; Volume 76. [Google Scholar]
  12. Naimark, M.A. Linear Differential Operators, Part II; Frederick Ungar Publishing Company: New York, NY, USA, 1968. [Google Scholar]
  13. Eckhardt, J.; Gesztesy, F.; Nichols, R.; Teschl, G. Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials. Opuscula Math. 2013, 33, 467–563. [Google Scholar] [CrossRef]
  14. Dobrokhotov, S.Y. Integration by quadratures of Hamiltonian 2n-dimensional systems with n known skew-orthogonal solutions. Russ. Math. Surv. 1998, 53, 380–381. [Google Scholar] [CrossRef]
  15. Rofe-Beketov, F.S. On an estimate for the growth of solutions of canonical almost periodic systems. Mat. Fiz. Anal. Geom. 1994, 1, 139–148. (In Russian) [Google Scholar]
  16. Roitberg, I.; Sakhnovich, A. D’Alembert–Liouville–Ostrogradskii formula and related results. Mat. Fiz. Anal. Geom. 2005, 12, 114–118. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Gesztesy, F.; Nichols, R. An Extension of a Formula of F. S. Rofe-Beketov. Mathematics 2025, 13, 408. https://doi.org/10.3390/math13030408

AMA Style

Gesztesy F, Nichols R. An Extension of a Formula of F. S. Rofe-Beketov. Mathematics. 2025; 13(3):408. https://doi.org/10.3390/math13030408

Chicago/Turabian Style

Gesztesy, Fritz, and Roger Nichols. 2025. "An Extension of a Formula of F. S. Rofe-Beketov" Mathematics 13, no. 3: 408. https://doi.org/10.3390/math13030408

APA Style

Gesztesy, F., & Nichols, R. (2025). An Extension of a Formula of F. S. Rofe-Beketov. Mathematics, 13(3), 408. https://doi.org/10.3390/math13030408

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop