Enhanced Interpretable Forecasting of Cryptocurrency Prices Using Autoencoder Features and a Hybrid CNN-LSTM Model
Abstract
Share and Cite
Badar, W.; Ramzan, S.; Raza, A.; Fitriyani, N.L.; Syafrudin, M.; Lee, S.W. Enhanced Interpretable Forecasting of Cryptocurrency Prices Using Autoencoder Features and a Hybrid CNN-LSTM Model. Mathematics 2025, 13, 1908. https://doi.org/10.3390/math13121908
Badar W, Ramzan S, Raza A, Fitriyani NL, Syafrudin M, Lee SW. Enhanced Interpretable Forecasting of Cryptocurrency Prices Using Autoencoder Features and a Hybrid CNN-LSTM Model. Mathematics. 2025; 13(12):1908. https://doi.org/10.3390/math13121908
Chicago/Turabian StyleBadar, Wajeeha, Shabana Ramzan, Ali Raza, Norma Latif Fitriyani, Muhammad Syafrudin, and Seung Won Lee. 2025. "Enhanced Interpretable Forecasting of Cryptocurrency Prices Using Autoencoder Features and a Hybrid CNN-LSTM Model" Mathematics 13, no. 12: 1908. https://doi.org/10.3390/math13121908
APA StyleBadar, W., Ramzan, S., Raza, A., Fitriyani, N. L., Syafrudin, M., & Lee, S. W. (2025). Enhanced Interpretable Forecasting of Cryptocurrency Prices Using Autoencoder Features and a Hybrid CNN-LSTM Model. Mathematics, 13(12), 1908. https://doi.org/10.3390/math13121908