Error Estimate for a Finite-Difference Crank–Nicolson–ADI Scheme for a Class of Nonlinear Parabolic Isotropic Systems
Abstract
:1. Introduction
2. Notation and Preliminary Results
- (b)
- Let Then
- (c)
- If then for
- (i)
- (ii)
- (iii)
- (iv)
- (v)
3. Error Estimation
3.1. Local Truncation Error
3.2. Global Error Estimates
- The discrete norms and
- The maximum discrete derivatives
4. Numerical Verification of Convergence Order
5. Additional Numerical Experiments
- Initial condition: , ,
- Model parameters: , , ,
- Numerical parameters: ,
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burman, E.; Kessler, D.; Rappaz, J. Convergence of the finite element method applied to an anisotropic phase-field model. Ann. Math. B Pascal 2004, 11, 69–95. [Google Scholar] [CrossRef]
- Langer, J.S. Models of pattern formation in first-order phase transitions. In Directions in Condensed Matter Physics; Grinsteil, G., Mazenko, G., Eds.; World Scientific: Singapore, 1986; pp. 164–186. [Google Scholar]
- Wang, S.L.; Sekerka, R.F.; Wheeler, A.A.; Murray, B.T.; Coriell, S.R.; Braun, R.J.; McFadden, G.B. Thermodynamically-consistent phase-field models for solidification. Phys. D 1993, 69, 189–200. [Google Scholar] [CrossRef]
- McFadden, C.B.; Wheeler, A.A.; Braun, R.J.; Coriell, S.R.; Sekerka, R.F. Phase-field models for anisotropic interfaces. Phys. Rev. E 1993, 48, 2016–2024. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L. Computation of Dendritic Growth at Large Supercoolings by Using the Phase Field Model. Ph.D. Thesis, Department of Physics, Carnegie-Mellon University, Pittsburgh, PA, USA, 1995. [Google Scholar]
- Dendy, J.E. Alternating direction methods for nonlinear time-depedent problems. SIAM I. Numer. Anal. 1977, 14, 313–326. [Google Scholar] [CrossRef]
- Sfyrakis, C.A. Mathematical and Numerical Models for Materials Phase Change Problems. Ph.D. Thesis, Department of Mathematics, University of Athens, Athens, Greece, 2008. (In Greek). [Google Scholar]
- Song, H.; Tan, Q. Stability analysis and error estimates of implicit-explicit Runge-Kutta methods for radial basis function finite difference approximations of parabolic equations. Appl. Numer. Math. 2025, 207, 499–519. [Google Scholar] [CrossRef]
- Lakkis, O.; Makridakis, C. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 2024, 75, 1627–1658. [Google Scholar] [CrossRef]
- Akrivis, G.; Makridakis, C.; Nochetto, R. A posteriori error estimates for the Crank–Nicolson method for parabolic equations. Math. Comput. 2006, 75, 511–531. [Google Scholar] [CrossRef]
- Verfürth, R. A Posteriori Error Estimates for Non-Linear Parabolic Equations; Ruhr-Universität Bochum: Bochum, Germany, 2004; preprint. [Google Scholar]
- Wang, S.L.; Sekerka, R.F. Algorithms for phase field computation of the dendritic operating state at large supercoolings. J. Comput. Phys. 1996, 127, 110–117. [Google Scholar] [CrossRef]
- Billia, B.; Trevedi, R. “Pattern formation in crystal growth”, in M. E. Glicksman and S. P. Marsh, “The dendrite”. In Handbook of Crystal Growth; Hurle, D.T.J., Ed.; North-Holland: Amsterdam, The Netherlands, 1993; Volume 1. [Google Scholar]
- Burman, E.; Rappaz, J. Existence of solutions to an anisotropic phase field model. Math. Methods Appl. Sci. 2003, 26, 1137–1160. [Google Scholar] [CrossRef]
- Burman, E.; Picasso, M.; Rappaz, J. Analysis and computation of dendritic growth in binary alloys using a phase-field model. In Proceedings of the ENUMATH Conference, Lisbon, Portugal, 4–8 September 2023. [Google Scholar]
- Sfyrakis, C.A. Finite difference methods for an anisotropic phase field model. In Recent Advances in Mathematics and Computers in Biology and Chemistry; WSEAS Press: Attica, Greece, 2009; pp. 142–146. [Google Scholar]
- Ganesh, M.; Mustapha, K. A Crank-Nicolson and ADI Galerkin method with quadrature for hyperbolic problems. Numer. Methods Partial. Differ. Equat. Int. J. 2005, 21, 145–168. [Google Scholar] [CrossRef]
- Shen, X.; Yang, X.; Zhang, H. The high-order ADI difference method and extrapolation method for solving the two-dimensional nonlinear parabolic evolution equations. Mathematics 2024, 12, 3469. [Google Scholar] [CrossRef]
- Sfyrakis, C.A.; Chatzarakis, G.E.; Panetsos, S.L. Estimate of an Error for a Finite Difference a Phase Field Model for the Euler-Crank-Nicolson Methods. J. Appl. Math. Comput. 2022, 6, 431–449. [Google Scholar] [CrossRef]
- Sfyrakis, C.A. A numerical method for a simplified anisotropic phase field model. Bull. Greek Math. Soc. 2007, 54, 273–279. [Google Scholar]
J | Errors | Order | Errors | Order |
---|---|---|---|---|
50 | ||||
75 | ||||
112 | ||||
168 | ||||
252 | ||||
378 | ||||
567 | ||||
J | Euler-ADI | Euler-ADI | Euler-ADI | ADI–ADI | ADI–ADI | ADI–ADI |
---|---|---|---|---|---|---|
CPU 1 | CPU 2 | CPU 4 | CPU 1 | CPU 2 | CPU 4 | |
50 | 9 | 9 | 20 | 5 | 4 | 8 |
75 | 38 | 33 | 62 | 16 | 12 | 17 |
112 | 179 | 139 | 220 | 52 | 37 | 47 |
168 | 874 | 605 | 800 | 177 | 115 | 126 |
252 | 4384 | 2800 | 3181 | 609 | 378 | 369 |
378 | 22559 | 13907 | 13525 | 2155 | 1541 | 1286 |
567 | 111202 | 66821 | 57504 | 6934 | 4221 | 3435 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfyrakis, C.A.; Tsoukalas, M. Error Estimate for a Finite-Difference Crank–Nicolson–ADI Scheme for a Class of Nonlinear Parabolic Isotropic Systems. Mathematics 2025, 13, 1719. https://doi.org/10.3390/math13111719
Sfyrakis CA, Tsoukalas M. Error Estimate for a Finite-Difference Crank–Nicolson–ADI Scheme for a Class of Nonlinear Parabolic Isotropic Systems. Mathematics. 2025; 13(11):1719. https://doi.org/10.3390/math13111719
Chicago/Turabian StyleSfyrakis, Chrysovalantis A., and Markos Tsoukalas. 2025. "Error Estimate for a Finite-Difference Crank–Nicolson–ADI Scheme for a Class of Nonlinear Parabolic Isotropic Systems" Mathematics 13, no. 11: 1719. https://doi.org/10.3390/math13111719
APA StyleSfyrakis, C. A., & Tsoukalas, M. (2025). Error Estimate for a Finite-Difference Crank–Nicolson–ADI Scheme for a Class of Nonlinear Parabolic Isotropic Systems. Mathematics, 13(11), 1719. https://doi.org/10.3390/math13111719