Next Article in Journal
Some Quantum Integral Inequalities for (p, h)-Convex Functions
Next Article in Special Issue
Mixed Hilfer and Caputo Fractional Riemann–Stieltjes Integro-Differential Equations with Non-Separated Boundary Conditions
Previous Article in Journal
Facing a Risk: To Insure or Not to Insure—An Analysis with the Constant Relative Risk Aversion Utility Function
Previous Article in Special Issue
Self-Similar Solutions of a Gravitating Dark Fluid
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions

by
Thitiporn Linitda
1,
Kulandhaivel Karthikeyan
2,*,
Palanisamy Raja Sekar
3 and
Thanin Sitthiwirattham
1,*
1
Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand
2
Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
3
Department of Mathematics, K.S.R. College of Engineering, Tiruchengode 637215, Tamilnadu, India
*
Authors to whom correspondence should be addressed.
Mathematics 2023, 11(5), 1071; https://doi.org/10.3390/math11051071
Submission received: 31 December 2022 / Revised: 14 February 2023 / Accepted: 16 February 2023 / Published: 21 February 2023
(This article belongs to the Special Issue New Trends on Boundary Value Problems)

Abstract

:
In this paper, we investigate the controllability of the system with non-local conditions. The existence of a mild solution is established. We obtain the results by using resolvent operators functions, the Hausdorff measure of non-compactness, and Monch’s fixed point theorem. We also present an example, in order to elucidate one of the results discussed.

1. Introduction

Fractional calculus primarily involves the description of fractional-order derivatives and integral operators [1]. It has grown in relevance in recent decades due to its vast range of applications in several scientific disciplines. There are research papers and books [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] on the topic of fractional differential equations, which are used to represent complicated physical and biological processes such as anomalous diffusion, signal processing, wave propagation, visco-elasticity behavior, power-laws, and automatic remote control systems. The evolution of a physical system in time is described by an initial and boundary value problem. In many cases, it is better to have more information on the conditions. Moreover, the non-local condition which is a generalization of the classical condition was motivated by physical problems. The pioneering work on non-local conditions is due to Byszewski [21]. Existence results for differential equations with non-local conditions were investigated by many authors [21,22,23]. Thereafter, by means of the non-compactness measure method Gu and Trujilo [24] defined the study of initial value problems with non-local conditions. The concept of controllability is critical in the study and application of control theory. Many authors [3,6,10,25,26] have investigated controllability with an impulsive condition. Hilfer [27] introduced another fractional derivative which includes the R-L derivative and Caputo fractional derivative. The Hilfer fractional operator is indeed intriguing and important, both in terms of its definition and its associated properties. Subsequently, many authors [28,29,30] studied the Hilfer neutral fractional differential equations. Recently, Subashini [31,32] obtained mild solutions for Hilfer integro-differential equations of fractional order by means of Monch’s fixed point technique and measure of non-compactness [24,25]. The existing results for impulsive neutral Hilfer fractional differential equations with non-local conditions have the following form:
D 0 + ζ , η v ( t ) F 1 ( t , v ( t ) = A v ( t ) + F 2 t , v t , 0 t h ( t , s , v s ) d s + B w ( t ) , t I = ( 0 , p ] , t t k ,
Δ v | t = t k = I k ( v ( t k ) ) , k = 1 , 2 , , m ,
I 0 + ( 1 ζ ) ( 1 η ) v ( 0 ) = ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) P g , t ( , 0 ]
where D 0 + ζ , η denotes the Hilfer differential equation of order ζ and type η . Moreover, 0 ζ 1 ; 0 η 1 and ( v , · ) is a Banach space, A denotes the infinitesimal generator of strongly continuous functions of bounded linear operators { T ( t ) } t 0 on X . A suitable function F 2 : I × P h × X X is connected with the Phase space u θ ( t ) with the mapping u t : ( , 0 ] P g , u t ( d ) = u ( t + d ) , d 0 . Now Δ = { ( ζ , s ) : 0 s ζ t } . For the purpose of brevity, we make use of g v ( t ) = 0 ζ h ( t , s , v s ) d s . Here, w ( · ) is provided in L 2 ( I , X ) , a Banach space of admissible control functions. 0 < t 1 < t 2 < t 3 < < t m p , α : P g k P g is continuous functions.
The article is organized as follows: Section 2 introduces a few key notions and definitions related to our research that will be used throughout the discussion of this article. Section 3 discusses the controllability results with non-local conditions of the impulsive neutral Hilfer Fractional Differential Equations. Finally, Section 4 provides an example to illustrate the theory.

2. Preliminaries

Now we recall some definitions, concepts, and lemmas chosen to achieve the desired outcomes. Let P C ( I , X ) be the Banach space of all continuous function spaces from I X where I = [ 0 , p ] and I = [ 0 , p ] with p > 0 . Now we define C 1 ζ + η ζ η ϑ ( I , X ) = { v : t 1 ζ + η ζ η ϑ z ( t P C ( I , X ) ) } . ( X , · ) is a Banach space with Z = { v C : lim t 0 t 1 ζ + η ζ η ϑ v ( t ) exists and finite } . Let v ( t ) = t 1 ζ + η ζ η ϑ x ( t ) , t ( 0 , p ] then, v Z i f f x C and v Z = x . Let us define F 2 : I × P g X with F 2 L μ ( I , R + ) .
We will now discuss some significant fractional calculus results (see Hilfer [27]).
Definition 1.
Let F : [ p , + ) R and the integral
I p + ζ F ( t ) = 1 Γ ( ζ ) p t F ( ϱ ) ( t ϱ ) ζ 1 d ϱ , t > p , ζ > 0
be called the left-sided R-L fractional integral of order ζ having lower limit p of a continuous function, where Γ ( · ) denotes the gamma function and provided that the right-hand side exists.
Definition 2.
Let F : [ p , + ) R and the integral
( R L ) D p + ζ F ( t ) = 1 Γ ( n ζ ) d d t n p t F ( ϱ ) ( t ϱ ) ζ + 1 m d ϱ , t > p , n 1 < ζ < n .
be called the left-sided (R-L) FD of order η [ k 1 , k ) , where k R .
Definition 3.
Let F : [ p , + ) R and the integral
D p + ζ , η F ( t ) = I p + η ( 1 ζ ) D I p + ( 1 ζ ) ( 1 η ) F ( t )
be called the left-sided Hilfer fractional derivative of order 0 ζ 1 and 0 < η < 1 function of F ( t ) .
Definition 4.
Let F : [ p , + ) R and the integral
C D p + ζ F ( t ) = 1 Γ ( n ζ ) p t F n ( t ) ( t ϱ ) ζ + 1 n d t = I p + n ζ F n ( t ) , t > p , n 1 < ζ < n
be called the left-sided Caputo fractional derivative type of order η ( k 1 , k ) , where k R .
Remark 1.
(i) 
The Hilfer fractional derivative coincides with the standard (R-L) fractional derivative, if η = 0 , 0 < ζ < 1 and p = 0 , then
D 0 + ζ , 0 F ( t ) = d d t I 0 + 1 ζ F ( t ) = ( R L ) D 0 + ζ F ( t ) ;
(ii) 
The Hilfer fractional derivative coincides with the standard Caputo derivative, if ζ = 1 , 0 < η < 1 and p = 0 , then
D 0 + ζ , 1 F ( t ) = I 0 + 1 ζ d d t F ( t ) = C D 0 + η F ( t ) .
Let us characterize abstract phase space P h and verify [23] for more details. Consider g : ( , 0 ] ( 0 , + ) is continuous along j = 0 h ( t ) d t < + . For each k > 0 ,
P = λ : [ i , 0 ] X such that λ ( t ) is bounded and measurable ,
along
λ [ i , 0 ] = sup μ [ i , 0 ] ψ ( δ )
for all λ P .
Now, we define
P g = λ : ( , 0 ] X such that for any i > 0 , λ | [ i , 0 ] P and 0 g ( μ ) λ [ μ , 0 ] d μ < + ,
provided that P g is endowed along
ψ P g = 0 h ( δ ) ψ [ δ , 0 ] d δ
for all ψ P g ; therefore, ( P g . · ) is a Banach space.
Now, we discuss
P g = v : ( , p ) X such that v | I C ( X , v 0 = ψ P g ,
where v k is limitation of v to X = ( λ k , λ k + 1 ] for k = 0 , 1 , , n .
Set · p be a semi-norm in P g defined by
v p = ϕ P g + sup v ( χ ) : χ [ 0 , p ] } , v P g .
Lemma 1.
Assuming v P g , then for λ I , v P g . Moreover,
j | v ( λ ) | v λ P g ϕ P g + j sup δ [ 0 , λ ] u ( r ) ,
where
j = 0 h ( λ ) d λ < + .
Definition 5.
Assume 0 < ϑ < 1 , 0 < ψ < π 2 , Let Θ ψ ϑ be the family of closed linear operators, A : D ( A ) X X such that the sectors S ψ = θ C 0 with a r g θ ψ and
(i) 
σ ( A ) S ψ
(ii) 
There exists N λ as a constant,
( θ I A ) 1 N λ | t | ϑ , for every ψ < λ < π
then A Θ ψ ϑ called an infinitesimal generator of strongly continuous functions of bounded linear operators on X .
Lemma 2.
Let 0 < ϑ < 1 , 0 < ψ < π 2 , A Θ ψ ϑ ( X ) . Then
(1) 
T ( s 1 + s 2 ) = T ( s 1 ) + T ( s 2 ) ) , for any s 1 , s 2 S π 2 ϱ 0 ;
(2) 
There exists Λ 0 is the constant such that T ( t C Λ 0 t ϑ 1 , for any t > 0 ;
(3) 
The range R ( T ( t ) ) of T ( t ) , z S π 2 ϱ 0 is belong D ( A ) . Especially, R ( T ( t ) ) D ( A θ ) for all θ C with R e ( θ ) > 0 ,
A θ T ( t ) x = 1 2 π i Γ γ t θ e t z R ( t ; A ) x d z , f o r a l l x X ,
and hence there exists a constant μ = Λ ( α , θ ) > 0 and satisfy A θ T ( t ) B ( X ) Λ t α R e ( θ ) 1 , for all t > 0 ;
(4) 
If θ > 1 ϑ , then D ( A θ ) Σ T = x X : lim t 0 + T ( t ) x = x ;
(5) 
R ( ζ , A ) = 0 e ζ t T ( t ) d t , for all ζ C with R e ( ζ ) > 0 .
we define the two operators { R ζ ( t ) } t S π 2 ψ , { S ζ ( t ) } t S π 2 ψ as follows
R ζ ( t ) = 0 W ζ ( θ ) T ( t ζ θ ) d θ ,
S ζ ( t ) = 0 ζ θ W ζ ( θ ) T ( t ζ θ ) d θ .
Let the Wright-type function
W ζ ( α ) = Σ n N ( α ) n 1 Γ ( 1 ζ n ) ( n 1 ) ! , α C .
The following are the properties of Wright-type functions
(a) 
W ζ ( θ ) 0 , t > 0 ;
(b) 
0 θ ι W ζ ( θ ) d θ = Γ ( 1 + ι ) Γ ( 1 + ζ ι ) ;
(c) 
0 ζ θ ( ζ + 1 ) e p θ W ζ ( 1 θ ζ ) d θ = e p ζ .
Lemma 3.
The integral equation is equivalent to the (1)–(3)
v ( t ) = ϕ ( 0 ) F 1 ( 0 , ϕ ( 0 ) ) Γ η ( 1 ζ ) t ( 1 ζ ) ( η 1 ) + ζ + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) + 1 Γ ( ζ ) 0 t ( t ϱ ) ζ 1 A F 1 ( t , v t ) + A v ϱ + F 2 ϱ , v ϱ , 0 t h ( t , s , v s ) d s + B w ( ϱ ) d ϱ . + 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) ) .
Definition 6.
v ( t ) = R ζ , η ( t ) [ ϕ ( 0 ) F 1 ( 0 , ϕ ( 0 ) ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ] + F 1 ( t , v t ) + 0 t A Q ζ ( t ϱ ) F 1 ( t , v t ) d ϱ + 0 t Q ζ ( t ϱ ) F 2 ϱ , v ϱ , 0 ϱ h ( ϱ , s , v s ) d s d ϱ + 0 t Q ζ ( t ϱ ) B w ( ϱ ) d ϱ , t I , + 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) ) .
The mild solutions of the Equations (1)–(3), is a function of v ( t ) C ( I , X ) , that satisfies where R ζ , η ( t ) = I 0 η ( 1 ζ ) Q ζ ( t ) , Q ζ ( t ) = t ζ 1 S η ( t ) , i.e.,
v ( t ) = R ζ , η ( t ) ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) F 1 ( 0 , ϕ ( 0 ) ) + F 1 ( t , v t ) + 0 t ( t ϱ ) ζ 1 A S ζ ( t ϱ ) F 1 ( t , v t ) d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( t ϱ ) F 2 ϱ , v ϱ , 0 ϱ h ( ϱ , s , v s ) d s d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( t ϱ ) B w ( ϱ ) d ϱ + 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) ) .
Lemma 4.
Let T ( t ) t 0 is equi-continuous, then S ζ ( t ) t > 0 , Q ζ ( t ) t > 0 and R ζ ( t ) t > 0 are the strongly continuous that is, for any x X and t 2 > t 1 > 0 ,
S ζ ( t 2 ) v S ζ ( t 1 ) v 0 , Q ζ ( t 2 ) v Q ζ ( t 1 ) v 0 , R ζ ( t 2 ) v R ζ ( t 1 ) v 0 , a s t 2 t 1 .
Lemma 5.
For any fixed t > 0 , S ζ ( t ) , Q ζ ( t ) and R ζ , η ( t ) are linear operators, and for any x X ,
S ζ ( t ) v L t ζ + ζ ϑ v , Q ζ ( t ) v L t 1 + ζ ϑ v , R ζ ( t ) v L t 1 + ϵ ζ υ + ζ ϑ v ,
where
M = Λ 0 Γ ( ϑ ) Γ ( ζ ϑ ) , M = Λ 0 Γ ( ϑ ) Γ ( ϵ ( 1 ζ ) + ζ ϑ ) .
Lemma 6.
Let (1) and (2) is said to be controllable in I for every continuous initial value function ϕ P g , v 1 X , there exists w L 2 ( I , V ) and the mild solution v ( t ) satisfied with v ( p ) = v 1 .
Definition 7.
Suppose E + is the positive cone of a Banach space ( E , ) . Let Φ be the function defined on the set of all bounded subsets of the Banach space X with values in E + is known as a measure of non-compactness on X iff Φ ( ¯ c o n v ( Ω ) ) = Φ ( Ω ) for every bounded subset Ω X , where c o n v ( Ω ) denoted the closed hull of Ω.
We now present the basic result on measures of non-compactness.
Definition 8.
Let P be the bounded set in a Banach space X , the Hausdorff measures of non-compactness μ is defined as
γ ( P ) = inf r > 0 : P can be covered by a finite number of balls with radii θ .
Lemma 7.
Suppose X is a Banach space and P 1 , P 2 X are bounded. Then, the properties satisfy
  • (i) P 1 is precompact iff μ ( P 1 ) = 0 ;
  • (ii) γ ( P 1 ) = γ ( P 1 ¯ ) = γ ( c o n v ( P 1 ) ) , where c o n v ( P 1 ) and P 1 ¯ are denote the convex hull and closure of P 1 , respectively;
  • (iii) If P 1 P 2 then γ ( P 1 ) γ ( P 2 ) ;
  • (iv) γ ( P 1 + P 2 ) γ ( P 1 ) + γ ( P 2 ) , such that P 1 + P 2 = = b 1 + b 2 : b 1 P 1 , b 2 P 2 ;
  • (v) γ ( P 1 + P 2 ) max γ ( P 1 ) , γ ( P 2 ) ;
  • (vi) γ ( μ P 1 ) = | μ | γ ( P 1 μ R , when X be a Banach space;
  • (vii) If the operator Φ : D ( ϕ ) X X 1 is Lipschitz continuous, Λ 1 be the constant then we know τ ( Φ ( P 1 ) ) γ ( P 1 ) bounded subset P 1 D ( Φ ) , where τ represent the Hausdorff measure of non-compactness in the Banach space X 1 .
Theorem 1.
If { v n } n = 1 is a set of Bochner integrable functions from I to X with the estimate property, v n ( t ) γ 1 ( t ) for almost all t I and every n 1 , where γ 1 L 1 ( I , R ) , then the function ϖ ( t ) = γ v n ( ( t ) : n 1 be in L 1 ( I , R ) and satisfies
γ 0 t v n ( ϱ ) d ϱ : n 1 2 0 t ϖ ( ϱ ) d ϱ .
Lemma 8.
If P C ( [ a , b ] , X ) is bounded and equi-continuous, then γ ( P ( t ) ) is continuous for a t b and
γ ( P ) = sup μ ( P ( t ) ) , a t b , w h e r e P ( t ) = x ( t : z P X .
Lemma 9.
Let P be a closed convex subset of a Banach space X and 0 P . Assume that F 2 : P X continuous map which satisfies Mönch’s condition, i.e., if P 1 P is countable and P 1 c o n v ( 0 F 1 ( P 1 ) ) P ¯ 1 is compact. Then, F 2 has a fixed point in P.

3. Controllability Results

We require the succeeding hypothesis
Hypothesis 0 ( H 0 ).
Let A be the infinitesimal generator of strongly continuous functions of bounded linear operators of an analytic semigroup T ( t , t > 0 ) in X such that T ( t ) Q 1 where Q 1 0 be the constant.
Hypothesis 1 ( H 1 ).
The function F 1 : I × P g X satisfies:
(i) 
Catheodary condition: F 2 ( · , s , u ) is strongly measurable ( s , u ) P g × X and F 2 ( t , · , · ) is continuous for a.e t I , F 2 ( t , · , · , v ) : [ 0 , p ] X is strongly measurable.
(ii) 
a constants 0 < ζ 1 < ζ and θ 1 L 1 η 1 ( I , R + ) and non-decreasing continuous function ψ : R + R + such that F 2 ( t , s , v ) θ 1 ( t ) ψ ( s P g + v ) , v X , t I , where θ 1 satisfies lim inf n θ 1 ( n ) n = 0 .
(iii) 
a constant 0 < ζ 2 < ζ and θ 2 L 1 η 2 ( I , R + ) such that, for any bounded subset D 1 X , P 1 P g ,
γ ( F 2 ( t , P 1 , D 1 ) ) θ 2 ( t ) sup < τ 0 γ ( P 1 ( ρ ) ) + γ ( D 1 ) .
(iv) 
Let I i : F F are continuous functions and there exists a constant N > 0 such that for all t X , we have I i ( v 1 ) I i ( v 2 ) N v 1 v 2 for a.e t I .
Hypothesis 2 ( H 2 ).
The function h : I × I × P g X satisfies the following:
(i) 
h ( · , s , v ) is measurable for all h ( s , v ) P g × X , g ( t , · , · ) is continuous for a.e t I .
(ii) 
a constant H 0 > 0 such that h ( t , s , u ) H 0 ( 1 + v P w ) for every t I , u X , s P g .
(iii) 
There exists θ 3 L 1 ( I , R + ) such that, for any D 2 X
γ h ( t , s , D 2 ) θ 3 ( t , s ) sup < ρ 0 γ ( D 2 ( τ ) ) .
Hypothesis 3 ( H 3 ).
(i) 
For any t I , multivalued map F 1 : I × X X is a continuous function and there exists β ( 0 , 1 ) such that F 1 D ( A β ) and for all v X , t I , A β F ( t , · ) satisfies the following:
A β F ( t , v ( t ) ) N F 1 1 + t 1 ϵ + ζ + ζ ϵ ζ ϑ v ( t , ( t , v ) I × X .
(ii) 
F 1 is completely continuous and for any bounded set D C the set t F 1 ( t , v t ) , v D is equi-continuous in X .
Hypothesis 4 ( H 4 ).
(i) 
The linear operator B : L 2 ( I , V ) L ( I , X ) is bounded, W : L 2 ( I , V ) X defined by W y = 0 p ( p ρ ) ζ 1 S ζ ( p ρ ) B y ( ρ ) d ρ has an inverse operator W 1 which take the values in L 2 ( I , V ) / k e r W and there exists two positive values Q 2 and Q 3 such that B L b ( U , X ) Q 2 , W 1 L p ( X , V ) / k e r W Q 3 .
(ii) 
a constants ζ 0 ( 0 , ζ ) and Q W L 1 ζ 0 ( I , R + ) such that, ∀ bounded set Q X , γ ( ( W 1 Q ) ) ( t ) ) Q W ( t ) γ ( Q ) .
Hypothesis 5 ( H 5 ).
α : P g i P is continuous, there exists L i ( α ) > 0 ,
α ( z 1 , z 2 , z 3 z n ) α ( y 1 , y 2 , y 3 y n ) i = 1 k L n ( α ) z n y n P g ,for every z n , y n P g
Take Δ w = sup α ( z 1 , z 2 , z 3 z n ) : z n P w .
Let us define
Q ζ i = [ ( 1 ζ i ζ ϑ 1 ) p ( ζ ϑ 1 1 ζ i ) ] , i = 1 , 2
Q 4 = Q ζ 1 θ 2 L 1 ζ 1 ( I , R + ) ,
Q 5 = Q ζ 1 θ 2 L 1 ζ 1 ( I , R + ) 2 ,
A β N 0 , a n d A 1 β N 1 .
Theorem 2.
Suppose H 1 H 5 holds, then the impulsive neutral Hilfer fractional differential Equations (1) and (2) has a solution on [ 0 , p ] provided ϕ ( 0 ) D ( A θ ) with
Q ^ = p 1 ϵ + ζ ϵ ζ ϑ Q 4 ( 1 + θ 3 * ) + L 2 Q 2 Q W Q 5 < 1 and θ > 1 + ϑ .
Proof. 
Assume the operator Φ : P g P g , with t I defined as
Φ ( v ( t ) ) = Φ 1 ( t ) , ( , 0 ] , t 1 η + ζ η ζ ϑ R ζ , η [ ϕ ( 0 ) F 1 ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ) ] + F 1 ( t , v t ) + 0 t ( t ϱ ) ζ 1 A S ζ ( ζ ϱ ) F 1 ( ϱ , v ϱ ) d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( t ϱ ) F 2 ϱ , v ϱ , 0 ϱ g ( ϱ , s , v s ) d s d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( ζ ϱ ) B w ( ϱ ) d ϱ + 0 < t i < t S ζ , η ( t t i ) I i ( u ( t i ) ) .
For Φ 1 P g , we define Φ ^ by
Φ ^ ( t ) = Φ 1 ( t ) , ( , 0 ] , R ζ , η ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) , t I ,
then Φ ^ P g . Let v ( t ) = x ( t ) + Φ ^ t , < t p , v satisfies from 6 iff x satisfies x 0 = 0 and
x ( t ) = R ζ , η F 1 ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ) + F 1 ( t , v t + Φ ^ ϱ ) d ϱ + 0 t ( t ϱ ) ζ 1 A S ζ ( ζ ϱ ) F 1 ( ϱ , x ϱ + Φ ^ ϱ ) d ϱ + 0 t ( t ϱ ) ζ 1 S t ( t ϱ ) F 2 ϱ , v ϱ , 0 ϱ g ( ϱ , s , v s , Φ ^ s ) d s d ϱ + 0 t ( t ϱ ) ζ 1 S t ( t ϱ ) B W 1 v p R ζ , η [ ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) F 1 ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ) ] F 1 ( p , x p + Φ ^ p ) 0 p ( p ϱ ) ζ 1 A S ζ ( p ϱ ) F 1 ( ϱ , x ϱ + Φ ^ p ) 0 p ( p ϱ ) ζ 1 A S ζ ( p ϱ ) F 1 ( ϱ , x ϱ + Φ ^ ϱ 0 ϱ h ( ϱ , s , x ϱ + Φ ^ ϱ ) d s ) d ϱ d ϱ + 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) )
where
w ( t ) = W 1 v p R ζ , η ϕ ( 0 ) F 1 ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ) F 1 ( p , x p + Φ ^ ϱ ) 0 p ( p ϱ ) η 1 A S ζ ( b ϱ ) F 1 ( p , x ϱ + Φ ^ ϱ ) d ϱ 0 p ( p ϱ ) η 1 S ζ ( p ϱ ) F 2 ϱ , x ϱ + 0 ϱ h ( ϱ , s , x ϱ + Φ ^ ϱ ) d s d ϱ . + 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) ) .
Let P g = x P g : x 0 P g . For any x P g ,
x p = x 0 P g + sup { x ( ϱ ) : 0 ϱ p } = sup { x ( ϱ ) : 0 ϱ p } .
Hence, ( P g , · g ) is a Banach space. □
For G > 0 , choose P G = { x P g : x p G } , then P G P g is uniformly bounded and for x P G from Lemma 1,
x ϱ + Φ ^ ϱ P ϱ x t P G + Φ ^ ϱ P G l G + L t 1 + ζ ζ η + ζ ϱ + Φ 1 P g = G .
Let us introduce an operator Ψ : P g P g , defined by
Ψ ( x ( t ) ) = 0 , t ( , 0 ] , F 1 ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ) + F 1 ( t , x t + Φ ^ ϱ ) + 0 t ( t ϱ ) ζ 1 A S ζ ( t ϱ ) F 1 ( ϱ , v ϱ ) d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( t ϱ ) F 2 ϱ , v ϱ , 0 ϱ h ( ϱ , s , v s ) d s d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( ζ ϱ ) B w ( ϱ ) d ϱ + 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) ) . t I
Next, to show that Ψ has a fixed point.
Step 1: we have to prove ∃ a positive value G such that Ψ ( P G ) P G . Assume the statement is false, i.e., for each G > 0 , there exists x G P G , but Ψ ( x G ) not in P G ,
G < sup t 1 η + ζ η ζ ϑ Ψ ( x G ( t ) ) p ( 1 η + ζ η ζ ϑ ) [ R ζ , η t F 1 ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ) + F 1 ( t , v t G + Φ ^ ϱ ) ) d ϱ + 0 t ( t ϱ ) ζ 1 A S ζ ( ζ ϱ ) F 1 ( ϱ , v ϱ G + Φ ^ ϱ ) d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( t ϱ ) F 2 ϱ , v ϱ , 0 s h ( s , r , x r G + Φ ^ s ) d s d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( ζ ϱ ) B w G ( ϱ ) d ϱ ] + 0 < t i < t S ζ , η ( t t i ) I i ( u ( t i ) ) p ( 1 η + ζ η ζ ϑ ) [ F 1 ( 0 , ϕ ( 0 ) ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) + F 1 ( t , v t G + Φ ^ ϱ ) + 0 t ( t ϱ ) ζ 1 A S ζ ( ζ ϱ ) F 1 ( ϱ , v ϱ G + Φ ^ ϱ ) d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( t ϱ ) F 2 ϱ , v ϱ , 0 ϱ h ( s , r , x r G + Φ ^ s ) d s d ϱ + 0 t ( t ϱ ) ζ 1 S ζ ( ζ ϱ ) B W 1 [ v p S ζ , η ( t [ ϕ ( 0 ) F ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ] F 1 ( p , x p + Φ ^ p ) 0 p ( p ϱ ) ζ 1 A S ζ ( p ϱ ) F 1 ( p , x ϱ + Φ ^ ϱ ) 0 p ( p ϱ ) ζ 1 S ζ ( t ϱ ) F 2 ϱ , v ϱ , 0 ϱ h ( ϱ , s , x ϱ + Φ ^ ϱ ) d s d ϱ ] + 0 < t i < t I i ( v ( t i ) ) + p 1 η + ζ η ζ ϑ ( μ 1 + μ 2 + μ 3 ) L Q 2 Q 3 p ζ ϑ ζ ϑ v p L p 1 + η ζ η + ζ ϑ ϕ ( 0 ) ( μ 1 + μ 2 + μ 3 ) + ( v ( t i ) )
where
μ 1 = [ p 1 + η ζ η + ζ ϑ L + ( 1 + G ) ] N 0 N F 1 ,
μ 2 = p ζ ϑ ζ ϑ L N 1 N F 1 ( 1 + G ) ,
μ 2 = L ψ ( G + H 0 ( 1 + G ) ) Q ζ 1 θ 1 L 1 ζ 1 .
The above inequality is divided by G and applying the limit as G , we obtain 1 0 , which is the contradiction. Therefore, Ψ ( P G ) P G .
Step 2: The operator Ψ is continuous on P G . For Ψ : P G P G , for any x k , x P G , k = 0 , 1 , 2 , . . . such that lim k x k = x , the we have lim k x k t = x ( t ) and lim k t 1 η + ζ η η ϑ x k ( t ) = t 1 η + ζ η η ϑ x ( t ) . From ( H 2 ) and ( H 3 )
F t , v t k , 0 t h ( t , s , v s k ) d s = F t , x t k + Φ ^ t , 0 t h ( t , s , x s k + Φ ^ t ) d s F t , x t k + Φ ^ t , 0 t h ( t , s , Φ ^ t ) d s a s k .
Take
F k ( ϱ ) = F 2 ϱ , x ϱ k + Φ ^ ϱ , 0 ϱ h ( t , s , x s k + Φ ^ ϱ ) d ϱ
F ( ϱ ) = F ϱ , x ϱ + Φ ^ ϱ , 0 ϱ h ( ρ , s , x s + Φ ^ ϱ ) d ϱ .
Then, from Hypothesis 2 and 3 and Lebesgue’s dominated convergence theorem, we can obtain
0 t ( t ϱ ) ζ 1 F k ( ϱ ) F ( ϱ ) d ϱ 0 as k , t I .
Now, the Hypotheses (H3),
F 1 ( t , v t k ) = F 1 ( t , x t k + Φ ^ t ) F 1 ( t , x t + Φ ^ t ) = F 1 ( t , v t )
so, we obtain
0 t ( t ϱ ) ζ 1 A S ζ ( t ϱ ) F 1 ( ϱ , x ϱ k + Φ ^ ϱ F 1 ( ϱ , x ϱ + Φ ^ ϱ d ϱ a s k , t I .
Next,
w k ( t ) = W 1 [ v p R ζ , η [ ϕ ( 0 ) F 1 ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ] F 1 ( p , x p k + Φ ^ p ) 0 p ( p ϱ ) ζ 1 A S ζ ( p ϱ ) F 1 ( ϱ , x ϱ k + ϱ ^ ϱ ) d ϱ 0 p ( p ϱ ) ϱ 1 S ζ ( p ϱ ) F 2 ( ϱ , s , x ϱ k + Φ ^ , 0 ϱ h ( ϱ , s , x ϱ k + Φ ϱ ^ ) d s ) ] + 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) ) ,
v k ( t ) v ( t ) = W 1 [ F 1 ( p , x p k + Φ ^ p ) F 1 ( p , x p + Φ ^ p ) + 0 p ( p ϱ ) ζ 1 A S ζ ( p ϱ ) F 1 ( ϱ , x ϱ k + Φ ^ ϱ ) F 1 ( ϱ , x ϱ + Φ ^ ϱ ) d ϱ + 0 p ( p ϱ ) ζ 1 S ζ ( p ϱ ) F 2 ( ϱ , x ϱ k + Φ ^ ϱ ) F 2 ( ϱ , x ϱ + Φ ^ ϱ ) d ϱ ] + 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) ) .
From (8) and (9) the above term become converges to zero as k . Now,
Φ x k ( t ) Φ x ( t ) p F 1 ( t , x t k + Φ ^ t ) F 1 ( t , x t + Φ ^ t ) + 0 t ( t ϱ ) ζ 1 S ζ ( t ϱ ) × ( A F 1 ( ϱ , x ϱ k + Φ ^ ϱ ) F 1 ( ϱ , x ϱ + Φ ^ ϱ ) t d ϱ + F k ( ϱ ) F ( ϱ ) d ϱ + B w k ( t ) w ( t ) ) d ϱ .
Using (9) and (10), we obtain
Ψ x k Ψ x p 0 as k .
Therefore, Ψ is continuous on P G .
Step 3: Now, we have to show Ψ is continuous. For v P G and 0 t 1 t 2 p , we have
Φ x ( t 2 ) Φ x ( t 1 ) = t 2 1 η + ζ η ζ ϑ ( R ζ , η ( t 2 ) F 1 ( 0 , ϕ ( 0 ) ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) + F 1 ( t 2 , x ϱ G + Φ ^ ϱ ) + 0 t 2 ( t 2 ϱ ) ζ 1 A S k ( t 2 ϱ ) F 1 ( ϱ , x ϱ b + Ψ ^ ϱ ) d ϱ + 0 t 2 ( t 2 ϱ ) ζ 1 S k ( t 2 ϱ ) F 2 ( ϱ , x ϱ b + Ψ ^ ϱ , 0 s h ( s , r , x r G + Φ ^ s ) d s ) d ϱ + 0 t 2 ( t 2 ϱ ) ζ 1 S k ( t 2 ϱ ) B w G ( ϱ ) d ϱ ) + 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) ) t 1 1 η + ζ η ζ ϑ ( R η , ζ ( t 1 ) F 1 ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ) + F 1 ( t 1 , x ϱ p + Φ ^ ϱ ) + 0 t 1 ( t 1 ϱ ) ζ 1 S k ( t 1 ϱ ) F 2 ( ϱ , x ϱ G + Ψ ^ ϱ , 0 s h ( s , r , x r b + Φ ^ s ) d s ) d ϱ + 0 t 2 ( t 2 ϱ ) ζ 1 S k ( t 1 ϱ ) P w G ( ϱ ) d ϱ 0 < t i < t S ζ , η ( t t i ) I i ( v ( t i ) ) t 2 1 η + ζ η ζ ϑ R ζ , η ( t 2 ) t 1 1 η + ζ η ζ ϑ R ζ , η ( t 1 ) F 1 ( 0 , ϕ ( 0 ) ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ) + t 2 1 η + ζ η ζ ϑ F 1 ( t 2 , x t 2 + Ψ ^ t 2 ) t 1 1 η + ζ η ζ ϑ F 1 ( t 2 , x t 1 + Ψ ^ t 1 ) + t 2 1 η + ζ η ζ ϑ 0 t 2 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 2 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) d ϱ + t 2 1 η + ζ η ζ ϑ 0 t 2 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) d ϱ + t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 2 ϱ ) F 1 ( t 1 , x ϱ G + Ψ ^ ϱ ) d ϱ + t 2 1 η + ζ η ζ ϑ t 1 t 2 ( t 1 ϱ ) ζ 1 A S k ( t 2 ϱ ) F 1 ( t 2 , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 2 ϱ ) F 1 ( t 2 , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ + t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 2 ϱ ) F 1 ( t 2 , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 2 ϱ ) F 1 ( t 2 , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ + t 2 1 η + ζ η ζ ϑ t 1 t 2 ( t 2 ϱ ) ζ 1 A S k ( t 2 ϱ ) F 1 ( t 2 , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ + t 2 1 η + ζ η ζ ϑ 0 t 2 ( t 2 ϱ ) ζ 1 A S k ( t 2 ϱ ) B w ( ϱ ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 2 ϱ ) B w ( ϱ ) d ϱ + t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 2 ϱ ) ζ 1 A S k ( t 1 ϱ ) B w ( ϱ ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 2 ϱ ) B w ( ϱ ) d ϱ + t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) B w ( ϱ ) + t 2 1 η + ζ η ζ ϑ ( v ( t ) 2 v ( t ) 1 ) ) i = 1 12 I i .
Now consider the following
I 1 = t 2 1 η + ζ η ζ ϑ R ζ , η ( t 2 ) t 1 1 η + ζ η ζ ϑ R ζ , η ( t 1 ) F 1 ( 0 , ϕ ( 0 ) + α ( v t 1 , v t 2 , v t 3 , , v t m ) ( 0 ) ,
from the strong continuity of R ζ , η ( t ) , I 1 0 as t 2 t 1
I 2 = t 2 1 η + ζ η ζ ϑ F 1 ( t 2 , x ϱ 2 + Ψ ^ ϱ 2 t 2 1 η + ζ η ζ ϑ F 1 ( t 1 , x ϱ 1 + Ψ ^ ϱ 1 ) ,
using the Hypotheses 3, I 2 becomes zero.
I 3 = t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) ( S k ( t 2 ϱ ) S k ( t 1 ϱ ) ) d ϱ p 1 η + ζ η ζ ϑ N 1 N F 1 ( 1 + G ) 0 t 1 ( t 1 ϱ ) ζ 1 ( S k ( t 2 ϱ ) S k ( t 1 ϱ ) ) d ϱ .
I 3 0 as t 2 t 1 , since the strong continuity of S k ( t )
I 4 = t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) S k ( t 1 ϱ ) F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) d ϱ p 1 η + ζ η ζ ϑ 0 t 1 ( ( t 1 ϱ ) ζ 1 ( t 1 ϱ ) ζ 1 ) A ( S k ( t 2 ϱ ) F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) d ϱ
integrating and t 2 t 1 , then I 4 become zero.
I 5 = t 2 1 η + ζ η ζ ϑ t 1 t 2 ( t 1 ϱ ) ζ 1 A S k ( t 1 ϱ ) F 1 ( ϱ , x ϱ G + Ψ ^ ϱ ) d ϱ p 1 η + ζ η ζ ϑ N 1 N F 1 L 1 ( 1 + G ) t 1 t 2 ( ( t 1 ϱ ) ζ ϑ 1 d ϱ ,
integrating and t 2 t 1 , then I 5 become zero.
I 6 = t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 S k ( t 2 ϱ ) F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 S k ( t 2 ϱ ) F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ ( 0 t 1 t 2 1 η + ζ η ζ ϑ ( t 1 ϱ ) ζ 1 t 1 1 η + ζ η ζ ϑ ( t 1 ϱ ) ζ 1 ) ( t 1 ϱ ) S k ( t 2 ϱ ) × F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ L ( 0 t 1 t 2 1 η + ζ η + ζ ϑ ( t 1 ϱ ) ζ 1 t 1 1 η + ζ η ζ ϑ ( t 1 ϱ ) ζ 1 ) ( t 2 ϱ ) ζ ζ ϑ d ϱ θ 1 ( p ) ϕ ( B + H 0 ( 1 + B ) ) ,
implies I 6 0 as t 2 t 1 .
I 7 = t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 S k ( t 2 ϱ ) F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 S k ( t 2 ϱ ) F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 [ S k ( t 2 ϱ ) S k ( t 1 ϱ ) ] F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 [ S k ( t 2 ϱ ) S k ( t 1 ϱ ) ] F 2 θ 1 ( p ) ϕ ( B + H 0 ( 1 + B ) ) .
Since S k ( t ) is uniformly continuous operator norm topology, we obtain I 7 0 as t 2 t 1 .
I 8 = t 1 1 η + ζ η ζ ϑ t 1 t 2 ( t 2 ϱ ) ζ 1 S k ( t 2 ϱ ) F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ L t 2 1 η + ζ η ζ ϑ t 1 t 2 ( t 1 ϱ ) ζ ϑ 1 d ϱ θ 1 ( p ) ϕ ( B + H 0 ( 1 + B ) ) ,
integrating and t 2 t 1 , then I 8 become zero.
I 9 = t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 S k ( t 2 ϱ ) B w ( ϱ ) t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 A S k ( t 2 ϱ ) B w ( ϱ ) d ϱ + ( t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 ) S k ( t 2 ϱ ) B w ( ϱ ) d ϱ , L Q 2 ( t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 2 ϱ ) ζ 1 t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 ) ( t 2 ϱ ) ζ + ζ ϑ w ( ϱ ) d ϱ ,
Implies I 9 0 ,as t 2 t 1 .
I 10 = t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 S k ( t 2 ϱ ) B w ( ϱ ) t 1 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 S k ( t 2 ϱ ) B w ( ϱ ) d ϱ + ( t 2 1 η + ζ η ζ ϑ 0 t 1 ( t 1 ϱ ) ζ 1 ( S k ( t 2 ϱ ) S k ( t 2 ϱ ) ) B w ( ϱ ) d ϱ ,
from the uniform continuity of S k ( t ) , we obtain I 10 as t 2 t 1 .
I 11 = t 2 1 η + ζ η ζ ϑ t 1 t 2 ( t 2 ϱ ) ζ 1 S k ( t 2 ϱ ) B w ( ϱ ) d ϱ L Q 2 ( t 2 1 η + ζ η ζ ϑ t 1 t 2 ( t 2 ϱ ) ζ ϑ 1 w ( ϱ ) d ϱ
integrating and applying limit I 11 = 0 . Therefore, Φ is equi-continuous on I .
I 12 = t 2 1 η + ζ η ζ ϑ ( v ( t ) 2 v ( t ) 1 ) )
using the Hypotheses H5, I 2   I 12 = 0 .
Step 4: To show Mönch’s condition. Suppose that P 0 P G is a countable and P 0 c o n v ( 0 Φ ( P 0 ) ) . We prove γ ( P 0 ) = 0 . For that, assume that P 0 = { x k + Φ ^ } k = 1 . We need to prove that Φ ( P 0 ( t ) ) is relatively compact in X for each t I .
γ ( Ψ ( P 0 ) ) = γ ( Ψ ( x k + Ψ k = 1 ) ) γ ( t 1 η + ζ η ζ ϑ { 0 t ( t ϱ ) ζ 1 S k ( t ϱ ) F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ + 0 t ( t ϱ ) ζ 1 S k ( t ϱ ) B w x k ( ϱ ) d ϱ } k = 1 t 1 η + ζ η ζ ϑ γ ( { 0 t ( t ϱ ) ζ 1 S k ( t ϱ ) F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ ϱ ) d s ) d ϱ + t 1 η + ζ η ζ ϑ γ ( 0 t ( t ϱ ) ζ 1 S k ( t ϱ ) B w x k ( ϱ ) d ϱ } k = 1 ) = J 1 + J 2
where
J 1 = t 1 1 η + ζ η ζ ϑ γ ( 0 t ( t ϱ ) ζ 1 S k ( t ϱ ) F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , { x ϱ + Ψ ^ ϱ } k = 1 ) d s ) d ϱ p 1 η + ζ η ζ ϑ { 0 t ( t ϱ ) ζ 1 S k ( t ϱ ) F 2 ( ϱ , x ϱ + Ψ ^ ϱ , 0 ϱ h ( ϱ , s , { x ϱ + Ψ ^ ϱ } k = 1 ) d s ) d ϱ L p 1 η + ζ η ζ ϑ { 0 t ( t ϱ ) ζ ϑ 1 θ 2 ( ϱ ) γ ( P 0 ) [ 1 + θ t * ] d ϱ L p 1 η + ζ η ζ ϑ γ ( P 0 ) [ 1 + θ t 1 * ] { 0 t ( t ϱ ) ζ ϑ 1 ζ d ϱ ) ζ 2 1 ( 0 t θ 2 ( ϱ ) ζ 2 d ϱ ) 1 ζ 2 L p 1 η + ζ η ζ ϑ Q ζ 2 θ 2 L 1 ζ 1 [ 1 + θ 3 * ] × γ ( P 0 )
J 2 = t 1 η + ζ η ζ ϑ γ 0 t ( t ϱ ) ζ 1 S k ( t ϱ ) B { w x k ( ϱ ) } k = 1 d ϱ L 2 Q 2 p 1 η + ζ η ζ ϑ 0 p ( p ϱ ) 2 ζ ϑ 2 [ γ ( W 1 F 2 ( ϱ , { x ϱ + Ψ ^ ϱ } k = 1 , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ s k = 1 ) ) d ϱ ] L 2 Q 2 p 1 η + ζ η ζ ϑ { 0 p ( t 1 ϱ ) 2 ζ ϑ 2 γ ( F 2 ( ϱ , { x ϱ + Ψ ^ ϱ } k = 1 , 0 ϱ h ( ϱ , s , x ϱ + Ψ ^ s k = 1 ) ) d ϱ L 2 Q 2 Q W p 1 η + ζ η ζ ϑ { 0 p ( p ϱ ) ζ ϑ 1 1 ζ 2 d ϱ ) 2 2 ζ 2 ( 0 p θ 2 ( ϱ ) ζ 2 d ϱ ) 1 ζ 2 × γ ( P 0 ) L Q 2 Q W p 1 η + ζ η ζ ϑ Q ζ 2 2 θ 2 L 1 ζ 1 ( I , R + ) × γ ( P 0 ) .
Now
J 1 + J 2 p 1 η + ζ η ζ ϑ ( Q ζ 2 2 θ 2 L 1 ζ 1 ( I , R + ) [ 1 + θ 3 * ] + L 2 Q 2 Q W Q ζ 2 2 θ 2 L 1 ζ 1 ( x , R + ) ) γ ( P 0 ) p 1 η + ζ η ζ ϑ ( Q 4 ( 1 + θ 3 * ) + L Q 2 Q W Q 5 ) × γ ( P 0 ) .
Therefore
γ ( Φ ( P 0 ) ) Q ^ γ ( P 0 ) ,
where Q ^ = p 1 η + ζ η ζ ϑ ( Q 4 ( 1 + θ 3 * ) + L Q 2 Q W Q 5 ) . Thus, from Mönch’s condition, we obtain
γ ( P 0 ) γ ( C o n v ( 0 Ψ ( P 0 ) ) ) = γ ( Φ ( P 0 ) ) Q ^ γ ( P 0 ) γ ( P 0 ) = 0 .
So, by Lemma 9, Ψ has a fixed point v in P B . Then v = x + Φ ^ is a mild solution of system (1)–(3) is controllable on X .

4. Example

Suppose the Hilfer fractional integro-differential system of the form,
D 0 + 2 3 , η v ( t , μ ) v ( z , μ ) d z = 2 μ 2 v ( t , μ ) + W Φ ^ ( t , μ ) + Φ t , t Φ 1 ( ϱ t ) v ( ϱ , μ ) d ϱ , 0 t 0 Φ 2 ( ϱ , μ , r ϱ ) v ( r , μ ) d μ d ϱ ,
Δ v | t = t k = I k ( v ( t k ) ) , k = 1 , 2 , , m ,
I ( 1 ζ ) ( 1 2 3 ) [ v ( 0 , μ ) ] = v 0 ( μ ) , μ [ 0 , π ] ,
v ( t , 0 ) = v ( t , π ) = 0 , t I ,
v ( t , μ ) = ϕ ( t , μ ) , 0 μ π , t ( , 0 ]
where D 0 + 2 3 , η denoted the Hilfer fractional derivative of order ζ = 2 3 , type ζ [ 0 , 1 ] and Φ : I × P g × X X is a continuous function. Moreover, ϕ is continuous and satisfies certain smoothness conditions, Φ 0 , Φ 1 and Φ 2 are the appropriate functions. To change this system into an abstract structure, let X = V = L 2 [ 0 , π ] be endowed with the norm · L 2 and A : D ( A ) X X is defined as A ρ = ρ with
D ( A ) = { ρ X : ρ , ρ are absolutely continuous , 2 ρ 2 X , ρ ( 0 ) = ρ ( π ) = 0 }
and
A ρ = i = 1 i 2 ρ , ρ i ρ i , ρ D ( A )
where ρ k ( y ) = 2 π s i n ( i ρ ) , i N is the orthogonal set of eigen vectors of A .
We have A denotes the infinitesimal generator of strongly continuous functions of bounded linear operators { T ( t ) , t 0 } in X and is given by T ( t ) P γ ( P ) , where γ denoted the Hausdorff measure of non-compactness and Q 1 1 is a constant, satisfy sup t I T ( t ) Q 1 , Furthermore, t ρ ( t 2 3 θ + ϱ ) v is equi-continuous for t 0 an 0 < θ < . Define
v ( t ( ρ ) ) = v ( t , ρ )
F 2 t , v t , 0 t h ( t , s , u t ) d s ( ρ ) = Φ t , t Φ 1 ( ϱ t ) ( t , ρ ) d ϱ , 0 t 0 Φ 2 ( ϱ , ρ , r ϱ ) v ( r , ρ ) d ρ d ϱ
F 1 ( v , v t ) = 0 π Φ 0 ( t , ρ ) v ( z , ρ ) d z .
Let B : V X
B ( V ( ρ ) ) = W γ ( t , ρ ) , 0 < ρ < π .
Given the entries A , B , F 1 and F 2 , Equation (11) can be written as
D 0 ζ , η [ v ( t ) F 1 ( t , v t ) ] = A v ( F 1 ) + F 2 t , v t , 0 t h ( t , s , u t ) d s + B w ( t ) ; ζ = 2 3 ( 0 , 1 ) , t I
Δ v | t = t k = I k ( v ( t k ) ) , k = 1 , 2 , , m ,
I 0 + ( 1 ζ ) ( 1 η ) v 0 = ϕ P g .
In order to validate the Theorem 2 assumptions, we additionally present some acceptable circumstances for the aforementioned functions, and we conclude that the impulsive neutral Hilfer fractional differential system (1)–(3) is controllable.

5. Conclusions

In this paper, we focused on the analysis of controllability for impulsive neutral Hilfer fractional differential equations with non-local conditions. Applying the findings and concepts from the infinitesimal generator of a strongly continuous function of bounded linear operators, fractional calculus, the measure of non-compactness, impulsive conditions, non-local conditions, and fixed point method, the main conclusion is established. Last but not least, we provided an example to illustrate the principle. Future research will concentrate on the many types of controllability of impulsive neutral Hilfer fractional differential systems with non-local conditions.

Author Contributions

Conceptualization, T.L., K.K., P.R.S. and T.S.; methodology, T.L., K.K., P.R.S. and T.S.; formal analysis, T.L., K.K., P.R.S. and T.S.; funding acquisition, T.L. and T.S. All authors have read and agreed to the published version of the manuscript. authors contributed equally to the writing of this paper.

Funding

This research was funded by National Science, Research, and Innovation Fund (NSRF), and Suan Dusit University.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for taking the necessary time and effort to review the manuscript. We sincerely appreciate all your valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
  2. Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equation with uncertanity. Nonlinear Anal. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
  3. Ahmad, M.; Ghaderi, Z.A.M.; Goerge, R.; Rezapour, S. On the existence and stability of a Neutral stochastic fractional differential system. Fractal. Fract. 2022, 6, 203. [Google Scholar] [CrossRef]
  4. Balachandran, K.; Sakthivel, R. Controllability of integro-differential systems in Banach spaces. Appl. Math. Comput. 2001, 118, 63–71. [Google Scholar]
  5. Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, Z.A.; Khan, A. Existence and approximate controllability of Hilfer fractional evolution equation with almost sectorial opertaors. Adv. Differ. Equ. 2020, 615, 1–15. [Google Scholar]
  6. Boudaoui, A.; Slama, A. Approximate controllability of nonlinear fractional implusive stochastic implusive stochastic differential equations with nonlocal conditions and infinite delay. Nonlinear Dyn. Syst. Theory 2016, 16, 3548. [Google Scholar]
  7. Chang, Y.K. Controllability of implusive differentail systems with infinite delay in Banach spaces. Chaos Solitions Fractals 2007, 33, 1601–1609. [Google Scholar] [CrossRef]
  8. Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Nisar, K.S. Results on approximate controllabilty of neutral integro–differential stochastic system with state–dependent delay. Numer. Methods Partial. Differ. Equ. 2020, 1–19. [Google Scholar] [CrossRef]
  9. Jaiswal, A.; Bahuguna, D. Hilfer fractional differential equations with almost sectorial operators. Differ. Equ. Dyn. Syst. 2020, 1–17. [Google Scholar] [CrossRef]
  10. Ji, S.; Li, G.; Wang, M. Controllability of implusive differential systems with nonlocal conditions. Appl. Math. Comput. 2011, 217, 6981–6989. [Google Scholar]
  11. Karthikeyan, K.; Debbouche, A.; Torres, D.F.M. Analysis of Hilfer fractional integro–differential equations with sectorial operators. Fractal Fract. 2021, 5, 22. [Google Scholar] [CrossRef]
  12. Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
  13. Miler, K.S.; Ross, B. An Introduction to the Fractional Calculua and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
  14. Raja, M.M.; Vijayakumar, V.; Shukla, A.; Nisar, K.S.; Rezapour, S. New discussiohn on nonlocal controllability for fractional ewvolution system of order 1 < r < 2. Adv. Differ. Equ. 2020, 139, 110299. [Google Scholar]
  15. Raja, M.M.; Vijayakumar, V.; Udhayakumar, R. Results on exitence and controllability of fractional integro–differential system of 1 < r < 2 via measure of noncompactness. Chaos Solitions Fractals 2020, 139, 110019. [Google Scholar]
  16. Sakthivel, R.; Ganesh, R.; Antoni, S.M. Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 2013, 225, 708–717. [Google Scholar] [CrossRef]
  17. Zhang, L.; Zhou, Y. Fractional Cauchy problems with almoast sectorial operators. Appl. Math. Comput. 2014, 257, 145–157. [Google Scholar]
  18. Zhou, M.; Li, C.; Zhou, Y. Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators. Axioms 2022, 11, 144. [Google Scholar] [CrossRef]
  19. Zhou, Y. Basic Theory of Fractional Differential Equations. J. Inequalities Appl. 2001, 6, 77–97. [Google Scholar]
  20. Zhou, Y. Boundary value problem for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 1980, 4, 985–999. [Google Scholar]
  21. Byszewski, L.; Akea, H. On a mild solution of semilinear functinal differential evolution nonlocal problem. J. Math. Ans Stoch. Anal. 1997, 10, 265–271. [Google Scholar] [CrossRef]
  22. Byszewski, L. Theorems about existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 1991, 162, 494–505. [Google Scholar] [CrossRef] [Green Version]
  23. Yang, M.; Wang, Q. Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 2017, 20, 679–705. [Google Scholar] [CrossRef]
  24. Gu, H.; Trujillo, J.J. Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar]
  25. Banas, J.; Goebel, K. Measure of Noncompactness in Banach Spaces; Lecture Notes in Pure and Applied Mathematics; M. Dekker: New York, NY, USA, 1980. [Google Scholar]
  26. Karthikeyan, K.; Rajasekar, P.; Karthikeyan, P.; Kumar, A.; Botmart, T.; Weera, W. A study on controllability for Hilfer Fractional differential equation with implusive delay condition. Aims Math. 2022, 8, 4202–4219. [Google Scholar] [CrossRef]
  27. Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  28. Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Sakthivel, N.; Nissar, K.S. A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 2021, 44, 4428–4447. [Google Scholar] [CrossRef]
  29. Kavitha, K.; Vijayakumar, V.; Udhayakumar, R. Results on controllability on Hilfer fractional neutral differential equations with infinite delay via meassure of noncompactness. Chaos Solitions Fractals 2020, 139, 110035. [Google Scholar] [CrossRef]
  30. Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nair, N.K.S. Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl.Sci. 2021, 44, 438–1455. [Google Scholar] [CrossRef]
  31. Subashini, R.; Jothimani, K.; Saranya, S.; Ravichandran, C. On the results of Hilfer fractional derivative with nonlocal conditions. Int. J. Pure Appl. Math. 2018, 118, 277–298. [Google Scholar] [CrossRef]
  32. Subashini, R.; Jothimani, C.R.K.; Baskonus, H.M. Existence results of Hilfer integro–differential equations with fractional order. Discrete Contin. Dyn. Sys. Ser. S 2020, 13, 911–923. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Linitda, T.; Karthikeyan, K.; Sekar, P.R.; Sitthiwirattham, T. Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions. Mathematics 2023, 11, 1071. https://doi.org/10.3390/math11051071

AMA Style

Linitda T, Karthikeyan K, Sekar PR, Sitthiwirattham T. Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions. Mathematics. 2023; 11(5):1071. https://doi.org/10.3390/math11051071

Chicago/Turabian Style

Linitda, Thitiporn, Kulandhaivel Karthikeyan, Palanisamy Raja Sekar, and Thanin Sitthiwirattham. 2023. "Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions" Mathematics 11, no. 5: 1071. https://doi.org/10.3390/math11051071

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop