Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings
Abstract
:1. Introduction
2. Preliminaries
- (1)
- is normal if there exists and
- (2)
- is upper semi-continuous on if for a there exists and yielding for all with
- (3)
- is a fuzzy convex, meaning that for all and ;
- (4)
- is compactly supported, which means that is compact.
3. Fuzzy Number Hermite–Hadamard Inequalities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2008, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Bombardelli, M.; Varoşanec, S. Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. A new Hermite-Hadamard type inequality for h-convex functions. Creat. Math. Inform. 2015, 2, 191–197. [Google Scholar]
- Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics 2022, 10, 3753. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Sofonea, M.T. Differential quasivariational inequalities in contact mechanics, Math. Mech. Solids. 2019, 24, 845–861. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migórski, S.; Liu, Z.-H.; Yao, J.-C. Convergence of a generalized penalty method for variational-hemivariational inequalities. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105476. [Google Scholar] [CrossRef]
- Li, X.-W.; Li, Y.-X.; Liu, Z.-H.; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 2018, 21, 1439–1470. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Positive solutions for resonant (p,q)-equations with convection. Adv. Nonlinear Anal. 2021, 10, 217–232. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Mond, B. Integral inequalities of Hadamard type for log-convex functions. Demonstr. Math. 1998, 31, 355–364. [Google Scholar] [CrossRef]
- Dragomir, S.S. Refinements of the Hermite-Hadamard integral inequality for log-convex functions. RGMIA Res. Rep. Collect. 2000, 3, 219–225. [Google Scholar]
- Niculescu, C.P. The Hermite–Hadamard inequality for log-convex functions. Nonlinear Anal. 2000, 3, 219–225. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Soliman, M.S. Up and Down -Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities. Axioms 2023, 12, 1. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Macías-Díaz, J.E.; Soliman, M.S.; Zaini, H.G. Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation. Demonstr. Math. 2022, 55, 387–403. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
- Dragomir, S.S. On the Hadamard’s inequlality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, G.; Ye, G.; Liu, W.; Dragomir, S.S. On Hermite–Hadamard-Type Inequalities for Coordinated h-Convex Interval-Valued Functions. Mathematics 2001, 9, 2352. [Google Scholar] [CrossRef]
- Faisal, S.; Khan, M.A.; Iqbal, S. Generalized Hermite-Hadamard-Mercer type inequalities via majorization. Filomat 2022, 36, 469–483. [Google Scholar] [CrossRef]
- Faisal, S.; Adil Khan, M.; Khan, T.U.; Saeed, T.; Alshehri, A.M.; Nwaeze, E.R. New “Conticrete” Hermite–Hadamard–Jensen–Mercer Fractional Inequalities. Symmetry 2022, 14, 294. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite–Hadamard type for functions of selfadjoint operators and matrices. J. Math. Inequalities 2017, 11, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Stojiljković, V.; Ramaswamy, R.; Ashour Abdelnaby, O.A.; Radenović, S. Riemann-Liouville Fractional Inclusions for Convex Functions Using Interval Valued Setting. Mathematics 2022, 10, 3491. [Google Scholar] [CrossRef]
- Stojiljković, V.; Ramaswamy, R.; Alshammari, F.; Ashour, O.A.; Alghazwani, M.L.H.; Radenović, S. Hermite–Hadamard Type Inequalities Involving (k-p) Fractional Operator for Various Types of Convex Functions. Fractal Fract. 2022, 6, 376. [Google Scholar] [CrossRef]
- Wang, H. Certain integral inequalities related to (φ,ϱα)–Lipschitzian mappings and generalized h–convexity on fractal sets. J. Nonlinear Funct. Anal. 2021, 2021, 12. [Google Scholar]
- Tam, N.; Wen, C.; Yao, J.; Yen, N. Structural convexity and ravines of quadratic functions. J. Appl. Numer. Optim. 2021, 3, 425–434. [Google Scholar]
- Khan, M.B.; Alsalami, O.M.; Treanțǎ, S.; Saeed, T.; Nonlaopon, K. New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Math. 2022, 7, 15497–15519. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
- Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite–Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
- Moore, R.E. Interval Analysis; Prentice Hall: Hoboken, NJ, USA, 1966. [Google Scholar]
- Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130. [Google Scholar]
- Rahman, M.S.; Shaikh, A.A.; Bhunia, A.K. Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function. Comput. Ind. Eng. 2020, 147, 106634. [Google Scholar] [CrossRef]
- Qian, Y.; Liang, J.; Dang, C. Interval ordered information systems. Comput. Math. Appl. 2008, 56, 1994–2009. [Google Scholar] [CrossRef] [Green Version]
- De Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Song, C.; Tin-Loi, F. Probabilistic interval analysis for strucqrres with uncertainty. Struct. Saf. 2010, 32, 191–199. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Qiu, Z. A feasible implementation procedure for interval analysis method from measurement data. Appl. Math. Model. 2014, 38, 2377–2397. [Google Scholar] [CrossRef]
- Mizukoshi, M.T.; Lodwick, W.A. The interval eigenvalue problem using constraint interval analysis with an application to linear differential equations. Fuzzy Sets Syst. 2021, 419, 141–157. [Google Scholar] [CrossRef]
- Jiang, C.; Han, X.; Guan, F.J.; Li, Y.H. An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method. Eng. Struct. 2007, 29, 3168–3177. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Guo, P. The normalized interval regression model with outlier detection and its real-world application to house pricing problems. Fuzzy Sets Syst. 2015, 274, 109–123. [Google Scholar] [CrossRef]
- Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. R. Acad. A 2022, 116, 1–23. [Google Scholar] [CrossRef]
- Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
- Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
- Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivariate Anal. 2012, 105, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
- Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
- Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Flores-Franulic, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Sets Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2016, 37, 22–29. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Nabi, S.; Baz, A.; Alhakami, H.; Raza, M.S.; Hussain, A.; Salah, K.; Djemame, K. An In-Depth Empirical Investigation of State-of-the-Art Scheduling Approaches for Cloud Computing. IEEE Access 2020, 8, 128282–128294. [Google Scholar] [CrossRef]
- Talpur, N.; Abdulkadir, S.J.; Alhussian, H.; Hasan, M.H.; Aziz, N.; Bamhdi, A. A comprehensive review of deep neuro-fuzzy system architectures and their optimization methods. Neural Comput. Applic. 2022, 34, 1837–1875. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Assolami, A.; Ntouyas, S.K. On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics 2022, 7, 12718–12741. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-Log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. 2021, 15, 459–470. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann-Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
- Bhunia, A.K.; Samanta, S.S. A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng. 2014, 74, 169–178. [Google Scholar] [CrossRef]
- Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Meth. Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Meth. Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. R. Acad. A 2021, 115, 1–13. [Google Scholar] [CrossRef]
- Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. RACSAM Rev. R. Acad. A 2020, 114, 1–14. [Google Scholar] [CrossRef]
- Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, Y.M.; Zhao, T.H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
- Qian, W.M.; Chu, H.H.; Wang, M.K.; Chu, Y.M. Sharp inequalities for the Toader mean of order –1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
- Othman, H.A. On fuzzy θ-generalized-semi-closed sets. J. Adv. Stud. Topol. 2016, 7, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Elghribi, M.; Othman, H.A.; Al-Nashri, A.H.A. Homogeneous functions: New characterization and applications. Trans. A. Razmadze Math. Inst. 2017, 171, 1–10. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Zhao, T.H.; Chu, H.H.; Chu, Y.M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Dai, Y.Q.; Chu, Y.M. On the generalized power-type Toader mean. J. Math. Inequal. 2022, 16, 247–264. [Google Scholar] [CrossRef]
- Huang, T.R.; Chen, L.; Chu, Y.M. Asymptotically sharp bounds for the complete p-elliptic integral of the first kind. Hokkaido Math. J. 2022, 51, 189–210. [Google Scholar] [CrossRef]
- Zhao, T.H.; Qian, W.M.; Chu, Y.M. On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
- Liu, Z.H.; Motreanu, D.; Zeng, S.D. Generalized penalty and regularization method for differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Wen, C.F.; Yao, J.C.; Zeng, S.D. Existence of solutions for a class of noncoercive variational-hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
- Zeng, S.D.; Migorski, S.; Liu, Z.H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities. SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Method Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Z.H.; Wen, C.F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar] [CrossRef] [Green Version]
- Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite–Hadamard–type inequalities for (h1, h2)-convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 149. [Google Scholar] [CrossRef]
- Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
- Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing; Springer: Berlin, Germany, 2013; p. 295. [Google Scholar]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Rev. Anal. Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
- Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Result Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. [Google Scholar] [CrossRef]
- Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1984. [Google Scholar]
- Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef]
- Liu, Z.H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [Google Scholar] [CrossRef]
- Ashpazzadeh, E.; Chu, Y.-M.; Hashemi, M.S.; Moharrami, M.; Inc, M. Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation. Appl. Math. Comput. 2022, 427, 127171. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Ullah, S.; Ali, M.; Tuzzahrah, G.F.; Munir, T. Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic methd. Appl. Math. Comput. 2022, 430, 127304. [Google Scholar]
- Chu, Y.-M.; Inc, M.; Hashemi, M.S.; Eshaghi, S. Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput. Appl. Math. 2022, 41, 271. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migórski, S.; Liu, Z.-H. Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation. Sci. Sin. Math. 2022, 52, 331–354. [Google Scholar]
- Deveci, M.; Gokasar, I.; Castillo, O.; Daim, T. Evaluation of Metaverse integration of freight fluidity measurement alternatives using fuzzy Dombi EDAS model. Comput. Ind. Eng. 2022, 174, 108773. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Othman, H.A.; Voskoglou, M.G.; Abdullah, L.; Alzubaidi, A.M. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics 2023, 11, 550. https://doi.org/10.3390/math11030550
Khan MB, Othman HA, Voskoglou MG, Abdullah L, Alzubaidi AM. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics. 2023; 11(3):550. https://doi.org/10.3390/math11030550
Chicago/Turabian StyleKhan, Muhammad Bilal, Hakeem A. Othman, Michael Gr. Voskoglou, Lazim Abdullah, and Alia M. Alzubaidi. 2023. "Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings" Mathematics 11, no. 3: 550. https://doi.org/10.3390/math11030550
APA StyleKhan, M. B., Othman, H. A., Voskoglou, M. G., Abdullah, L., & Alzubaidi, A. M. (2023). Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics, 11(3), 550. https://doi.org/10.3390/math11030550