A Variety of Nabla Hardy’s Type Inequality on Time Scales
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozkan, U.M.; Yildirim, H. Hardy-Knopp-type inequalities on time scales. Dynam. Syst. Appl. 2008, 17, 477–486. [Google Scholar]
- Saker, S.H.; O’Regan, D.; Agarwal, R.P. Dynamic inequalities of Hardy and Copson type on time scales. Analysis 2014, 34, 391–402. [Google Scholar] [CrossRef]
- Oguntuase, J.A.; Persson, L.E. Time scales Hardy-type inequalities via superquadracity. Ann. Funct. Anal. 2014, 5, 61–73. [Google Scholar] [CrossRef]
- Donchev, T.; Nosheen, A.; Pečarić, J. Hardy-type inequalities on time scale via convexity in several variables. ISRN Math. Anal. 2013, 2013, 903196. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Hardy Type Inequalities on Time Scales; Springer: Cham, Switzerland, 2016; pp. x+305. [Google Scholar] [CrossRef]
- Hardy, G.H. Note on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus (LX). Messenger Math. 1925, 54, 150–156. [Google Scholar]
- Copson, E.T. Note on Series of Positive Terms. J. Lond. Math. Soc. 1928, 3, 49–51. [Google Scholar] [CrossRef]
- Renaud, P.F. A reversed Hardy inequality. Bull. Austral. Math. Soc. 1986, 34, 225–232. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Makharesh, S.D.; Baleanu, D. Dynamic Hilbert-Type Inequalities with Fenchel-Legendre Transform. Symmetry 2020, 12, 582. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales; An Introduction with Applications; Birkhäuser Boston, Inc.: Boston, MA, USA, 2001; pp. x+358. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Peterson, A. Inequalities on time scales: A survey. Math. Inequal. Appl. 2001, 4, 535–557. [Google Scholar] [CrossRef]
- Hilscher, R. A time scales version of a Wirtinger-type inequality and applications. J. Comput. Appl. Math. 2002, 141, 219–226. [Google Scholar] [CrossRef][Green Version]
- Řehák, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005, 2005, 495–507. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Mahmoud, R.R.; O’Regan, D.; Saker, S.H. Some reverse dynamic inequalities on time scales. Bull. Aust. Math. Soc. 2017, 96, 445–454. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; El-Sennary, H.A.; Khan, Z.A. Some reverse inequalities of Hardy type on time scales. Adv. Differ. Equ. 2020, 2020, 402. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Elsennary, H.A.; Baleanu, D. Some new Hardy-type inequalities on time scales. Adv. Differ. Equ. 2020, 2020, 441. [Google Scholar] [CrossRef]
- Saker, S.H.; Kenawy, M.; AlNemer, G.; Zakarya, M. Some fractional dynamic inequalities of Hardy’s type via conformable calculus. Mathematics 2020, 8, 434. [Google Scholar] [CrossRef]
- Zakaryaed, M.; Altanji, M.; AlNemer, G.; El-Hamid, A.; Hoda, A.; Cesarano, C.; Rezk, H.M. Fractional Reverse Coposn’s Inequalities via Conformable Calculus on Time Scales. Symmetry 2021, 13, 542. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Awrejcewicz, J. Novel Fractional Dynamic Hardy–Hilbert-Type Inequalities on Time Scales with Applications. Mathematics 2021, 9, 2964. [Google Scholar] [CrossRef]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. (Eds.) Advances in Dynamic Equations on Time Scales; Birkhäuser Boston, Inc.: Boston, MA, USA, 2003; pp. xii+348. [Google Scholar] [CrossRef]
- Rahmat, M.R.S.; Noorani, M.S.M. A new conformable nabla derivative and its application on arbitrary time scales. Adv. Differ. Equations 2021, 2021, 1–27. [Google Scholar]
- Nwaeze, E.R.; Torres, D.F. Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales. Arab. J. Math. 2017, 6, 13–20. [Google Scholar] [CrossRef]
- Bendouma, B.; Hammoudi, A. A nabla conformable fractional calculus on time scales. Electron. J. Math. Anal. Appl. 2019, 7, 202–216. [Google Scholar]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, A.A.; Makharesh, S.D.; Askar, S.S.; Awrejcewicz, J. A Variety of Nabla Hardy’s Type Inequality on Time Scales. Mathematics 2022, 10, 722. https://doi.org/10.3390/math10050722
El-Deeb AA, Makharesh SD, Askar SS, Awrejcewicz J. A Variety of Nabla Hardy’s Type Inequality on Time Scales. Mathematics. 2022; 10(5):722. https://doi.org/10.3390/math10050722
Chicago/Turabian StyleEl-Deeb, Ahmed A., Samer D. Makharesh, Sameh S. Askar, and Jan Awrejcewicz. 2022. "A Variety of Nabla Hardy’s Type Inequality on Time Scales" Mathematics 10, no. 5: 722. https://doi.org/10.3390/math10050722
APA StyleEl-Deeb, A. A., Makharesh, S. D., Askar, S. S., & Awrejcewicz, J. (2022). A Variety of Nabla Hardy’s Type Inequality on Time Scales. Mathematics, 10(5), 722. https://doi.org/10.3390/math10050722