Chen Inequalities for Spacelike Submanifolds in Statistical Manifolds of Type Para-Kähler Space Forms
Abstract
1. Introduction
2. Preliminaries
3. Main Inequalities
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, B.-Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension. Glasgow Math. J. 1999, 41, 33–41. [Google Scholar] [CrossRef]
- Chen, B.-Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Decu, S.; Haesen, S.; Verstraelen, L.; Vîlcu, G.E. Curvature Invariants of Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant ϕ-Sectional Curvature. Entropy 2018, 20, 529. [Google Scholar] [CrossRef] [PubMed]
- Decu, S.; Haesen, S.; Verstraelen, L. Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature. Mathematics 2020, 8, 251. [Google Scholar] [CrossRef]
- Chen, B.-Y. Recent developments in δ-Casorati curvature invariants. Turk. J. Math. 2021, 45, 1–46. [Google Scholar] [CrossRef]
- Chen, B.-Y. Recent developments in Wintgen inequality and Wintgen ideal submanifolds. Int. Electron. J. Geom. 2021, 20, 6–45. [Google Scholar] [CrossRef]
- Chen, B.-Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 568–578. [Google Scholar] [CrossRef]
- Van der Veken, J.; Carriazo, A.; Dimitrić, I.; Oh, Y.M.; Suceavă, B.; Vrancken, L. Reflections on some research work of Bang-Yen Chen. In Geometry of Submanifolds: AMS Special Session in Honor of Bang-Yen Chen’s 75th Birthday, University of Michigan, Ann Arbor, MI, USA, 20–21 October 2018; Van der Veken, J., Carriazo, A., Dimitrić, I., Oh, Y.M., Suceavă, B., Vrancken, L., Eds.; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2020; Volume 756. [Google Scholar]
- Verstraelen, L. Submanifold theory—A contemplation of submanifolds. In Geometry of Submanifolds: AMS Special Session in Honor of Bang-Yen Chen’s 75th Birthday, University of Michigan, Ann Arbor, MI, USA, 20–21 October 2018; Van der Veken, J., Carriazo, A., Dimitrić, I., Oh, Y.M., Suceavă, B., Vrancken, L., Eds.; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2020; Volume 756. [Google Scholar]
- Mihai, I. Statistical manifolds and their submanifolds. Results on Chen-like invariants. In Geometry of Submanifolds: AMS Special Session in Honor of Bang-Yen Chen’s 75th Birthday, University of Michigan, Ann Arbor, MI, USA, 20–21 October 2018; Van der Veken, J., Carriazo, A., Dimitrić, I., Oh, Y.M., Suceavă, B., Vrancken, L., Eds.; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2020; Volume 756. [Google Scholar]
- Amari, S. Differential-Geometrical Methods in Statistics. In Lecture Notes in Statistics; Berger, J., Fienberg, S., Gani, J., Krickeberg, K., Olkin, I., Singer, B., Eds.; Springer: Berlin, Germany, 1985; Volume 28. [Google Scholar]
- Chen, B.-Y.; Mihai, A.; Mihai, I. A Chen first inequality for statistical submanifolds in Hessian submanifolds of constant Hessian curvature. Results Math. 2019, 74, 165. [Google Scholar] [CrossRef]
- Aytimur, H.; Kon, M.; Mihai, A.; Özgur, C.; Takano, K. Chen inequalities for statistical submanifolds of Kähler-like statistical manifolds. Mathematics 2019, 7, 1202. [Google Scholar] [CrossRef]
- Graves, J.T. On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables. Philos. Mag. 1845, 26, 315–320. [Google Scholar] [CrossRef][Green Version]
- Rashevskij, P.K. The scalar field in stratified space. Trudy Sem. Vektor. Tenzor. Anal. 1948, 6, 225–248. [Google Scholar]
- Ruse, H.S. On parallel fields of planes in a Riemannian manifold. Quart. J. Math. 1949, 20, 218–234. [Google Scholar] [CrossRef]
- Rozenfeld, B.A. On unitary and stratified spaces. Trudy Sem. Vektor. Tenzor. Anal. 1949, 7, 260–275. [Google Scholar]
- Cruceanu, V.; Fortuny, P.; Gadea, P.M. A survey on paracomplex geometry. Rocky Mt. J. Math. 1996, 26, 83–115. [Google Scholar] [CrossRef]
- Defever, F.; Deszcz, R.; Verstraelen, L. On pseudosymmetric para-Kähler manifolds. Colloq. Math. 1997, 74, 253–260. [Google Scholar] [CrossRef]
- Mihai, A.; Rosca, R. Skew-symmetric vector fields on a CR-submanifold of a para-Kähler manifold. Int. J. Math. Math. Sci. 2004, 10, 535–540. [Google Scholar] [CrossRef]
- Fei, T.; Zhang, J. Interaction of Codazzi couplings with (para)-Kähler geometry. Results Math. 2017, 72, 2037–2056. [Google Scholar] [CrossRef]
- Vîlcu, G.E. Almost products structures on statistical manifolds and para-Kähler-like statistical submersions. Bull. Sci. Math. 2021, 171, 103018. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Decu, S.; Vîlcu, G.E. Inequalities for the Casorati Curvature of Totally Real Spacelike Submanifolds in Statistical Manifolds of Type Para-Kähler Space Forms. Entropy 2021, 23, 1399. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Ogiue, K. On totally real submanifolds. Trans. Am. Math. Soc. 1974, 193, 257–266. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Dillen, F.; Verstraelen, L.; Vrancken, L. Totally real submanifolds of CPn satisfying a basic equality. Arch. Math. 1994, 63, 553–564. [Google Scholar] [CrossRef]
- Chen, B.-Y. Riemannian geometry of Lagrangian submanifolds. Taiwanese J. Math. 2001, 5, 681–723. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Dillen, F.; Van der Veken, J.; Vrancken, L. Classification of δ(2,n − 2)-ideal Lagrangian submanifolds in n-dimensional complex space forms. J. Math. Anal. Appl. 2018, 458, 1456–1485. [Google Scholar] [CrossRef]
- Chen, B.-Y. Lagrangian submanifolds in para-Kähler manifolds. Nonlinear Anal. 2010, 73, 3561–3571. [Google Scholar] [CrossRef]
- Chen, B.-Y. Lagrangian H-umbilical submanifolds of para-Kähler manifolds. Taiwanese J. Math. 2011, 15, 2483–2502. [Google Scholar] [CrossRef]
- Chen, B.-Y. Classification of flat Lagrangian H-umbilical submanifolds in para-Kähler n-plane. Int. Electron. J. Geom. 2011, 4, 1–14. [Google Scholar]
- Furuhata, H.; Hasegawa, I. Submanifold theory in holomorphic statistical manifolds. In Geometry of Cauchy-Riemann Submanifolds; Dragomir, S., Shahid, M.H., Al-Solamy, F.R., Eds.; Springer Science+Business Media: Singapore, 2016; pp. 179–214. [Google Scholar]
- Vos, P. Fundamental equations for statistical submanifolds with applications to the Barlett correction. Ann. Inst. Statist. Math. 1989, 41, 429–450. [Google Scholar] [CrossRef]
- Opozda, B. Bochners technique for statistical manifolds. Ann. Glob. Anal. Geom. 2015, 48, 357–395. [Google Scholar] [CrossRef]
- Oprea, T. Constrained Extremum Problems in Riemannian Geometry; University of Bucharest Publishing House: Bucharest, Romania, 2006. [Google Scholar]
- Gadea, P.M.; Montesinos-Amilibia, A.M. Spaces of constant paraholomorphic sectional curvature. Pac. J. Math. 1989, 136, 85–101. [Google Scholar] [CrossRef]
- Gadea, P.M.; Muñoz Masqué, J. Classification of homogeneous parakählerian space forms. Nova J. Algebra Geom. 1992, 1, 111–124. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Decu, S.; Haesen, S. Chen Inequalities for Spacelike Submanifolds in Statistical Manifolds of Type Para-Kähler Space Forms. Mathematics 2022, 10, 330. https://doi.org/10.3390/math10030330
Decu S, Haesen S. Chen Inequalities for Spacelike Submanifolds in Statistical Manifolds of Type Para-Kähler Space Forms. Mathematics. 2022; 10(3):330. https://doi.org/10.3390/math10030330
Chicago/Turabian StyleDecu, Simona, and Stefan Haesen. 2022. "Chen Inequalities for Spacelike Submanifolds in Statistical Manifolds of Type Para-Kähler Space Forms" Mathematics 10, no. 3: 330. https://doi.org/10.3390/math10030330
APA StyleDecu, S., & Haesen, S. (2022). Chen Inequalities for Spacelike Submanifolds in Statistical Manifolds of Type Para-Kähler Space Forms. Mathematics, 10(3), 330. https://doi.org/10.3390/math10030330