Dahik, C.A.;                     Al Masry, Z.;                     Chrétien, S.;                     Nicod, J.-M.;                     Rabehasaina, L.    
        An SDP Dual Relaxation for the Robust Shortest-Path Problem with Ellipsoidal Uncertainty: Pierra’s Decomposition Method and a New Primal Frank–Wolfe-Type Heuristics for Duality Gap Evaluation. Mathematics 2022, 10, 4009.
    https://doi.org/10.3390/math10214009
    AMA Style
    
                                Dahik CA,                                 Al Masry Z,                                 Chrétien S,                                 Nicod J-M,                                 Rabehasaina L.        
                An SDP Dual Relaxation for the Robust Shortest-Path Problem with Ellipsoidal Uncertainty: Pierra’s Decomposition Method and a New Primal Frank–Wolfe-Type Heuristics for Duality Gap Evaluation. Mathematics. 2022; 10(21):4009.
        https://doi.org/10.3390/math10214009
    
    Chicago/Turabian Style
    
                                Dahik, Chifaa Al,                                 Zeina Al Masry,                                 Stéphane Chrétien,                                 Jean-Marc Nicod,                                 and Landy Rabehasaina.        
                2022. "An SDP Dual Relaxation for the Robust Shortest-Path Problem with Ellipsoidal Uncertainty: Pierra’s Decomposition Method and a New Primal Frank–Wolfe-Type Heuristics for Duality Gap Evaluation" Mathematics 10, no. 21: 4009.
        https://doi.org/10.3390/math10214009
    
    APA Style
    
                                Dahik, C. A.,                                 Al Masry, Z.,                                 Chrétien, S.,                                 Nicod, J.-M.,                                 & Rabehasaina, L.        
        
        (2022). An SDP Dual Relaxation for the Robust Shortest-Path Problem with Ellipsoidal Uncertainty: Pierra’s Decomposition Method and a New Primal Frank–Wolfe-Type Heuristics for Duality Gap Evaluation. Mathematics, 10(21), 4009.
        https://doi.org/10.3390/math10214009