Exploring Gamification Approaches for Enhancing Computational Thinking in Young Learners
Abstract
:1. Introduction
1.1. Computational Thinking
1.2. Gamification
2. Materials and Methods
2.1. Design
2.2. Context and Participants
2.3. Instruments and Assessment
2.3.1. CT Skills Test
- Abstraction: This is the process of simplifying complex problems through identifying the crucial aspects and ignoring the unimportant details. It helps students concentrate on the main elements of a problem, making it more understandable and approachable.
- Algorithmic thinking: This skill involves creating clear, step-by-step procedures or algorithms to solve problems in a systematic manner. Students learn how to break tasks into smaller steps, arrange these steps logically and carry them out in the correct order.
- Decomposition: This skill entails dividing complex problems into smaller, more manageable parts. Through breaking a problem down into its individual components, students can tackle each part separately, ultimately making the overall problem easier to solve.
- Evaluation: This skill involves examining and assessing possible solutions to determine how effective and efficient they are in addressing a given problem. Students can use this skill to identify the best solution or improve existing solutions, ultimately enhancing their problem-solving abilities.
2.3.2. Motivation Test
2.4. Procedure
2.5. Data Analysis
3. Results
3.1. CT Skills
3.2. Motivation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barr, D.; Harrison, J.; Conery, L. Computational thinking: A digital age skill for everyone. Learn. Lead. Technol. 2011, 38, 20–23. [Google Scholar]
- Angeli, C.; Giannakos, M. Computational thinking education: Issues and challenges. Comput. Hum. Behav. 2020, 105, 106185. [Google Scholar] [CrossRef]
- Barr, V.; Stephenson, C. Bringing computational thinking to K-12. ACM Inroads 2011, 2, 48–54. [Google Scholar] [CrossRef]
- Bocconi, S.; Chioccariello, A.; Kampylis, P.; Dagiené, V.; Wastiau, P.; Engelhardt, K.; Earp, J.; Horvath, M.A.; Jasutė, E.; Malagoli, C.; et al. Reviewing Computational Thinking in Compulsory Education; Inamorato Dos Santos, A., Cachia, R., Giannoutsou, N., Punie, Y., Eds.; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Gravemeijer, K.; Stephan, M.; Julie, C.; Lin, F.-L.; Ohtani, M. What Mathematics Education May Prepare Students for the Society of the Future? Int. J. Sci. Math. Educ. 2017, 15, 105–123. [Google Scholar] [CrossRef]
- Barcelos, T.S.; Munoz, R.; Villarroel, R.; Merino, E.; Silveira, I.F. Mathematics Learning through Computational Thinking Activities: A Systematic Literature Review. J. Univers. Comput. Sci. 2018, 24, 815–845. [Google Scholar]
- Weintrop, D.; Beheshti, E.; Horn, M.; Orton, K.; Jona, K.; Trouille, L.; Wilensky, U. Defining Computational Thinking for Mathematics and Science Classrooms. J. Sci. Educ. Technol. 2016, 25, 127–147. [Google Scholar] [CrossRef]
- Diago, P.D.; del Olmo-Muñoz, J.; González-Calero, J.A.; Arnau, D. Entornos tecnológicos para el desarrollo del pensamiento computacional y de la competencia en resolución de problemas. In Aportaciones al Desarrollo del Currículo Desde la Investigación en Educación Matemática; Blanco Nieto, L.J., Climent Rodríguez, N., González Astudillo, M.T., Moreno Verdejo, A., Sánchez-Matamoros García, G., de Castro Hernández, C., Gestal, C.J., Eds.; Editorial Universidad de Granada: Granada, Spain, 2022; pp. 399–424. Available online: https://editorial.ugr.es/libro/aportaciones-al-desarrollo-del-curriculo-desde-la-investigacion-en-educacion-matematica_139289/ (accessed on 1 April 2023).
- Brennan, K.; Resnick, M. New frameworks for studying and assessing the development of computational thinking. In Proceedings of the Annual American Educational Research Association Meeting, Vancouver, BC, Canada, 13–17 April 2012; pp. 1–25. [Google Scholar]
- Zhang, L.; Nouri, J. A systematic review of learning computational thinking through Scratch in K-9. Comput. Educ. 2019, 141, 103607. [Google Scholar] [CrossRef]
- Yadav, A.; Zhou, N.; Mayfield, C.; Hambrusch, S.; Korb, J.T. Introducing computational thinking in education courses. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, Dallas, TX, USA, 9–12 March 2011; Yadav, A., Berthelsen, U.D., Eds.; ACM: New York, NY, USA, 2011; pp. 465–470. [Google Scholar] [CrossRef]
- Grover, S.; Pea, R. Computational Thinking: A Competency Whose Time Has Come. In Computer Science Education; Bloomsbury Academic: London, UK, 2018; Available online: http://www.bloomsburycollections.com/book/computer-science-education-perspectives-on-teaching-and-learning-in-school/ch3-computational-thinking-a-competency-whose-time-has-come (accessed on 1 April 2023).
- Shute, V.J.; Sun, C.; Asbell-Clarke, J. Demystifying computational thinking. Educ. Res. Rev. 2017, 22, 142–158. [Google Scholar] [CrossRef]
- Nordby, S.K.; Bjerke, A.H.; Mifsud, L. Computational Thinking in the Primary Mathematics Classroom: A Systematic Review. Digit. Exp. Math. Educ. 2022, 8, 27–49. [Google Scholar] [CrossRef]
- Wu, W.-R.; Yang, K.-L. The relationships between computational and mathematical thinking: A review study on tasks. Cogent Educ. 2022, 9, 2098929. [Google Scholar] [CrossRef]
- Caeli, E.N.; Yadav, A. Unplugged Approaches to Computational Thinking: A Historical Perspective. TechTrends 2020, 64, 29–36. [Google Scholar] [CrossRef]
- Del Olmo-Muñoz, J.; Cózar-Gutiérrez, R.; González-Calero, J.A. Computational thinking through unplugged activities in early years of Primary Education. Comput. Educ. 2020, 150, 103832. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0360131520300348 (accessed on 1 April 2023). [CrossRef]
- National Council of Teachers of Mathematics (NCTM). Principles and Standards for School Mathematics; National Council of Teachers of Mathematics: Reston, VA, USA, 2000. [Google Scholar]
- Higgins, K.; Huscroft-D’Angelo, J.; Crawford, L. Effects of Technology in Mathematics on Achievement, Motivation, and Attitude: A Meta-Analysis. J. Educ. Comput. Res. 2019, 57, 283–319. [Google Scholar] [CrossRef]
- Verbruggen, S.; Depaepe, F.; Torbeyns, J. Effectiveness of educational technology in early mathematics education: A systematic literature review. Int. J. Child-Comput. Interact. 2021, 27, 100220. [Google Scholar] [CrossRef]
- Savelsbergh, E.R.; Prins, G.T.; Rietbergen, C.; Fechner, S.; Vaessen, B.E.; Draijer, J.M.; Bakker, A. Effects of innovative science and mathematics teaching on student attitudes and achievement: A meta-analytic study. Educ. Res. Rev. 2016, 19, 158–172. [Google Scholar] [CrossRef]
- Del Olmo-Muñoz, J.; González-Calero, J.A.; Diago, P.D.; Arnau, D.; Arevalillo-Herráez, M. Intelligent tutoring systems for word problem solving in COVID-19 days: Could they have been (part of) the solution? ZDM Math. Educ. 2023, 55, 35–48. [Google Scholar] [CrossRef]
- Hillmayr, D.; Ziernwald, L.; Reinhold, F.; Hofer, S.I.; Reiss, K.M. The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Comput. Educ. 2020, 153, 103897. [Google Scholar] [CrossRef]
- Sailer, M.; Homner, L. The Gamification of Learning: A Meta-analysis. Educ. Psychol. Rev. 2020, 32, 77–112. [Google Scholar] [CrossRef]
- Deterding, S.; Dixon, D.; Khaled, R.; Nacke, L. From Game Design Elements to Gamefulness: Defining “Gamification”. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, Tampere, Finland, 28–30 September 2011; ACM: New York, NY, USA, 2011; pp. 9–15. [Google Scholar] [CrossRef]
- Kapp, K.M. The Gamification of Learning and Instruction: Game-Based Methods and Strategies for Training and Education; Pfeiffer: San Francisco, CA, USA, 2011. [Google Scholar]
- Zainuddin, Z.; Chu, S.K.W.; Shujahat, M.; Perera, C.J. The impact of gamification on learning and instruction: A systematic review of empirical evidence. Educ. Res. Rev. 2020, 30, 100326. [Google Scholar] [CrossRef]
- Bai, S.; Hew, K.F.; Huang, B. Does gamification improve student learning outcome? Evidence from a meta-analysis and synthesis of qualitative data in educational contexts. Educ. Res. Rev. 2020, 30, 100322. [Google Scholar] [CrossRef]
- Huang, R.; Ritzhaupt, A.D.; Sommer, M.; Zhu, J.; Stephen, A.; Valle, N.; Hampton, J.; Li, J. The impact of gamification in educational settings on student learning outcomes: A meta-analysis. Educ. Technol. Res. Dev. 2020, 68, 1875–1901. [Google Scholar] [CrossRef]
- Werbach, K.; Hunter, D. The Gamification Toolkit: Dynamics, Mechanics, and Components for the Win; Wharton School Press: Philadelphia, PA, USA, 2015. [Google Scholar]
- Dichev, C.; Dicheva, D. Gamifying education: What is known, what is believed and what remains uncertain: A critical review. Int. J. Educ. Technol. High. Educ. 2017, 14, 9. [Google Scholar] [CrossRef]
- Kalogiannakis, M.; Papadakis, S.; Zourmpakis, A.-I. Gamification in Science Education. A Systematic Review of the Literature. Educ. Sci. 2021, 11, 22. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Conceptualizations of Intrinsic Motivation and Self-Determination. In Intrinsic Motivation and Self-Determination in Human Behavior; Springer: Boston, MA, USA, 1985; pp. 11–40. Available online: https://link.springer.com/chapter/10.1007/978-1-4899-2271-7_2 (accessed on 1 April 2023).
- Mozelius, P. Deep and Shallow Gamification in Higher Education, what is the difference? In Proceedings of the 15th International Technology, Education and Development Conference, Online, 8–9 March 2021; Gómez Chova, L., López Martínez, A., Candel Torres, I., Eds.; IATED Academy: Valencia, Spain, 2021; pp. 3150–3156. [Google Scholar]
- Niemiec, C.P.; Ryan, R.M. Autonomy, competence, and relatedness in the classroom. Theory Res. Educ. 2009, 7, 133–144. [Google Scholar] [CrossRef]
- Mekler, E.D.; Brühlmann, F.; Tuch, A.N.; Opwis, K. Towards understanding the effects of individual gamification elements on intrinsic motivation and performance. Comput. Hum. Behav. 2017, 71, 525–534. [Google Scholar] [CrossRef]
- Nicholson, S. A RECIPE for Meaningful Gamification. In Gamification in Education and Business; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–20. Available online: http://www.zamzee.com (accessed on 1 April 2023).
- Marczewski, A. Thin Layer vs. Deep Level Gamification. Gamified, U.K. 2013. Available online: https://www.gamified.uk/2013/12/23/thin-layer-vs-deep-level-gamification/ (accessed on 1 April 2023).
- Seaborn, K.; Fels, D.I. Gamification in theory and action: A survey. Int. J. Hum. Comput. Stud. 2015, 74, 14–31. [Google Scholar] [CrossRef]
- Lee, L.-K.; Cheung, T.-K.; Ho, L.-T.; Yiu, W.-H.; Wu, N.-I. Learning Computational Thinking through Gamification and Collaborative Learning. In Blended Learning: Educational Innovation for Personalized Learning; Springer: Berlin/Heidelberg, Germany, 2019; pp. 339–349. Available online: http://link.springer.com/10.1007/978-3-030-21562-0_28 (accessed on 1 April 2023).
- Ng, A.K.; Atmosukarto, I.; Cheow, W.S.; Avnit, K.; Yong, M.H. Development and Implementation of an Online Adaptive Gamification Platform for Learning Computational Thinking. In Proceedings of the 2021 IEEE Frontiers in Education Conference (FIE), Lincoln, NE, USA, 13–16 October 2021; pp. 1–6. Available online: https://ieeexplore.ieee.org/document/9637467/ (accessed on 1 April 2023).
- Pires, F.; Maquine Lima, F.M.; Melo, R.; Serique Bernardo, J.R.; de Freitas, R. Gamification and Engagement: Development of Computational Thinking and the Implications in Mathematical Learning. In Proceedings of the 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), Maceio, Brazil, 15–18 July 2019; pp. 362–366. Available online: https://ieeexplore.ieee.org/document/8820891/ (accessed on 1 April 2023).
- Cheng, L.; Wang, X.; Ritzhaupt, A.D. The Effects of Computational Thinking Integration in STEM on Students’ Learning Performance in K-12 Education: A Meta-analysis. J. Educ. Comput. Res. 2022, 61, 073563312211141. [Google Scholar] [CrossRef]
- Bryman, A. Social Research Methods; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Weintrop, D.; Rutstein, D.; Bienkowski, M.; McGee, S. Assessment of Computational Thinking. In Computational Thinking in Education; Yadav, A., Berthelsen, U., Eds.; Routledge: New York, NY, USA, 2021; pp. 90–111. Available online: https://www.taylorfrancis.com/books/9781003102991/chapters/10.4324/9781003102991-6 (accessed on 1 April 2023).
- Poulakis, E.; Politis, P. Computational Thinking Assessment: Literature Review. In Research on E-Learning and ICT in Education; Springer International Publishing: Cham, Switzerland, 2021; pp. 111–128. Available online: https://link.springer.com/chapter/10.1007/978-3-030-64363-8_7 (accessed on 1 April 2023).
- Román-González, M.; Moreno-León, J.; Robles, G. Combining Assessment Tools for a Comprehensive Evaluation of Computational Thinking Interventions. In Computational Thinking Education; Kong, S.-C., Abelson, H., Eds.; Springer: Singapore, 2019; pp. 79–98. [Google Scholar] [CrossRef]
- Dagienė, V.; Sentence, S.; Sentance, S.; Sentence, S. It’s Computational Thinking! Bebras Tasks in the Curriculum. In Proceedings of the International Conference on Informatics in Schools: Situation, Evolution, and Perspectives, Münster, Germany, 13–15 October 2016; Springer: Cham, Switzerland, 2016; pp. 28–39. Available online: https://link.springer.com/chapter/10.1007/978-3-319-46747-4_3 (accessed on 1 April 2023).
- Dagiene, V.; Dolgopolovas, V. Short Tasks for Scaffolding Computational Thinking by the Global Bebras Challenge. Mathematics 2022, 10, 3194. [Google Scholar] [CrossRef]
- Blokhuis, D.; Millican, P.; Roffey, C.; Schrijvers, E.; Sentance, S. UK Bebras Computational Challenge 2016 Answers. 2016. Available online: http://www.bebras.uk/uploads/2/1/8/6/21861082/uk-bebras-2016-answers.pdf (accessed on 1 April 2023).
- Blokhuis, D.; Csizmadia, A.; Millican, P.; Roffey, C.; Schrijvers, E.; Sentance, S. UK Bebras Computational Challenge 2017 Answers. 2017. Available online: http://www.bebras.uk/uploads/2/1/8/6/21861082/uk-bebras-2017-answers.pdf (accessed on 1 April 2023).
- Guay, F.; Chanal, J.; Ratelle, C.F.; Marsh, H.W.; Larose, S.; Boivin, M. Intrinsic, identified, and controlled types of motivation for school subjects in young elementary school children. Br. J. Educ. Psychol. 2010, 80, 711–735. [Google Scholar] [CrossRef]
- Vallerand, R.J.; Blais, M.R.; Brière, N.M.; Pelletier, L.G. Construction et validation de l’échelle de motivation en éducation (EME). Can. J. Behav. Sci. Rev. Can. Sci. Comport. 1989, 21, 323–349. [Google Scholar] [CrossRef]
- Marsh, H.W. The structure of academic self-concept: The Marsh/Shavelson model. J. Educ. Psychol. 1990, 82, 623–636. [Google Scholar] [CrossRef]
- van Roy, R.; Zaman, B. Why Gamification Fails in Education and How to Make It Successful: Introducing Nine Gamification Heuristics Based on Self-Determination Theory. In Serious Games and Edutainment Applications; Springer International Publishing: Cham, Switzerland, 2017; pp. 485–509. Available online: http://link.springer.com/10.1007/978-3-319-51645-5_22 (accessed on 1 April 2023).
- Deci, E.L.; Ryan, R.M. Handbook of Self-Determination Research; University Rochester Press: Rochester, NY, USA, 2004. [Google Scholar]
- Code.org. Learn Computer Science. 2023. Available online: https://code.org/ (accessed on 1 April 2023).
- Del Olmo-Muñoz, J.; Cózar-Gutiérrez, R.; González-Calero, J.A. Promoting second graders’ attitudes towards technology through computational thinking instruction. Int. J. Technol. Des. Educ. 2022, 32, 2019–2037. [Google Scholar] [CrossRef]
- Torres Mancheño, J. @MyClassGame: We Learn Playing. 2023. Available online: https://www.myclassgame.es/ (accessed on 1 April 2023).
- Van De Meer, A. Structures of Choice in Narratives in Gamification and Games. UX Collective. 2019. Available online: https://uxdesign.cc/structures-of-choice-in-narratives-in-gamification-and-games-16da920a0b9a (accessed on 1 April 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
Item | Dimension | Item Description 1 |
---|---|---|
1 | Intrinsic motivation | I like coding |
2 | Intrinsic motivation | Coding interests me a lot |
3 | Intrinsic motivation | I code even when I don’t have to |
4 | Identified regulation | I can learn many useful things by coding |
5 | Identified regulation | I choose to code to learn many things |
6 | Identified regulation | In life, it’s important to learn how to code |
7 | Controlled regulation | I code to get a nice reward |
8 | Controlled regulation | I code to please my parents or my teacher |
9 | Controlled regulation | I code to show others how good I am |
10 | Academic self-concept | I have always done well in coding |
11 | Academic self-concept | Coding is easy for me |
12 | Academic self-concept | I learn things quickly when coding |
Group | n | Pre-TestCT | Post-TestCT | DiffPre-PostCT |
---|---|---|---|---|
Experimental (deep gamification) | 38 | 0.57 (0.16) | 0.69 (0.18) | 0.13 |
Control (shallow gamification) | 42 | 0.54 (0.15) | 0.73 (0.17) | 0.19 |
Group | n | Pre-TestAbs | Post-TestAbs | Pre-TestATh | Post-TestATh | Pre-TestDec | Post-TestDec | Pre-TestEva | Post-TestEva |
---|---|---|---|---|---|---|---|---|---|
Experimental (deep gamification) | 38 | 0.74 (0.15) | 0.81 (0.17) | 0.52 (0.18) | 0.66 (0.20) | 0.56 (0.22) | 0.65 (0.21) | 0.53 (0.17) | 0.65 (0.20) |
Control (shallow gamification) | 44 | 0.70 (0.11) | 0.89 (0.14) | 0.49 (0.16) | 0.70 (0.18) | 0.55 (0.20) | 0.66 (0.20) | 0.51 (0.15) | 0.71 (0.18) |
Group | n | IM | IR | CR | ASC | Total |
---|---|---|---|---|---|---|
Experimental (deep gamification) | 38 | 4.35 (0.63) | 4.33 (0.68) | 3.17 (1.30) | 4.17 (0.77) | 4.00 (0.61) |
Control (shallow gamification) | 42 | 4.24 (0.82) | 4.08 (0.87) | 2.60 (1.45) | 3.45 (0.93) | 3.59 (0.70) |
Difference Shallow-Deep | 0.11 | 0.26 | 0.57 | 0.72 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Olmo-Muñoz, J.; Bueno-Baquero, A.; Cózar-Gutiérrez, R.; González-Calero, J.A. Exploring Gamification Approaches for Enhancing Computational Thinking in Young Learners. Educ. Sci. 2023, 13, 487. https://doi.org/10.3390/educsci13050487
del Olmo-Muñoz J, Bueno-Baquero A, Cózar-Gutiérrez R, González-Calero JA. Exploring Gamification Approaches for Enhancing Computational Thinking in Young Learners. Education Sciences. 2023; 13(5):487. https://doi.org/10.3390/educsci13050487
Chicago/Turabian Styledel Olmo-Muñoz, Javier, Andrea Bueno-Baquero, Ramón Cózar-Gutiérrez, and José Antonio González-Calero. 2023. "Exploring Gamification Approaches for Enhancing Computational Thinking in Young Learners" Education Sciences 13, no. 5: 487. https://doi.org/10.3390/educsci13050487
APA Styledel Olmo-Muñoz, J., Bueno-Baquero, A., Cózar-Gutiérrez, R., & González-Calero, J. A. (2023). Exploring Gamification Approaches for Enhancing Computational Thinking in Young Learners. Education Sciences, 13(5), 487. https://doi.org/10.3390/educsci13050487