A Novel Modelling Process in Chemistry: Merging Biological and Mathematical Perspectives to Develop Modelling Competences
Abstract
:1. Introduction
2. Theoretical Foundations
2.1. The Concept of Models
2.2. Model Competence
- -
- Level I: Exclusive consideration of the model;
- -
- Level II: Factual explanation of the phenomenon to generate understanding;
- -
- Level IIIA: Abductive reasoning explanation of the phenomenon;
- -
- Level IIIB: Hypothetical-deductive investigation of the phenomenon.
2.3. Modelling Processes
2.4. Modelling Process 1: Formally Used in Biological Contexts
2.5. Modelling Process 2: Formally Used in Mathematical Contexts
3. Method
3.1. Research Questions
3.2. Questionnaire
3.3. Participants
4. Results
4.1. Models
4.2. Model Competence
4.3. Modelling Processes
4.4. Suggestion for a Novel Modelling Process in Chemistry
- The following consequences for modelling in chemistry emerge from the previous explanations:
- The aspects of the first modelling process (Figure 1) generally remain unchanged;
- The second model (Figure 2) emerges that the process needs to differentiate between the macroscopic real world and the sub-microscopic modelled world;
- For clarifying the cognitive processes (cf. mental analogue models), a separation occurs between perceptual and non-perceptual modelling steps;
- The modelling process should integrate phases to improve model-methodical competencies at appropriate points.
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osborne, J. The 21st Century Challenge for Science Education: Assessing Scientific Reasoning. Think. Ski. Creat. 2013, 10, 265–279. [Google Scholar] [CrossRef]
- Kultusministerkonferenz Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss; Luchterhand: München, Neuwied, 2004.
- Kind, P.; Osborne, J. Styles of Scientific Reasoning: A Cultural Rationale for Science Education? Sci. Ed. 2017, 101, 8–31. [Google Scholar] [CrossRef] [Green Version]
- Giere, R.N. Science without Laws; Science and its conceptual foundations; University of Chicago Press: Chicago, IL, USA, 1999; ISBN 978-0-226-29208-3. [Google Scholar]
- Giere, R.N. Understanding and Evaluating Theoretical Hypotheses. In Understanding Scientific Reasoning; Thomson/Wadsworth: Belmont, CA, USA, 1991; pp. 12–39. ISBN 978-0-15-506326-6. [Google Scholar]
- Emden, M.; Ropohl, M.; Sommer, K. Modellieren als Methode der Erkenntnisgewinnung Eine Prozess-Perspektive auf eine naturwissenschaftliche Arbeitsweise. Unterr. Chem. 2019, 171, 7–11. [Google Scholar]
- Justi, R.; Gilbert, J. The role of analog models in the understanding of the nature of models in chemistry. In Metaphor and Analogy in Science education; Aubusson, P., Harrison, A.G., Ritchie, S., Eds.; Science & technology Education Library; Springer: Dordrecht, The Netherlands, 2006; pp. 119–130. ISBN 978-1-4020-3829-7. [Google Scholar]
- Johnstone, A.H. The Development of Chemistry Teaching: A Changing Response to Changing Demand. J. Chem. Educ. 1993, 70, 701. [Google Scholar] [CrossRef]
- Becker, H.-J.; Hildebrandt, H. Unanschauliches Veranschaulicht’’-Modellexperimente Im Chemieunterricht Als Chance Für Analogiebildungen. PdN-ChiS 2003, 52, 15–19. [Google Scholar]
- Coll, R.K. The role of models, mental models and analogies in chemistry teaching. In Metaphor and Analogy in Science Education; Aubusson, P., Harrison, A.G., Ritchie, S., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 65–77. ISBN 978-1-4020-3829-7. [Google Scholar]
- Nielsen, S.S.; Nielsen, J.A. Models and Modelling: Science Teachers’ Perceived Practice and Rationales in Lower Secondary School in the Context of a Revised Competence-Oriented Curriculum. EURASIA J. Math. Sci. Tech. Ed. 2021, 17, em1954. [Google Scholar] [CrossRef]
- Eilks, I. Neue Wege zum Teilchenkonzept. Wie man Basiskonzepte forschungs- und praxisorientiert entwickeln kann. Nat. Im. Unterricht. Chem. 2007, 18, 23–27. [Google Scholar]
- Gilbert, J.; Boulter, C.J. (Eds.) Developing Models in Science Education; Kluwer Academic Publishers: New York, NY, USA, 2000; ISBN 978-94-010-0876-1. [Google Scholar]
- Mikelskis-Seifert, S.; Knittel, C.; Pfohl, U. Vom Modellieren Im Alltag Zum Modellieren Im Unterricht. NiU 2011, 22, 13–18. [Google Scholar]
- Barke, H.-D.; Harsch, G.; Kröger, S.; Marohn, A. Chemiedidaktik Kompakt; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-662-56491-2. [Google Scholar]
- Schorn, J. Methoden und Modelle. In Chemie-Methodik: Handbuch für die Sekundarstufe I und II; Kranz, J., Schorn, J., Eds.; Cornelsen: Berlin, Heidelberg, Germany, 2012; pp. 162–173. ISBN 978-3-589-22379-4. [Google Scholar]
- Nerdel, C. Grundlagen der Naturwissenschaftsdidaktik; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2017; ISBN 978-3-662-53157-0. [Google Scholar]
- Harrison, A.G.; Treagust, D.F. A Typology of School Science Models. Int. J. Sci. Educ. 2000, 22, 1011–1026. [Google Scholar] [CrossRef]
- Buckley, B.C.; Boulter, C.J. Investigating the Role of Representations and Expressed Models in Building Mental Models. In Developing Models in Science Education; Gilbert, J.K., Boulter, C.J., Eds.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 119–135. ISBN 978-94-010-0876-1. [Google Scholar]
- Franco, C.; Colinvaux, D. Grasping Mental Models. In Developing Models in Science Education; Gilbert, J.K., Boulter, C.J., Eds.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 93–118. ISBN 978-94-010-0876-1. [Google Scholar]
- Kircher, E. Zum Modellbegriff und zu seiner Bedeutung für den naturwissenschaftlichen Unterricht. In Atommodelle im Naturwissenschaftlichen Unterricht; Weninger, J., Brünger, H., Universität Kiel, Eds.; Beltz: Weinheim, Germany; Basel, Switzerland, 1976; pp. 248–263. ISBN 978-3-407-69112-5. [Google Scholar]
- Harrison, A.G.; Treagust, D.F. Teaching and Learning with Analogies- Friend or Foe? In Metaphor and Analogy in Science Education; Aubusson, P., Harrison, A.G., Ritchie, S., Eds.; Science & Technology Education Library, Springer: Dordrecht, The Netherlands, 2006; pp. 11–24. ISBN 978-1-4020-3829-7. [Google Scholar]
- Coll, R.K.; Lajium, D. Modeling and the Future of Science Learning. In Models and Modeling; Khine, M.S., Saleh, I.M., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2011; pp. 3–21. ISBN 978-94-007-0448-0. [Google Scholar]
- Schwarz, C.V.; White, B.Y. Metamodeling Knowledge: Developing Students’ Understanding of Scientific Modeling. Cogn. Instr. 2005, 23, 165–205. [Google Scholar] [CrossRef]
- Grünkorn, J.; Upmeier zu Belzen, A.; Krüger, D. Design and Test of Open-Ended Tasks to Evaluate a Theoretical Structure of Model Competence. In Authenticity in Biology Education-Benefits and Challenges; Yarden, A., Ed.; University of Minho: Braga, Portugal, 2011. [Google Scholar]
- Upmeier zu Belzen, A.; Krüger, D. Modellkompetenz Im Biologieunterricht. ZfDN 2010, 16, 41–57. [Google Scholar]
- Krüger, D.; Upmeier zu Belzen, A. Kompetenzmodell der Modellierkompetenz–Die Rolle abduktiven Schließens beim Modellieren. ZfDN 2021. [Google Scholar] [CrossRef]
- Upmeier zu Belzen, A.; Engelschalt, P.; Krüger, D. Modeling as Scientific Reasoning—The Role of Abductive Reasoning for Modeling Competence. Educ. Sci. 2021, 11, 495. [Google Scholar] [CrossRef]
- Schwarz, C.V.; Reiser, B.J.; Davis, E.A.; Kenyon, L.; Achér, A.; Fortus, D.; Shwartz, Y.; Hug, B.; Krajcik, J. Developing a Learning Progression for Scientific Modeling: Making Scientific Modeling Accessible and Meaningful for Learners. J. Res. Sci. Teach. 2009, 46, 632–654. [Google Scholar] [CrossRef] [Green Version]
- Graf, E. Modelle Im Chemieunterricht. NiU 2002, 13, 4–9. [Google Scholar]
- Koch, S.; Krell, M.; Krüger, D. Förderung von Modellkompetenz Durch Den Einsatz Einer Blackbox. Erkenn. Biol. 2015, 14, 93–108. [Google Scholar]
- Stull, A.T.; Gainer, M.; Padalkar, S.; Hegarty, M. Promoting Representational Competence with Molecular Models in Organic Chemistry. J. Chem. Educ. 2016, 93, 994–1001. [Google Scholar] [CrossRef]
- Lazenby, K.; Rupp, C.A.; Brandriet, A.; Mauger-Sonnek, K.; Becker, N.M. Undergraduate Chemistry Students’ Conceptualization of Models in General Chemistry. J. Chem. Educ. 2019, 96, 455–468. [Google Scholar] [CrossRef]
- Upmeier zu Belzen, A.; Krüger, D. Ein Fall Für Erkenntnisgewinnung- Biologische Beiträge Zu Einem Verständnis Naturwissenschaftlichen Modellierens. NiU 2019, 30, 38–41. [Google Scholar]
- Schupp, H. Anwendungsorientierter Mathematikunterricht in Der Sekundarstufe I Zwischen Tradition Und Neuen Impulsen. Mathematikunterricht 1988, 34, 5–16. [Google Scholar]
- Gabel, D.; Briner, D.; Haines, D. Modelling with Magnets: A Unified Approach to Chemistry Problem Solving. Sci. Teach. 1992, 59, 58–63. [Google Scholar]
- Nentwig, P.M.; Demuth, R.; Parchmann, I.; Ralle, B.; Gräsel, C. Chemie Im Kontext: Situating Learning in Relevant Contexts While Systematically Developing Basic Chemical Concepts. J. Chem. Educ. 2007, 84, 1439. [Google Scholar] [CrossRef]
- Riese, J.; Reinhold, P. Entwicklung eines Leistungstests für fachdidaktisches Wissen. In Methoden in der Naturwissenschaftsdidaktischen Forschung; Krüger, D., Parchmann, I., Schecker, H., Eds.; Springer Spektrum: Berlin Heidelberg, Germany, 2014; pp. 257–267. ISBN 978-3-642-37826-3. [Google Scholar]
- Stuckey, M.; Sperling, J.P.; Hofstein, A.; Mamlok-Naaman, R.; Eilks, I. Ein Beitrag zum Verständnis der Relevanz des Chemieunterrichts. CHEMKON 2014, 21, 175–180. [Google Scholar] [CrossRef]
- Grooms, J.; Fleming, K.; Berkowitz, A.R.; Caplan, B. Exploring Modeling as a Context to Support Content Integration for Chemistry and Earth Science. J. Chem. Educ. 2021, 98, 2167–2175. [Google Scholar] [CrossRef]
- Eberbach, C.; Crowley, K. From Everyday to Scientific Observation: How Children Learn to Observe the Biologist’s World. Rev. Educ. Res. 2009, 79, 39–68. [Google Scholar] [CrossRef] [Green Version]
- Klahr, D.; Dunbar, K. Dual Space Search during Scientific Reasoning. Cogn. Sci. 1988, 12, 1–48. [Google Scholar] [CrossRef]
- Clement, J. Learning via Model Construction and Criticism. In Handbook of Creativity; Perspectives on Individual Differences; Torrance, E.P., Glover, J.A., Ronning, R.R., Reynolds, C.R., Eds.; Plenum Press: New York, NY, USA, 1989; ISBN 978-0-306-43160-9. [Google Scholar]
- Göhner, M.; Krell, M. Modellierungsprozesse von Lehramtsstudierenden Der Biologie. Erkenn. Biol. 2018, 17, 45–61. [Google Scholar]
- Steinbuch, K. Denken in Modellen. In Denken in Modellen; Schäfer, G., Trommer, G., Wenk, K., Eds.; LEITTHEMEN Beiträge zur Didaktik der Naturwissenschaften; Westermann: Braunschweig, Germany, 1977; ISBN 978-3-14-167154-4. [Google Scholar]
- Fratiwi, N.J.; Samsudin, A.; Ramalis, T.R.; Saregar, A.; Diani, R. Developing MeMoRI on Newton’s Laws: For Identifying Students’ Mental Models. Eur. J. Educ. Res. 2020, 9, 699–708. [Google Scholar] [CrossRef]
- Didiş, N.; Eryılmaz, A.; Erkoç, Ş. Investigating Students’ Mental Models about the Quantization of Light, Energy, and Angular Momentum. Phys. Rev. ST Phys. Educ. Res. 2014, 10, 020127. [Google Scholar] [CrossRef]
- Caspari, I.; Weber-Peukert, G.; Graulich, N. Der Einsatz von Modellen Zum Erkenntnisgewinn-Eine Unterrichtseinheit Zur Förderung Der Modellkompetenz Im Kontext, Batterie“ Unter Explizitem Einbezug von Schülervorstellungen. CHEMKON 2018, 25, 23–34. [Google Scholar] [CrossRef]
- Jansoon, N.; Coll, R.; Somsook, E. Understanding Mental Models of Dilution in Thai Students. Int. J. Environ. Sci. 2009, 4, 147–168. [Google Scholar]
- Sarıtaş, D.; Özcan, H.; Adúriz-Bravo, A. Observation and Inference in Chemistry Teaching: A Model-Based Approach to the Integration of the Macro and Submicro Levels. Sci. Educ. 2021, 30, 1289–1314. [Google Scholar] [CrossRef]
- Nicoll, G. A Report of Undergraduates’ Bonding Misconceptions. Int. J. Sci. Educ. 2001, 23, 707–730. [Google Scholar] [CrossRef]
Model-Methodological Competence | ||||
---|---|---|---|---|
Model Competence Knowledge about Models (Conceptual) | Modelling Competence Modelling (Procedural) | |||
nature of models | multiple models | purpose of models | testing models | changing models |
Models in Teacher Training, Chemical Education Research or Chemistry Teaching |
---|
|
Model competence |
|
Modelling processes |
|
Models |
---|
Q1. Did you get to know different models in chemistry (cf. particle models, molecule kits, model experiments) during your education?
|
Q2. Do you/Does your research group explore different models in your/their research (cf. particle models, molecule kits, model experiments)? (research-orientated participants only)
|
Q3. In your chemistry lessons, do you employ different models (cf. particle models, molecule kits, model experiments)? (practice-orientated participants only)
|
Model competence |
Definition of Model competence (Table 1) |
Q4. Please indicate how much you think the following statements are true.
|
Q5. Which of the above aspects would you apply to model competence in chemistry? open-ended answer |
Q6. Which aspects would you modify, add or omit for better applicability to model competence in chemistry? open-ended answer |
Modelling processes |
Q7. Please indicate how much you think the following statements are true.
|
Video-based presentation of Modelling process 1 |
Q8. Please indicate how much you think the following statements are true. “In my opinion, modelling processes from biology are good transferrable to chemistry.” 4-point Likert scale ranging from 1 ‘disagree’ to 4 ‘agree. |
Q9. Which aspects of the modelling process from biology…
|
Video-based presentation of Modelling process 2 |
Q10. Please indicate how much you think the following statements are true. “In my opinion, modelling processes from mathematics are good transferrable to chemistry.” 4-point Likert scale ranging from 1 ‘disagree’ to 4 ‘agree. |
Q11. Which aspects of the modelling process from mathematics…
|
In Total (n = 98) | Research-Orientated Relationship (n = 56) | Practice-Orientated Relationship (n = 42) | |
---|---|---|---|
Gender | m = 52; f = 44 | m = 31; f = 23 | m = 21; f = 21 |
Age | M = 40.18; SD = 14.8 | M = 39.02; SD = 15.5 | M = 41.75; SD = 13.7 |
Teaching qualification | ps = 4; cs = 6; vs. = 2; ss = 78; o = 8 | ps = 2; cs = 4; vs. = 2; ss = 43; o = 5 | ps = 2; cs = 2; vs. = 0; ss = 35; o = 3 |
Location of study | bw = 9; by = 11; b = 5; bb = 1; hh = 1; he = 5; mv = 2; n = 5; nrw = 20; rlp = 5; sl = 18; s = 1; sa = 1; sh = 4; t = 3; o = 3 | bw = 3; by = 9; b = 4; he = 4; mv = 1; n = 4; nrw = 15; rlp = 3; sl = 1; s = 1; sa = 1; sh = 3; t = 3; o = 2 | bw = 6; by = 2; b = 1; bb = 1; hh = 1; he = 1; mv = 1; n = 1; nrw = 5; rlp = 2; sl = 17; sh = 1; o = 1 |
School subjects (selection) | biology = 35 mathematics = 18 physics = 11 Science = 8 | biology = 19 mathematics = 8 physics = 8 Science = 3 | biology = 16 mathematics = 10 physics = 3 Science = 5 |
Professional experience at school | M = 11.27; SD = 13.2 (0 years: 32 of 98) | M = 9.98; SD = 14.7 (0 years: 25 of 56) | M = 12.85; SD = 11.2 (0 years: 7 of 42) |
Research Area (selection) n = 56 | X | Digitalization = 20 Teacher education = 16 Experiments = 15 Models = 10 | X |
Questions According to Table 3 | In Total (N = 98) | Research-Orientated Relationship (n = 56) | Practice-Orientated Relationship (n = 42) |
Model competence | |||
Q6 (selection) | n = 14; m = 8; p = 3; t = 7; c = 7 | n = 11; m = 5; p = 3; t = 6; c = 3 “initial object unknown in chemistry” = 6 “Add types of models” = 2 | n = 3; m = 3; p = 0; t = 1; c = 4 “rename ‘changing models’ to ‘expanding’ models” = 2 |
Modelling Processes | |||
Q9 (selection) | (a) a = 47; e = 14; h = 11; c = 7 (b) no = 28; pc = 6; cd = 6; m = 3; e = 4 (c) no = 14; lr = 9; e = 7; mm = 3 | (a) a = 33; e = 6; h = 6; c = 3 (b) no = 17; pc = 4; cd = 4; m = 3 (c) no = 10; lr = 5; e = 5; mm = 3 | (a) a = 14; e = 8; h = 5; c = 4 (b) no = 11; pc = 2; cd = 2; e = 4 (c) no = 4; lr = 5; e = 2 |
Q11 (selection) | (a) a = 8; dwm = 12; v = 10; m = 6; co = 6 (b) a = 2; no = 2; ma = 11; clr = 4 (c) no = 4; amp1 = 22; bm = 2 | (a) a = 6; dwm = 10; v = 7; m = 6 (b) a = 2; no = 2; ma = 7 (c) no = 2; amp1 = 14; bm = 2 | (a) a = 2; dwm = 2; v = 3; co = 6 (b) ma = 4; lr = 4 (c) no = 2; amp1 = 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, V.; Eckert, C.; Perels, F.; Kay, C.W.M.; Seibert, J. A Novel Modelling Process in Chemistry: Merging Biological and Mathematical Perspectives to Develop Modelling Competences. Educ. Sci. 2021, 11, 611. https://doi.org/10.3390/educsci11100611
Lang V, Eckert C, Perels F, Kay CWM, Seibert J. A Novel Modelling Process in Chemistry: Merging Biological and Mathematical Perspectives to Develop Modelling Competences. Education Sciences. 2021; 11(10):611. https://doi.org/10.3390/educsci11100611
Chicago/Turabian StyleLang, Vanessa, Christine Eckert, Franziska Perels, Christopher W. M. Kay, and Johann Seibert. 2021. "A Novel Modelling Process in Chemistry: Merging Biological and Mathematical Perspectives to Develop Modelling Competences" Education Sciences 11, no. 10: 611. https://doi.org/10.3390/educsci11100611
APA StyleLang, V., Eckert, C., Perels, F., Kay, C. W. M., & Seibert, J. (2021). A Novel Modelling Process in Chemistry: Merging Biological and Mathematical Perspectives to Develop Modelling Competences. Education Sciences, 11(10), 611. https://doi.org/10.3390/educsci11100611