A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis
Abstract
1. Introduction
2. Available Data
3. Methodology
4. Results and Discussion
5. Conclusions
- The PCA technique enables the swift and reliable categorization of soil samples obtained from both mare and highland areas of the lunar surface.
- The calculation method used allows for the identification of chemical factors that may contribute to the grouping of objects within clusters depicted on PCA graphs.
- In terms of chemical composition, the samples obtained by the American Apollo missions appear to be very similar to those obtained by the Soviet Luna missions; the reliability of the Apollo and Luna datasets is, therefore, confirmed.
- The analysis reveals close similarities in the chemical compositions of samples originating from the same type of land, i.e., highlands or mares.
- The PCA method may be applied to distinguish the types of rocks contained in tested samples of lunar regolith.
- The creation of a new type of LSS (dedicated for civil engineering applications) is enabled.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seweryn, K.; Skocki, K.; Banaszkiewicz, M.; Grygorczuk, J.; Kolano, M.; Kuciński, T.; Mazurek, J.; Morawski, M.; Białek, A.; Rickman, H.; et al. Determining the Geotechnical Properties of Planetary Regolith Using Low Velocity Penetrometers. Planet. Space Sci. 2014, 99, 70–83. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Hotelling, H. Relations Between Two Sets of Variates. Biometrika 1936, 28, 321. [Google Scholar] [CrossRef]
- Ghosh, A.; Barman, S. Application of Euclidean Distance Measurement and Principal Component Analysis for Gene Identification. Gene 2016, 583, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Argota-Perez, R.; Robbins, J.; Green, A.; Herk, M.V.; Korreman, S.; Vásquez-Osorio, E. Evaluating Principal Component Analysis Models for Representing Anatomical Changes in Head and Neck Radiotherapy. Phys. Imaging Radiat. Oncol. 2022, 22, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Kobaka, J. Principal Component Analysis as a Statistical Tool for Concrete Mix Design. Materials 2021, 14, 2668. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, P.K.; Katzer, J.; Domski, J. Fast Classification of Fibres for Concretebased on Multivariate Statistics. Comput. Concr. 2017, 20, 23–29. [Google Scholar] [CrossRef]
- Kobaka, J.; Katzer, J.; Zarzycki, P.K. Pilbara Craton Soil as a Possible Lunar Soil Simulant for Civil Engineering Applications. Materials 2019, 12, 3871. [Google Scholar] [PubMed]
- Zarzycki, P.K.; Katzer, J. Assessment of Lunar Soil Simulants Based on Multivariate Statistics. In Proceedings of the Earth and Space 2018: Engineering for Extreme Environments, Cleveland, OH, USA, 9–12 April 2018. [Google Scholar] [CrossRef]
- Hill, E.; Mellin, M.J.; Deane, B.; Liu, Y.; Taylor, L.A. Apollo Sample 70051 and High- and Low-Ti Lunar Soil Simulants MLS-1A and JSC-1A: Implications for Future Lunar Exploration. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef]
- Wang, K.T.; Tang, Q.; Cui, X.M.; He, Y.; Liu, L.P. Development of Near-Zero Water Consumption Cement Materials via the Geopolymerization of Tektites and Its Implication for Lunar Construction. Sci. Rep. 2016, 6, 29659. [Google Scholar] [CrossRef] [PubMed]
- Wallace, W.T.; Taylor, L.A.; Liu, Y.; Cooper, B.L.; McKay, D.S.; Chen, B.; Jeevarajan, A.S. Lunar Dust and Lunar Simulant Activation and Monitoring. Meteorit. Planet. Sci. 2009, 44, 961–970. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; Ouyang, Z.; Zou, Y.; Liu, J.; Li, C.; Li, X.; Feng, J. CAS-1 Lunar Soil Simulant. Adv. Space Res. 2009, 43, 448–454. [Google Scholar] [CrossRef]
- Vinogradov, A.P. Preliminary Data on Lunar Ground Brought to Earth by Automatic Probe “Luna-16”. Lunar Planet. Sci. Conf. Proc. 1971, 2, 1. [Google Scholar]
- Albee, A.L.; Chodos, A.A.; Gancarz, A.J.; Haines, E.L.; Papanastassiou, D.A.; Ray, L.; Tera, F.; Wasserburg, G.J.; Wen, T. Mineralogy, Petrology, and Chemistry of a Luna 16 Basaltic Fragment, Sample B-1. Earth Planet. Sci. Lett. 1972, 13, 353–367. [Google Scholar] [CrossRef]
- Grieve, R.A.F.; McKay, G.A.; Weill, D.F. Microprobe Studies of Three Luna 16 Basalt Fragments. Earth Planet. Sci. Lett. 1972, 13, 233–242. [Google Scholar] [CrossRef]
- Keil, K.; Kurat, G.; Prinz, M.; Green, J.A. Lithic Fragments, Glasses and Chondrules from Luna 16 Fines. Earth Planet. Sci. Lett. 1972, 13, 243–256. [Google Scholar] [CrossRef]
- Cimbalnikova, A.; Palivova, M.; Frana, J.; Mastalka, A. Chemical Composition of Crystalline Rock Fragments from Luna 16 and Luna 20 Fines. In Proceedings of the The Soviet-American Conference on Cosmochemistry of the Moon and Planets, Moscow, Russia, 4–8 June 1977; pp. 263–275. [Google Scholar]
- Kurat, G.; Kracher, A.; Keil, K.; Warner, R.; Prinz, M. Composition and Origin of Luna 16 Aluminous Mare Basalts. Lunar Planet. Sci. Conf. Proc. 1976, 2, 1301–1321. [Google Scholar]
- Korotev, R.L.; Haskin, L.A.; Lindstrom, M.M. A Synthesis of Lunar Highlands Compositional Data. Lunar Planet. Sci. Conf. Proc. 1980, 1, 395–429. [Google Scholar]
- McKay, D.S.; Heiken, G.; Basu, A.; Blanford, G.; Simon, S.; Reedy, R.; French, B.M.; Papike, J. The Lunar Regolith. In Lunar Sourcebook: A Users Guide to the Moon; Al, H., Ed.; Cambridge Unov. Press: Cambridge, UK, 1991. [Google Scholar]
- Philpotts, J.A.; Schumann, S.; Bickel, A.L.; Lum, R.K.L. Luna 20 and Apollo 16 Core Fines: Large-Ion Lithophile Trace-Element Abundances. Earth Planet. Sci. Lett. 1972, 17, 13–18. [Google Scholar] [CrossRef]
- Vinogradov, A.P. Preliminary Data on Lunar Soil Collected by the Luna 20 Unmanned Spacecraft. Geochim. Cosmochim. Acta 1973, 37, 721–729. [Google Scholar] [CrossRef]
- McKay, D.S.; Basu, A.; Waits, G. Grain Size and the Evolution of Luna 24 Soils. In Mare Crisium: The view from Luna 24; Pergamon Press: Oxford, UK, 1978; pp. 125–136. [Google Scholar]
- Barsukov, V.L. Preliminary Data for the Regolith Core Brought to Earth by the Automatic Lunar Station Luna 24. Lunar Planet. Sci. Conf. Proc. 1977, 3, 3303–3318. [Google Scholar]
- Vaniman, D.T.; Papike, J.J. Ferrobasalts from Mare Crisium: Luna 24. Geophys. Res. Lett. 1977, 4, 497–500. [Google Scholar] [CrossRef]
- Taylor, G.J.; Keil, K.; Warner, R.D. Very Low-Ti Mare Basalts. Geophys. Res. Lett. 1977, 4, 207–210. [Google Scholar] [CrossRef]
- Barsukov, V.L.; Tarasov, L.S.; Dmitriev, L.V.; Kolesov, G.M.; Shevaleevskii, I.D.; Garanin, A.V. The Geochemical and Petrochemical Features of Regolith and Rocks from Mare Crisium (Preliminary Data). Lunar Planet. Sci. Conf. Proc. 1977, 3, 3319–3332. [Google Scholar]
- Taylor, L.A.; Onorato, P.I.K.; Uhlman, D.R.; Coish, R.A. Subophitic Basalts from Mare Crisium: Cooling Rates. In Mare Crisium: The view from Luna 24; Pergamon Press: Oxford, UK, 1978; pp. 473–482. [Google Scholar]
- Ryder, G.; Mcsween, H.Y.; Marvin, U.B. Basalts from Mare Crisium. Moon 1977, 17, 263–287. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, Second Edition. Encycl. Stat. Behav. Sci. 2002, 30, 487. [Google Scholar] [CrossRef]
- Mulaik, S.A. Blurring the Distinctions Between Component Analysis and Common Factor Analysis. Multivar. Behav. Res. 1990, 25, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Korotev, R.L. Lunar Geochemistry as Told by Lunar Meteorites. Chem. Der Erde 2005, 65, 297–346. [Google Scholar] [CrossRef]
- Frank, M. The Lunar and Planetary Science XXXIII Conference. Powder Diffr. 2002, 17, 254. [Google Scholar] [CrossRef]
Mission (Start Date) | Samples Returned (kg) | Route Travelled on the Moon (km) | Type of Flight | Landing Coordinates | Landing Place Description |
---|---|---|---|---|---|
Apollo 11 (16 July 1969) | 21.7 | 0.25 | manned | 0.67408° N 23.47297° E | mare |
Apollo 12 (14 November 1969) | 34.3 | 1.5 | manned | 3.01239° S 23.42157° W | mare |
Apollo 14 (31 January 1971) | 44.8 | 3.3 | manned | 3.64530° S 17.47136° W | highlands/mare |
Apollo 15 (26 July 1971) | 76.8 | 27.9 | manned | 26.1322° N 3.6339° E | mare |
Apollo 16 (16 April 1972) | 95.8 | 27 | manned | 8.97301° S 15.50019° E | highlands |
Apollo 17 (07 December 1972) | 110.0 | 30 | manned | 20.1908° N 30.7717° E | mare |
Luna 16 (12 September 1970) | 0.101 | n/a | unmanned | 0.5137° S 56.3638° E | mare |
Luna 20 (14 February 1972) | 0.030 | n/a | unmanned | 3.5333° N 56.5500° E | highlands |
Luna 24 (9 August 1976) | 0.170 | n/a | unmanned | 12.7145° N 62.2097° E | mare |
No. | SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | Mission |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 42.1 | 7.8 | 13.7 | 15.8 | 0.2 | 7.9 | 12 | 0.5 | 0.1 | 0.1 | 11 |
2 | 42.2 | 7.8 | 13.6 | 15.3 | 0.2 | 7.8 | 11.9 | 0.47 | 0.16 | 0.05 | 11 |
3 | 42.6 | 3.6 | 14.2 | 15.4 | 0.22 | 9.7 | 10.4 | 0.43 | 0.24 | - | 12 |
4 | 46 | 2.8 | 12.5 | 17.2 | 0.22 | 9.7 | 10.9 | 0.48 | 0.24 | - | 12 |
5 | 48.2 | 1.73 | 17.6 | 10.41 | 0.14 | 9.26 | 11.25 | 0.61 | 0.51 | 0.53 | 14 |
6 | 47.3 | 1.6 | 17.8 | 10.5 | 0.1 | 9.6 | 11.4 | 0.7 | 0.6 | - | 14 |
7 | 48.1 | 1.7 | 17.4 | 10.4 | 0.14 | 9.4 | 10.7 | 0.7 | 0.55 | 0.51 | 14 |
8 | 46.95 | 1.6 | 12.7 | 16.29 | 0.217 | 10.75 | 10.49 | 0.33 | 0.092 | 0.16 | 15 |
9 | 45.35 | 0.49 | 28.25 | 4.55 | 0.06 | 5.02 | 16.21 | 0.42 | 0.09 | 0.1 | 16 |
10 | 45.2 | 0.58 | 26.4 | 5.29 | 0.7 | 6.1 | 15.32 | 0.52 | 0.14 | 0.12 | 16 |
11 | 44.65 | 0.56 | 27 | 5.49 | 0.7 | 5.84 | 15.95 | 0.44 | 0.13 | 0.1 | 16 |
12 | 44.9 | 0.47 | 27.7 | 5.01 | - | 5.69 | 15.7 | 0.51 | 0.22 | 0.16 | 16 |
13 | 44.77 | 0.37 | 28.99 | 4.35 | 0.07 | 4.2 | 16.85 | 0.44 | 0.06 | 0.05 | 16 |
14 | 45 | 0.54 | 27.3 | 5.1 | 0.3 | 5.7 | 15.7 | 0.46 | 0.17 | 0.11 | 16 |
15 | 41.67 | 6.52 | 13.57 | 15.37 | 0.21 | 10.22 | 11.18 | 0.34 | 0.09 | 0.06 | 17 |
16 | 39.82 | 9.52 | 11.13 | 17.41 | 0.25 | 9.51 | 10.85 | 0.32 | 0.07 | 0.06 | 17 |
17 | 40.09 | 9.32 | 10.7 | 17.85 | 0.24 | 9.92 | 10.59 | 0.36 | 0.08 | 0.07 | 17 |
18 | 42.2 | 5.09 | 15.7 | 12.4 | 0.15 | 10.3 | 11.5 | 0.24 | 0.07 | - | 17 |
No. | SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | Mission |
---|---|---|---|---|---|---|---|---|---|---|---|
19 | 41.7 | 3.39 | 15.32 | 16.8 | 0.21 | 8.73 | 12.2 | 0.37 | 0.1 | - | 16 |
20 | 41.2 | 3.46 | 15.4 | 16.55 | 0.2 | 8.82 | 12.8 | 0.36 | 0.12 | - | 16 |
21 | 42.5 | 3.3 | 15.45 | 16.3 | 0.2 | 8.96 | 12.42 | 0.36 | 0.1 | - | 16 |
22 | 41.3 | 3.42 | 15.15 | 16.9 | 0.22 | 8.6 | 12.55 | 0.28 | 0.1 | - | 16 |
23 | 41.93 | 3.36 | 15.33 | 16.66 | 0.2 | 8.78 | 12.53 | 0.34 | 0.1 | 0.12 | 16 |
24 | 43.8 | 4.9 | 13.65 | 19.36 | 0.2 | 7.05 | 10.4 | 0.38 | 0.15 | 0.12 | 16 |
25 | 42.95 | 5.5 | 13.88 | 20.17 | 0.2 | 6.05 | 10.8 | 0.23 | 0.16 | 0.14 | 16 |
26 | 45.5 | 4.04 | 13.95 | 17.77 | 0.26 | 5.95 | 11.96 | 0.63 | 0.21 | 0.15 | 16 |
27 | 45.17 | 2.9 | 16.98 | 13.21 | 0.22 | 4.02 | 13.32 | 0.69 | 0.17 | - | 16 |
28 | 43.36 | 4.37 | 15.13 | 17.48 | 0.27 | 4.97 | 12.77 | 0.7 | 0.17 | - | 16 |
29 | 44.2 | 2.48 | 16.45 | 13.67 | 0.2 | 4.3 | 12.65 | 0.69 | 0.21 | - | 16 |
30 | 46.6 | 6.1 | 15.7 | 17.2 | 0.28 | 3.7 | 11.3 | 0.46 | 0.24 | 0.12 | 16 |
31 | 42.8 | 3.17 | 16.4 | 17.6 | 0.26 | 8.8 | 12.9 | 0.43 | 0.144 | - | 16 |
32 | 35.3 | 3.7 | 8.7 | 25.6 | 0.29 | 5.5 | 9.1 | 0.56 | 0.2 | - | 16 |
33 | 36.8 | 3.8 | 8.8 | 25.7 | 0.28 | 5.6 | 8.7 | 0.66 | - | - | 16 |
34 | 52 | 4.2 | 8.9 | 25.2 | 0.26 | 4.2 | 8.7 | 0.62 | 0.26 | - | 16 |
35 | 44.1 | 4.2 | 9.3 | 23.1 | 0.27 | 4.8 | 9.4 | 0.53 | 0.23 | - | 16 |
36 | - | 3.5 | 9.1 | 22.5 | 0.23 | 10.3 | 12.3 | 0.4 | 0.21 | - | 16 |
37 | 48.1 | 5.3 | 13.1 | 24.2 | 0.28 | 6.3 | 12 | 0.44 | 0.17 | - | 16 |
38 | 46.6 | 4.8 | 13 | 19.9 | 0.32 | 8.6 | 10.4 | 0.4 | 0.19 | - | 16 |
39 | - | 5.3 | 12.2 | 21.6 | 0.27 | 9.5 | 11.6 | 0.46 | - | - | 16 |
40 | 59.1 | 4.8 | 13.6 | 22.7 | 0.29 | 7.8 | 11.9 | 0.46 | 0.17 | - | 16 |
41 | 46 | 4.2 | 9.6 | 17.6 | 0.27 | 7 | 10.5 | 0.53 | 0.18 | - | 16 |
42 | 46.3 | 1.02 | 20.2 | 11.1 | 0.17 | 2.32 | 14.8 | 0.83 | 0.44 | 0.23 | 16 |
43 | 47.3 | 2.03 | 19 | 12.1 | 0.21 | 3.1 | 14.3 | 0.68 | 0.32 | 0.13 | 16 |
44 | 46.3 | 2.16 | 19.3 | 12.9 | 0.2 | 3.8 | 15 | 0.52 | 0.19 | 0.05 | 16 |
45 | 46.7 | 2.48 | 16 | 14.1 | 0.23 | 3.7 | 15.4 | 0.55 | 0.25 | 0.1 | 16 |
46 | 44.6 | 3.5 | 16.5 | 15.3 | 0.23 | 4.6 | 14.3 | 0.39 | 0.18 | 0.02 | 16 |
47 | 43.2 | 4.8 | 14.3 | 16.4 | 0.27 | 4.9 | 13.4 | 0.47 | 0.21 | 0.06 | 16 |
48 | 44.1 | 3.7 | 14.5 | 16.6 | 0.26 | 5.2 | 14.2 | 0.5 | 0.24 | 0.05 | 16 |
49 | 45.6 | 3.5 | 14.2 | 17.3 | 0.25 | 5.2 | 13.3 | 0.34 | 0.24 | 0.11 | 16 |
50 | 43.7 | 4.8 | 12.1 | 18.8 | 0.3 | 6.3 | 12.2 | 0.45 | 0.24 | 0.1 | 16 |
51 | 42.6 | 1.05 | 19.4 | 18.7 | 0.22 | 4.1 | 12.2 | 0.56 | 0.29 | 0.07 | 16 |
52 | 41.3 | 1.93 | 11.5 | 21.6 | 0.28 | 12 | 9.3 | 0.39 | 0.17 | 0.05 | 16 |
53 | 45.6 | 0.46 | 22.9 | 7.5 | 0.106 | 9.15 | 14.5 | 0.4 | 0.069 | - | 20 |
54 | 45.1 | 0.55 | 22.3 | 7 | 0.13 | 9.8 | 15.1 | 0.5 | 0.1 | 0.16 | 20 |
55 | 45.4 | 0.47 | 23.44 | 7.37 | 0.1 | 9.19 | 13.38 | 0.29 | 0.067 | 0.06 | 20 |
56 | 45.8 | 0.533 | 21.6 | 7.02 | 0.13 | 9.85 | 14.9 | 0.46 | 0.1 | 0.17 | 20 |
57 | 44.4 | 0.56 | 22.9 | 7.03 | 0.12 | 9.7 | 15.2 | 0.55 | 0.1 | 0.14 | 20 |
58 | 42.8 | 0.47 | 23.6 | 6.6 | 0.1 | 9.5 | 14.4 | 0.35 | 0.06 | 0.14 | 20 |
59 | 44.2 | 0.52 | 19.1 | 6.91 | 0.12 | 13.37 | 13.3 | 0.48 | 0.47 | 0.17 | 20 |
60 | 43.9 | 1.3 | 12.5 | 19.8 | 0.25 | 9.4 | 12.3 | 0.31 | 0.04 | 0.11 | 24 |
61 | 43.3 | 1.13 | 15.2 | 16.3 | 0.22 | 8.69 | 13.1 | 0.42 | 0.04 | 0.14 | 24 |
62 | 43.5 | 1.09 | 15.5 | 16.2 | 0.21 | 8.87 | 12.9 | 0.51 | 0.04 | 0.13 | 24 |
63 | 43.6 | 1.13 | 15.9 | 16.2 | 0.23 | 8.8 | 13.3 | 0.25 | 0.04 | 0.13 | 24 |
64 | 43.7 | 1.23 | 16 | 16.1 | 0.22 | 8.75 | 13.1 | 0.43 | 0.06 | 0.12 | 24 |
65 | 45.2 | 0.89 | 13.8 | 20.5 | 0.27 | 6.35 | 12.7 | 0.24 | 0.01 | - | 24 |
66 | 48 | 1 | 13.1 | 19.5 | 0.31 | 5.2 | 13.1 | 0.29 | 0.04 | 0.11 | 24 |
67 | 43.9 | 0.74 | 19 | 16.6 | 0.19 | 5.2 | 14 | 0.5 | 0.06 | - | 24 |
68 | 45.5 | 0.96 | 13.9 | 18.4 | 0.24 | 6.3 | 13.3 | 0.37 | 0.02 | 0.02 | 24 |
69 | 45.3 | 1.16 | 12.4 | 20.3 | 0.27 | 7.5 | 12.2 | 0.37 | 0.03 | - | 24 |
70 | 47.3 | 0.37 | 26.8 | 6.99 | 0.11 | 1.03 | 17.1 | 0.66 | 0.04 | - | 24 |
71 | 47.6 | 0.2 | 9.94 | 14.7 | 0.25 | 13 | 12.2 | 0.21 | 0.03 | - | 24 |
72 | 41.1 | 0.58 | 10.4 | 24.9 | 0.38 | 11.6 | 8.64 | 0.29 | 0.02 | - | 24 |
73 | 47.1 | 1.27 | 12.8 | 17.6 | 0.25 | 7.16 | 12.9 | 0.3 | 0.04 | - | 24 |
74 | 44.8 | 0.82 | 11.1 | 21.9 | 0.29 | 10.4 | 9.94 | 0.32 | 0.18 | - | 24 |
75 | 46.9 | 0.8 | 13 | 19.3 | 0.28 | 6.53 | 13.1 | 0.44 | 0.23 | - | 24 |
76 | 46.5 | 0.67 | 13.3 | 17.2 | 0.29 | 7.2 | 13.1 | 0.3 | 0.04 | 0.02 | 24 |
77 | 46.4 | 0.79 | 13.7 | 18.5 | 0.3 | 6.5 | 13.3 | 0.28 | 0.04 | - | 24 |
78 | 46.6 | 0.86 | 12.9 | 17.4 | 0.2 | 6.3 | 13.3 | 0.31 | 0.04 | 0.04 | 24 |
79 | 48.3 | 1.06 | 12 | 18.1 | 0.25 | 6.8 | 12.7 | 0.4 | 0.04 | 0.02 | 24 |
80 | 44.6 | 0.8 | 12.7 | 17.8 | 0.26 | 6.5 | 13.7 | 0.29 | 0.03 | 0 | 24 |
81 | 46.1 | 1.14 | 11.9 | 17.4 | 0.24 | 6.2 | 12.8 | 0.02 | 0.04 | 0.02 | 24 |
82 | 42.8 | 0.3 | 16.4 | 15.3 | 0.24 | 6.2 | 15.3 | 0.41 | 0.06 | 0.01 | 24 |
83 | 43.8 | 0.35 | 12.7 | 20.3 | 0.3 | 8 | 13.5 | 0.36 | 0.05 | 0.02 | 24 |
84 | 44.3 | 0.09 | 11.6 | 20.5 | 0.3 | 7.6 | 12.7 | 0.36 | 0.04 | 0.05 | 24 |
85 | 46 | 0.84 | 15.8 | 15.5 | 0.15 | 5.8 | 13.9 | 0.3 | 0.03 | 0.04 | 24 |
86 | 46.4 | 0.28 | 15.8 | 16.3 | 0.17 | 5.8 | 13.9 | 0.34 | 0.03 | - | 24 |
87 | 47.8 | 0.31 | 14.8 | 15.8 | 0.25 | 5.9 | 13.9 | 0.32 | 0.03 | 0.03 | 24 |
88 | 45.4 | 0.66 | 8.9 | 19.2 | 0.37 | 15.4 | 8.9 | 0.2 | 0.05 | - | 24 |
89 | 43.1 | 0.15 | 6.9 | 20.1 | 0.25 | 20.8 | 6.9 | 0.12 | 0.03 | - | 24 |
90 | 44.2 | 0.62 | 7.7 | 21.6 | 0.43 | 18.2 | 7 | 0.15 | 0.05 | 0.03 | 24 |
Variable Designation | Chemical Assignment | Contribution of the Variable [%] | ||
---|---|---|---|---|
F1 | F2 | F3 | ||
1 | SiO2 | 2.42 | 0.02 | 0.24 |
2 | TiO2 | 2.99 | 14.06 | 8.69 |
3 | Al2O3 | 23.51 | 3.61 | 0.53 |
4 | FeO | 20.96 | 2.44 | 7.81 |
5 | MnO | 3.68 | 0.76 | 8.2 |
6 | MgO | 7.85 | 0.04 | 48.41 |
7 | CaO | 18.61 | 10.9 | 3.56 |
8 | Na2O | 10.31 | 16.86 | 7.36 |
9 | K2O | 4.19 | 31.34 | 0.33 |
10 | P2O5 | 5.48 | 19.97 | 14.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katzer, J.; Kobaka, J.; Seweryn, K. A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis. Aerospace 2024, 11, 348. https://doi.org/10.3390/aerospace11050348
Katzer J, Kobaka J, Seweryn K. A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis. Aerospace. 2024; 11(5):348. https://doi.org/10.3390/aerospace11050348
Chicago/Turabian StyleKatzer, Jacek, Janusz Kobaka, and Karol Seweryn. 2024. "A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis" Aerospace 11, no. 5: 348. https://doi.org/10.3390/aerospace11050348
APA StyleKatzer, J., Kobaka, J., & Seweryn, K. (2024). A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis. Aerospace, 11(5), 348. https://doi.org/10.3390/aerospace11050348