Real-Time Management of Groundwater Resources Based on Wireless Sensors Networks
Abstract
:1. Introduction
- developing a simulation–optimization model to analyze the groundwater level data;
- designing and implementing an architecture of a real-time groundwater management system to provide real-time support for decision-making.
2. Related Work
3. Materials and Methods
3.1. Study Area
3.2. System Design
3.3. Simplex Method
3.4. Response Matrix Method
3.5. Numerical Groundwater Flow Model
3.6. Data Collection
4. Results
4.1. Calibration
4.2. Optimization
4.3. Real-Time Management of Groundwater Resources
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nations, U. World Population Prospects, the 2017 Revision. Available online: http://www.un.org/en/development/desa/population/ (accessed on 12 January 2018).
- Mulligan, K.B.; Brown, C.; Yang, Y.C.E.; Ahlfeld, D.P. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling. Water Resour. Res. 2014, 50, 2257–2275. [Google Scholar] [CrossRef]
- Ma, Y.H.; Fan, S.Y.; Zhou, L.H.; Dong, Z.H.; Zhang, K.C.; Feng, J.M. The temporal change of driving factors during the course of land desertification in arid region of north China: The case of Minqin County. Environ. Geol. 2007, 51, 999–1008. [Google Scholar] [CrossRef]
- Huo, A.-D.; Dang, J.; Song, J.-X.; Chen, X.H.; Mao, H.-R. Simulation modeling for water governance in basins based on surface water and groundwater. Agric. Water Manag. 2016, 174, 22–29. [Google Scholar] [CrossRef]
- Shen, Q.; Gao, G.Y.; Hu, W.; Fu, B.J. Spatial-temporal variability of soil water content in a cropland-shelterbelt-desert site in an arid inland river basin of northwest China. J. Hydrol. 2016, 540, 873–885. [Google Scholar] [CrossRef]
- Reca, J.; Roldán, J.; Alcaide, M.; López, R.; Camacho, E. Optimisation model for water allocation in deficit irrigation systems: I. Description of the model. Agric. Water Manag. 2001, 48, 103–116. [Google Scholar] [CrossRef]
- Li, X.; Ma, M.; Wang, J.; Liu, Q.; Che, T.; Hu, Z.; Xiao, Q.; Liu, Q.; Su, P.; Chu, R.; et al. Simultaneous remote sensing and ground-based experiment in the Heihe river basin: Scientific objectives and experiment design. Adv. Earth Sci. 2008, 23, 897–914. [Google Scholar]
- Michael, H.A.; Voss, C.I. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal basin. Proc. Natl. Acad. Sci. USA 2008, 105, 8531–8536. [Google Scholar] [CrossRef] [PubMed]
- Budge, T.J.; Sharp, J.M. Modeling the usefulness of spatial correlation analysis on karst systems. Groundwater 2009, 47, 427–437. [Google Scholar] [CrossRef]
- Cloete, N.A.; Malekian, R.; Nair, L. Design of smart sensors for real-time water quality monitoring. IEEE Access 2016, 4, 3975–3990. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Huang, K.-Y.; Wang, J.-H. Numerical simulation of groundwater flow and land deformation due to groundwater pumping in cross-anisotropic layered aquifer system. J. Hydro-Environ. Res. 2017, 14, 19–33. [Google Scholar] [CrossRef]
- Rupérez-Moreno, C.; Senent-Aparicio, J.; Martinez-Vicente, D.; García-Aróstegui, J.L.; Calvo-Rubio, F.C.; Pérez-Sánchez, J. Sustainability of irrigated agriculture with overexploited aquifers: The case of Segura basin (SE, Spain). Agric. Water Manag. 2017, 182, 67–76. [Google Scholar] [CrossRef]
- Reca, J.; Roldán, J.; Alcaide, M.; Lopez, R.; Camacho, E. Optimisation model for water allocation in deficit irrigation systems: II. Application to the Bémbezar irrigation system. Agric. Water Manag. 2001, 48, 117–132. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Nie, S.; Chen, X. A robust modeling approach for regional water management under multiple uncertainties. Agric. Water Manag. 2011, 98, 1577–1588. [Google Scholar] [CrossRef]
- Singh, A. Groundwater modeling for the assessment of water management alternatives. J. Hydrol. 2013, 481, 220–229. [Google Scholar] [CrossRef]
- Singh, A. Managing the environmental problem of seawater intrusion in coastal aquifers through simulation–optimization modeling. Ecol. Indic. 2015, 48, 498–504. [Google Scholar] [CrossRef]
- Sadeghi-Tabas, S.; Samadi, S.Z.; Akbarpour, A.; Pourreza-Bilondi, M. Sustainable groundwater modeling using single- and multi-objective optimization algorithms. J. Hydroinform. 2017, 19, 97–114. [Google Scholar] [CrossRef]
- Wu, B.; Zheng, Y.; Wu, X.; Tian, Y.; Han, F.; Liu, J.; Zheng, C. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach. Water Resour. Res. 2015, 51, 2153–2173. [Google Scholar] [CrossRef]
- Safavi, H.R.; Falsafioun, M. Conjunctive use of surface water and groundwater resources under deficit irrigation. J. Irrig. Drain. Eng. 2017, 143, 05016012. [Google Scholar] [CrossRef]
- Rundel, P.W.; Graham, E.A.; Allen, M.F.; Fisher, J.C.; Harmon, T.C. Environmental sensor networks in ecological research. New Phytol. 2009, 182, 589–607. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Huangfu, Y.; Lima, N.; Jobson, B.; Kirk, M.; O’Keeffe, P.; Pressley, S.; Walden, V.; Lamb, B.; Cook, D. Analyzing the relationship between human behavior and indoor air quality. J. Sens. Actuator Netw. 2017, 6, 13. [Google Scholar] [CrossRef]
- Jiang, P.; Xia, H.; He, Z.; Wang, Z. Design of a water environment monitoring system based on wireless sensor networks. Sensors 2009, 9, 6411–6434. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, K.; Urteaga, I.; Han, Q.; Jayasumana, A.; Illangasekare, T. On integrating groundwater transport models with wireless sensor networks. Ground Water 2010, 48, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Genxu, W.; Jian, Z.; Kubota, J.; Jianping, S. Evaluation of groundwater dynamic regime with groundwater depth evaluation indexes. Water Resour. Res. 2008, 80, 547–560. [Google Scholar] [CrossRef]
- Rui, J.; Xin, L.; Baoping, Y.; Wanming, L.; Xiuhong, L.; Jianwen, G.; Mingguo, M.; Jian, K.; Yanlin, Z. Introduction of eco-hydrological wireless sensor network in the Heihe river basin. Adv. Earth Sci. 2012, 27, 993–1005. [Google Scholar]
- Wu Adan, G.J.; Wang, L. Improvement and application of automatic data in Heihe river basin downloading system. Remote Sens. Technol. Appl. 2015, 30, 1027–1032. [Google Scholar]
- Chen, C.; Shen, J.; Zhang, G.; Zhao, R.; Liu, J.; Zhou, Q. A Groundwater management tool for solving the pumping yields minimization problem: A case study in the Heihe river basin. In Proceedings of the 4th International Conference on Advanced Cloud and Big Data (CBD 2016), Chengdu, China, 13–16 August 2016; Institute of Electrical and Electronics Engineers Inc.: Chengdu, China, 2016; pp. 289–295. [Google Scholar]
- Harbaugh, A.W. Modflow-2005. The US Geological Survey Modular Ground-Water Model-the Ground-Water Flow Process; U.S. Geological Survey, Tech. Methods: Reston, VA, USA, 2005.
- Prudic, D.E. Documentation of a Computer Program to Simulate Stream-Aquifer Relations Using a Modular, Finite-Difference, Ground-Water Flow Model; USGS Open-File Report 88-729; USGS: Reston, VA, USA, 1989; Volume 113.
- Wang, Y.; Yan, C.; Wang, J. Landuse/Landcover Data of the Heihe River Basin in 1986; Heihe Plan Science Data Center: Lanzhou, China, 2011. [Google Scholar]
- Wang, Y.; Yan, C.; Wang, J. Landuse/Landcover Data of the Heihe River Basin in 2000; Heihe Plan Science Data Center: Lanzhou, China, 2011. [Google Scholar]
- Wang, J.; Hu, X. Landuse/Landcover Data of Zhangye City in 2007; Heihe Plan Science Data Center: Lanzhou, China, 2011. [Google Scholar]
- Northwest Institute of Eco-Environment and Resources, C. Westdc. Available online: http://westdc.westgis.ac.cn/ (accessed on 12 January 2018).
- Doherty, J.E. Pest: Model-Independent Parameter Estimation—User Manual; Watermark Computing: Corinda, Australia, 2012. [Google Scholar]
- Wang, J.; Zhao, J.; Wang, X.; Feng, B. Ecological and hydrological map for the Heihe river basin: Data management center for the Heihe Plan. 2013. Available online: http://westdc.westgis.ac.cn/data/96eb358d-d112-46ac-9118-3cf5e016f33d (accessed on 12 January 2018).
- Wu, X.; Zhou, J.; Wang, H.; Li, Y.; Zhong, B. Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe river, in the semi-arid Northwestern China. Hydrol. Process. 2014, 29, 2243–2257. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Chen, C.; Zhang, G.; Chen, H.; Chen, D.; Yan, Y.; Shen, J.; Zhou, R. Real-Time Management of Groundwater Resources Based on Wireless Sensors Networks. J. Sens. Actuator Netw. 2018, 7, 4. https://doi.org/10.3390/jsan7010004
Zhou Q, Chen C, Zhang G, Chen H, Chen D, Yan Y, Shen J, Zhou R. Real-Time Management of Groundwater Resources Based on Wireless Sensors Networks. Journal of Sensor and Actuator Networks. 2018; 7(1):4. https://doi.org/10.3390/jsan7010004
Chicago/Turabian StyleZhou, Qingguo, Chong Chen, Gaofeng Zhang, Huaming Chen, Dan Chen, Yingnan Yan, Jun Shen, and Rui Zhou. 2018. "Real-Time Management of Groundwater Resources Based on Wireless Sensors Networks" Journal of Sensor and Actuator Networks 7, no. 1: 4. https://doi.org/10.3390/jsan7010004
APA StyleZhou, Q., Chen, C., Zhang, G., Chen, H., Chen, D., Yan, Y., Shen, J., & Zhou, R. (2018). Real-Time Management of Groundwater Resources Based on Wireless Sensors Networks. Journal of Sensor and Actuator Networks, 7(1), 4. https://doi.org/10.3390/jsan7010004