Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome
Abstract
1. Introduction
2. Type of Transposons in Plant Genome
2.1. Class I Transposons
2.2. Class II Transposons
3. The Impact of Transposons on Genome Size and Structure
3.1. Transposons Contribute to the Variation of Plant Genome Size
3.2. Amplification and Elimination of Transposons in Plant Genomes
3.3. Transposons Exhibit Their Complexity in Polyploid Plant Genomes
3.4. Transposons Affect Genome Structure and Variation
3.5. Transposon Insertion Affects Chromatin Accessibility
4. Epigenetic Modification of Transposons
4.1. DNA Methylation of Transposons
4.2. Histone Modification of Transposons
4.3. The Effect of Non-Coding RNA on Transposon Activity
5. Capture of Gene by Transposons in the Genome
5.1. Gene Capture by MULE and Helitron Transposons
5.2. Genomic Conflict Caused by Gene Capture
5.3. Transposons Take Part in miRNA Gene Amplification in Polyploid Plant Genome
6. The Impact of Transposons on Gene Expression Regulation
7. The Regulation of Plant Phenotypes by Transposons
7.1. Transposon Insertion Regulates Maize Phenotype
7.2. Rice Agronomic Traits Affected by Transposon
7.3. Transposons Regulate Plant Fruit Morphotype
7.4. The Effect of Transposon Methylation on Cotton Fiber Development
7.5. The Effect of Transposons on the Phenotype of Other Plants
8. The Regulatory Role of Transposons in Plant Response to Stress
8.1. Transposons Response to Abiotic Stress
8.2. Transposons Response to Biotic Stress
9. The Role of Transposons in Plant Adaptation and Evolution
10. Future Research Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 1950, 36, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Doolittle, W.F.; Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 1980, 284, 601–603. [Google Scholar] [CrossRef]
- Orgel, L.E.; Crick, F.H. Selfish DNA: The ultimate parasite. Nature 1980, 284, 604–607. [Google Scholar] [CrossRef]
- McClintock, B. The significance of responses of the genome to challenge. Science 1984, 226, 792–801. [Google Scholar] [CrossRef]
- Flagel, L.E.; Wendel, J.F. Gene duplication and evolutionary novelty in plants. New Phytol. 2009, 183, 557–564. [Google Scholar] [CrossRef]
- Lisch, G. How important are transposons for plant evolution? Nat. Rev. Genet. 2012, 14, 49–61. [Google Scholar] [CrossRef]
- Song, X.W.; Cao, X.F. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr. Opin. Plant Biol. 2017, 36, 111–118. [Google Scholar] [CrossRef]
- Pulido, M.; Casacuberta, J.M. Transposable element evolution in plant genome ecosystems. Curr. Opin. Plant Biol. 2023, 75, 102418. [Google Scholar] [CrossRef]
- Feschotte, C. Transposable elements: McClintock’s legacy revisited. Nat. Rev. Genet. 2023, 24, 797–800. [Google Scholar] [CrossRef]
- Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005, 6, 836–846. [Google Scholar] [CrossRef]
- Hegarty, M.J.; Hiscock, S.J. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 2008, 18, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Van de Peer, Y.; Maere, S.; Meyer, A. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 2009, 10, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.; Smarda, P.; Novosolov, M.; Drori, M.; Glick, L.; Sabath, N.; Meiri, S.; Belmarker, J.; Mayrose, I. The global biogeography of polyploid plants. Nat. Ecol. Evol. 2019, 3, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.T.; Soltis, D.E.; Soltis, P.S.; Ashman, T.L.; Van de Peer, Y. Polyploidy: A biological force from cells to ecosystems. Trends Cell Biol. 2020, 30, 688–694. [Google Scholar] [CrossRef]
- Paterson, A.H.; Bowers, J.E.; Chapman, B.A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. USA 2004, 101, 9903–9908. [Google Scholar] [CrossRef]
- Tang, H.; Bowers, J.E.; Wang, X.; Ming, R.; Alam, M.; Paterson, A.H. Synteny and collinearity in plant genomes. Science 2008, 320, 486–488. [Google Scholar] [CrossRef]
- Blanc, G.; Wolfe, K.H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 2004, 16, 1667–1678. [Google Scholar] [CrossRef]
- Jaillon, O.; Aury, J.M.; Noel, B.; Policriti, A.; Clepetet, C. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449, 463–467. [Google Scholar]
- Adams, K.L.; Wendel, J.F. Novel patterns of gene expression in polyploid plants. Trends Genet. 2005, 21, 539–543. [Google Scholar] [CrossRef]
- Wendel, J.F.; Jackson, S.A.; Meyers, B.C.; Wing, R.A. Evolution of plant genome architecture. Genome Biol. 2016, 17, 37. [Google Scholar] [CrossRef]
- Birchler, J.A.; Yang, H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell 2022, 34, 2466–2474. [Google Scholar] [PubMed]
- Paterson, A.H.; Wendel, J.F.; Gundlach, H.; Guo, H.; Jenkins, J.; Jin, D.; Llewellyn, D.; Showmaker, K.C.; Shu, S.; Udall, J.; et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012, 492, 423–427. [Google Scholar] [PubMed]
- Bevan, M.W.; Uauy, C.; Wulff, B.H.; Zhou, J.; Krasileva, K.; Clark, M.D. Genomic innovation for crop improvement. Nature 2017, 543, 346–354. [Google Scholar]
- Scarrow, M.; Wang, Y.L.; Sun, G.L. Molecular regulatory mechanisms underlying the adaptability of polyploid plants. Biol. Rev. 2021, 96, 394–407. [Google Scholar]
- Soltis, D.E.; Visger, C.J.; Marchant, D.B.; Soltis, P.S. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 2016, 103, 1146–1166. [Google Scholar] [CrossRef]
- Almeida-Silva, F.; Van de Peer, Y. Whole-genome duplications and the long-term evolution of gene regulatory networks in angiosperms. Mol. Biol. Evol. 2023, 40, msad141. [Google Scholar]
- Vicient, C.M.; Casacuberta, J.M. Impact of transposable elements on polyploid plant genomes. Ann. Bot. 2017, 120, 195–207. [Google Scholar]
- Gu, X.L.; Su, Y.J.; Wang, T. Roles of transposable elements on plant genome evolution, epigenetics and adaptation. Chin. Sci. Bull. 2022, 67, 3024–3035. [Google Scholar] [CrossRef]
- Emmerson, R.; Cotoni, M. The role of mobile DNA elements in the dynamics of plant genome plasticity. J. Exp. Bot. 2025, 76, erae523. [Google Scholar]
- Tsukahara, S.; Kobayashi, A.; Kawabe, A.; Mathieu, O.; Miura, A.; Kakutani, T. Bursts of retrotransposition reproduced in Arabidopsis. Nature 2009, 461, 423–427. [Google Scholar]
- Tsukahara, S.; Kawabe, A.; Kobayashi, A.; Ito, T.; Aizu, T.; Shini, T.; Toyoda, A.; Fujiyama, A.; Tarutani, Y.; Kakutani, T. Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrate. Gene Dev. 2012, 26, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Huff, J.T.; Zilberman, D.; Roy, S.W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 2016, 538, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Morgante, M.; De Paoli, E.; Radovic, S. Transposable elements and the plant pan-genomes. Curr. Opin. Plant Biol. 2007, 10, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; Scossa, F.; Fernie, A.R. Mobile transposable elements shape plant genome diversity. Trends Plant Sci. 2020, 25, 1062–1064. [Google Scholar] [CrossRef]
- Chuong, E.B.; Elde, N.C.; Feschotte, C. Regulatory activities of transposable elements: From conflicts to benefits. Nat. Rev. Genet. 2017, 18, 71–86. [Google Scholar] [CrossRef]
- Cui, X.K.; Cao, X.F. Overview of the function of transposable elements in higher plants. Prog. Biochem. Biophys. 2015, 42, 1033–1046. [Google Scholar]
- Tenaillon, M.I.; Hollister, J.D.; Gaut, B.S. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 2010, 15, 471–478. [Google Scholar] [CrossRef]
- Marchant, D.B.; Chen, G.; Cai, S.G.; Chen, F.; Schafran, P.; Jenkins, J.; Shu, S.Q.; Plott, C.; Webber, J.; John, T.; et al. Dynamic genome evolution in a model fern. Nat. Plants 2022, 8, 1038–1051. [Google Scholar] [CrossRef]
- Niu, S.H.; Li, J.; Bo, W.H.; Yang, W.F.; Zuccolo, A.; Giacomello, S.; Chen, X.; Han, F.X.; Yang, J.H.; Song, Y.T.; et al. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 2022, 185, 204–217. [Google Scholar] [CrossRef]
- Xu, S.; Chen, R.; Zhang, X.; Wu, Y.; Yang, L.; Sun, Z.; Zhu, Z.; Song, A.; Wu, Z.; Li, T.; et al. The evolutionary tale of lilies: Giant genomes derived from transposon insertions and polyploidization. Innovation 2024, 5, 100726. [Google Scholar] [CrossRef]
- Anderson, S.N.; Stitzer, M.C.; Brohammer, A.B.; Zhou, P.; Noshay, J.M.; O’Connor, C.H.; Hirsch, C.D.; Ross-Ibarra, J.; Hirsch, C.N.; Springer, N.M. Transposable elements contribute to dynamic genome content in maize. Plant J. 2019, 100, 1052–1065. [Google Scholar] [CrossRef] [PubMed]
- Feschotte, C.; Jiang, N.; Wessler, S.R. Plant transposable elements: Where genetics meets genomics. Nat. Rev. Genet. 2002, 3, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Sharma, A.; Yu, Q. Recent amplification of microsatellite associated miniature inverted-repeat transposable elements in the pineapple genome. BMC Plant Biol. 2021, 21, 424. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.J.; Li, J.Y.; Wang, P.C.; Liu, F.; Liu, Z.P.; Zhao, G.N.; Xu, Z.P.; Pei, L.L.; Grover, C.E.; Wendel, J.F.; et al. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol. Biol. Evol. 2021, 38, 3621–3636. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, M.; Zhang, C.; Han, Z.; Zhang, Y.; Wu, Z.; Zhu, Y. Actively expressed intergenic genes generated by transposable element insertions in Gossypium hirsutum cotton. Plants 2024, 13, 2079. [Google Scholar] [CrossRef]
- Naito, K.; Cho, E.; Yang, G.J.; Campbell, M.A.; Yano, K.; Okumoto, Y.; Tanisaka, T.; Wessler, S.R. Dramatic amplification of a rice transposable element during recent domestication. Proc. Natl. Acad. Sci. USA 2006, 103, 17620–17625. [Google Scholar] [CrossRef]
- Lu, L.; Chen, J.F.; Robb, S.M.C.; Okumoto, Y.; Stajich, J.E.; Wessler, S.R. Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proc. Natl. Acad. Sci. USA 2017, 114, E10550–E10559. [Google Scholar] [CrossRef]
- Chen, J.F.; Lu, L.; Robb, S.M.C.; Collin, M.; Okumoto, Y.; Stajich, J.E.; Wessler, S.R. Genomic diversity generated by a transposable element burst in a rice recombinant inbred population. Proc. Natl. Acad. Sci. USA 2020, 117, 26288–26297. [Google Scholar] [CrossRef]
- Piegu, B.; Guyot, R.; Picault, N.; Roulin, A.; Saniyal, A.; Kim, H.; Collura, K.; Brar, D.S.; Jackson, S.; Wing, R.A. Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006, 16, 1262–1269. [Google Scholar] [CrossRef]
- Nagaharu, U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 1935, 7, 389–452. [Google Scholar]
- Song, J.M.; Guan, Z.; Hu, J.; Guo, C.; Yang, Z.; Wang, S.; Liu, D.; Wang, B.; Lu, S.; Zhou, R.; et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 2020, 6, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Qian, L.; Zheng, M.; Chen, L.; Chen, H.; Yang, L.; You, L.; Yang, B.; Yan, M.; Gu, Y.; et al. Genomic insights into the origin, domestication and diversification of Brassica juncea. Nat. Genet. 2021, 53, 1392–1402. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wei, Y.; Xiao, D.; Gong, K.; Sun, P.; Ren, Y.; Yuan, J.; Wu, T.; Yang, Q.; Li, X.; et al. Brassica carinata genome characterization clarifies U’s triangle model of evolution and polyploidy in Brassica. Plant Physiol. 2021, 186, 388–406. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.; Zhao, M.; Ma, J.; Yu, J.; Huang, S.; et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014, 5, 1–11. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, X.; Wu, J.; Liu, M.; Grob, S.; Cheng, F.; Liang, J.; Cai, C.; Liu, Z.; Liu, B.; et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic. Res. 2018, 5, 50. [Google Scholar] [CrossRef]
- Perumal, S.; Koh, C.S.; Jin, L.; Buchwaldt, M.; Higgins, E.E.; Zheng, C.; Sankoff, D.; Robinson, S.J.; Kagale, S.; Navabi, Z.K.; et al. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat. Plants 2020, 6, 929–941. [Google Scholar] [CrossRef]
- Zhang, T.Z.; Hu, Y.; Jiang, W.K.; Fang, L.; Guan, X.Y.; Chen, J.D.; Zhang, J.B.; Saski, C.A.; Scheffler, B.E.; Stelly, D.M.; et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fibre improvement. Nat. Biotechnol. 2015, 33, 531–537. [Google Scholar]
- Hosaka, A.J.; Sanetomo, R.; Hosaka, K. Allotetraploid nature of a wild potato species, Solanum stoloniferum Schlechtd. et Bche., as revealed by whole-genome sequencing. Plant J. 2025, 121, e17158. [Google Scholar] [CrossRef]
- Li, L.F.; Zhang, Z.B.; Wang, Z.H.; Li, N.; Sha, Y.; Wang, X.F.; Ding, N.; Li, Y.; Zhao, J.; Wu, Y.; et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant 2022, 15, 488–503. [Google Scholar] [CrossRef]
- Sun, Y.L.; Liu, Y.; Shi, J.F.; Wang, L.; Liang, C.Z.; Yang, J.; Chen, J.F.; Chen, M.S. Biased mutations and gene losses underlying diploidization of the tetraploid broomcorn millet genome. Plant J. 2023, 113, 787–801. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Xi, Z.D.; Wang, F.; Wang, J.B. Genomic asymmetric epigenetic modification of transposable elements is involved in gene expression regulation of allopolyploid Brassica napus. Plant J. 2024, 117, 226–241. [Google Scholar] [PubMed]
- Renny-Byfield, S.; Chester, M.; Kovarik, A.; Le Comber, S.C.; Grandbastien, M.A.; Deloger, M.; Nichols, R.A.; Macas, J.; Novak, P.; Chase, M.W.; et al. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol. Biol. Evol. 2011, 28, 2843–2854. [Google Scholar] [PubMed]
- Lockton, S.; Gaut, B.S. The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana. J. Mol. Evol. 2009, 68, 80–89. [Google Scholar]
- Olsen, K.M.; Wendel, J.F. A bountiful harvest: Genomic insights into crop domestication phenotypes. Annu. Rev. Plant Biol. 2013, 64, 47–70. [Google Scholar]
- Jiang, J.; Xu, Y.C.; Zhang, Z.Q.; Chen, J.F.; Niu, X.M.; Hou, X.H.; Li, X.T.; Wang, L.; Zhang, Y.E.; Ge, S.; et al. Forces driving transposable element load variation during Arabidopsis range expansion. Plant Cell 2024, 36, 840–862. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Liu, M.; Guo, W.; Wang, Y.; He, Q.; Chen, W.; Liao, Y.; Zhang, W.; Gao, Y.; et al. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nat. Genet. 2023, 55, 2243–2254. [Google Scholar]
- Lippman, Z.; Gendrel, A.V.; Black, M.; Vaughn, M.W.; Dedhia, N.; McCombie, W.R.; Lavine, K.; Mittal, V.; May, B.; Kasschau, K.D.; et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 2004, 430, 471–476. [Google Scholar]
- Joly-Lopez, Z.; Hoen, D.R.; Blanchette, M.; Bureau, T.E. Phylogenetic and genomic analyses resolve the origin of important plant genes derived from transposable elements. Mol. Biol. Evol. 2016, 33, 1937–1956. [Google Scholar]
- Li, K.; Jiang, W.; Hui, Y.; Kong, M.; Feng, L.Y.; Gao, L.Z.; Li, P.; Lu, S. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Mol. Plant 2021, 14, 1745–1756. [Google Scholar]
- Naish, M.; Alonge, M.; Wlodzimierz, P.; Tock, A.J.; Abramson, B.W.; Schmücker, A.; Mandakova, T.; Jamge, B.; Lambing, C.; Kuo, P.; et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 2021, 374, eabi7489. [Google Scholar]
- Wlodzimierz, P.; Rabanal, F.A.; Burns, R.; Naish, M.; Primetis, E.; Scott, A.; Mandakova, T.; Gorringe, N.; Tock, A.J.; Holland, D.; et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature 2023, 618, 557–565. [Google Scholar] [PubMed]
- Tsukahara, S.; Bousios, A.; Perez-Roman, E.; Yamaguchi, S.; Leduque, B.; Nakano, A.; Naish, M.; Osakabe, A.; Toyoda, A.; Ito, H.; et al. Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis. Nature 2025, 637, 744–748. [Google Scholar]
- Chen, W.; Yan, M.; Chen, S.; Sun, J.; Wang, J.; Meng, D.; Li, J.; Zhang, L.; Guo, L. The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres. Nat. Plants 2024, 10, 1928–1943. [Google Scholar]
- Zhao, H.; Zhang, W.; Chen, L.; Wang, L.; Marand, A.P.; Wu, Y.; Jiang, J. Proliferation of regulatory DNA elements derived from transposable elements in the maize genome. Plant Physiol. 2018, 176, 2789–2803. [Google Scholar]
- Noshay, J.M.; Marand, A.P.; Anderson, S.N.; Zhou, P.; Guerra, M.K.M.; Lu, Z.; O’Connor, C.H.; Crisp, P.A.; Hirsch, C.N.; Schmitz, R.J.; et al. Assessing the regulatory potential of transposable elements using chromatin accessibility profiles of maize transposons. Genetics 2021, 217, 1–13. [Google Scholar]
- Srikant, T.; Gonzalo, A.; Bomblies, K. Chromatin accessibility and gene expression vary between a new and evolved autopolyploid of Arabidopsis arenosa. Mol. Biol. Evol. 2024, 41, msae213. [Google Scholar]
- Cao, S.; Chen, Z. Transgenerational epigenetic inheritance during plant evolution and breeding. Trends Plant Sci. 2024, 29, 1203–1223. [Google Scholar]
- Sigman, M.J.; Slotkin, R.K. The first rule of plant transposable element silencing: Location, location, location. Plant Cell 2016, 28, 304–313. [Google Scholar]
- Zilberman, D.; Gehring, M.; Tran, R.K.; Ballinger, T.; Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 2007, 39, 61–69. [Google Scholar]
- Zemach, A.; Kim, M.Y.; Hsieh, P.H.; Coleman-Derr, D.; Eshed-Williams, L.; Thao, K.; Harmer, S.L.; Zilberman, D. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 2013, 153, 193–205. [Google Scholar]
- Ding, M.Q.; Chen, Z.J. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Curr. Opin. Plant Biol. 2018, 42, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Muyle, A.; Seymour, D.; Darzentas, N.; Primetis, E.; Gaut, B.S.; Bousios, A. Gene capture by transposable elements leads to epigenetic conflict in maize. Mol. Plant 2021, 14, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Underwood, C.J.; Henderson, I.R.; Martienssen, R.A. Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr. Opin. Plant Biol. 2017, 36, 135–141. [Google Scholar] [PubMed]
- Zhang, J.; Liu, Y.; Xia, E.H.; Yao, Q.Y.; Liu, X.D.; Gao, L.Z. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc. Natl. Acad. Sci. USA 2015, 112, E7022–E7029. [Google Scholar]
- Wang, L.F.; Cao, S.; Wang, P.T.; Lu, K.N.; Song, Q.X.; Zhao, F.J.; Chen, Z.J. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc. Natl. Acad. Sci. USA 2021, 118, e2023981118. [Google Scholar]
- Cui, X.K.; Jin, P.; Cui, X.; Gu, L.F.; Lu, Z.K.; Xue, Y.M.; Wei, L.Y.; Qi, J.F.; Song, X.W.; Luo, M.; et al. Control of transposon activity by a histone H3K4 demethylase in rice. Proc. Natl. Acad. Sci. USA 2013, 110, 1953–1958. [Google Scholar]
- Hure, V.; Piron-Prunier, F.; Yehouessi, T.; Vitte, C.; Kornienko, A.E.; Adam, G.; Nordborg, M.; Deleris, A. Alternative silencing states of transposable elements in Arabidopsis associated with H3K27me3. Genome Biol. 2025, 26, 11. [Google Scholar]
- Vaucheret, H.; Voinnet, O. The plant siRNA landscape. Plant Cell 2024, 36, 246–275. [Google Scholar]
- Creasey, K.M.; Zhai, J.X.; Borges, F.; Van Ex, F.; Regulski, M.; Meyers, B.C.; Martienssen, R.A. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 2014, 508, 411–415. [Google Scholar]
- Shen, Y.; Sun, S.; Hua, S.; Shen, E.; Ye, C.; Cai, D.; Timko, M.P.; Zhu, Q.; Fan, L. Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. Plant J. 2017, 91, 874–893. [Google Scholar]
- Hamid, R.; Jacob, F.; Ghorbanzadeh, Z.; Jafari, L.; Alishah, O. Dynamic roles of small RNAs and DNA methylation associated with heterosis in allotetraploid cotton (Gossypium hirsutum L.). BMC Plant Biol. 2023, 23, 488. [Google Scholar] [CrossRef] [PubMed]
- Hollister, J.D.; Smith, L.M.; Guo, Y.L.; Ott, F.; Weigel, D.; Gauta, B.S. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrate. Proc. Natl. Acad. Sci. USA 2011, 108, 2322–2327. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Sun, C.; Wu, J.; Schnable, J.; Woodhouse, M.R.; Liang, J.; Cai, C.; Freeling, M.; Wang, X. Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa. New Phytol. 2016, 211, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Poretti, M.; Praz, C.R.; Meile, L.; Kälin, C.; Schaefer, L.K.; Schläfli, M.; Widrig, V.; Sanchez-Vallet, A.; Wicker, T.; Bourras, S. Domestication of high-copy transposons underlays the wheat small RNA response to an obligate pathogen. Mol. Biol. Evol. 2020, 37, 839–848. [Google Scholar] [CrossRef]
- Campo, S.; Sánchez-Sanuy, F.; Camargo-Ramírez, R.; Gómez-Ariza, J.; Baldrich, P.; Campos-Soriano, L.; Soto-Suárez, M.; San Segundo, B. A novel transposable element-derived microRNA participates in plant immunity to rice blast disease. Plant Biotech. J. 2021, 19, 1798–1811. [Google Scholar] [CrossRef]
- Kornienko, A.E.; Nizhynska, V.; Morales, A.M.; Pisupati, R.; Nordborg, M. Population-level annotation of lncRNAs in Arabidopsis reveals extensive expression variation associated with transposable element–like silencing. Plant Cell 2023, 36, 85–111. [Google Scholar] [CrossRef]
- Jiang, N.; Bao, Z.R.; Zhang, X.Y.; Eddy, S.R.; Wessler, S.R. Pack-MULE transposable elements mediate gene evolution in plants. Nature 2004, 431, 569–573. [Google Scholar] [CrossRef]
- Juretic, N.; Hoen, D.R.; Huynh, M.L.; Harrison, P.M.; Bureau, T.E. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res. 2005, 15, 1292–1297. [Google Scholar]
- Wang, J.; Yu, Y.; Tao, F.; Zhang, J.W.; Copetti, D.; Kudrna, D.; Talag, J.; Lee, S.; Wing, R.A.; Fan, C.Z. DNA methylation changes facilitated evolution of genes derived from Mutator-like transposable elements. Genome Biol. 2016, 17, 92. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Li, M.D.; Wang, J.B. Epigenetic modification brings new opportunities for gene capture by transposable elements in allopolyploid Brassica napus. Hortic Res. 2025, 12, uhaf028. [Google Scholar] [CrossRef]
- Shen, E.H.; Chen, T.Z.; Zhu, X.T.; Fan, L.J.; Sun, J.; Llewellyn, D.J.; Wilson, I.; Zhu, Q.H. Expansion of IR482/2118 by a class-II transposable element in cotton. Plant J. 2020, 103, 2084–2099. [Google Scholar] [CrossRef] [PubMed]
- Kan, Q.X.; Li, Q. Post-transcriptional and translational regulation of plant gene expression by transposons. Curr. Opin. Plant Biol. 2023, 75, 102438. [Google Scholar] [CrossRef] [PubMed]
- Berthelier, J.; Furci, L.; Asai, S.; Sadykova, M.; Shimazaki, T.; Shirasu, K.; Saze, H. Long-read direct RNA sequencing reveals epigenetic regulation of chimeric gene transposon transcripts in Arabidopsis thaliana. Nat Commun. 2023, 14, 3248. [Google Scholar] [CrossRef] [PubMed]
- Naito, K.; Zhang, F.; Tsukiyama, T.; Saito, H.; Hancock, C.N.; Richardson, A.O.; Okumoto, Y.; Tanisaka, T.; Wessler, S.R. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 2009, 461, 1130–1134. [Google Scholar]
- Kashkush, K.; Feldman, M.; Levy, A.A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 2003, 33, 102–106. [Google Scholar]
- Shi, X.L.; Zhang, C.Q.; Ko, D.K.; Chen, Z.J. Genome-wide dosage-dependent and -independent regulation contributes to gene expression and evolutionary novelty in plant polyploids. Mol. Biol. Evol. 2015, 32, 2351–2366. [Google Scholar]
- Woodhouse, M.R.; Cheng, F.; Pires, J.C.; Lisch, D.; Freeling, M.; Wang, X.W. Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc. Natl. Acad. Sci. USA 2014, 111, 5283–5288. [Google Scholar]
- Zhang, K.; Zhang, L.K.; Cui, Y.N.; Yang, Y.Q.; Wu, J.; Liang, J.L.; Li, X.; Zhang, X.; Zhang, Y.Y.; Guo, Z.W.; et al. The lack of negative association between TE load and subgenome dominance in synthesized Brassica allotetraploids. Proc. Natl. Acad. Sci. USA 2023, 120, e2305208120. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, Z.J.; Liu, J.Y.; Zhang, Y.E.; Ye, L.H.; Peng, Y.; Wang, H.Y.; Diao, H.S.; Ma, Y.; Wang, M.Y.; et al. Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nat. Commun. 2022, 13, 6940. [Google Scholar]
- Greene, B.; Walko, R.; Hake, S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics 1994, 138, 1275–1285. [Google Scholar]
- Salvi, S.; Sponza, G.; Morgante, M.; Tomes, D.; Niu, X.; Fengler, K.A.; Meeley, R.; Ananiev, E.V.; Svitashev, S.; Bruggemann, E.; et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl. Acad. Sci. USA 2007, 104, 11376–11381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Zhang, X.; Lin, Z.L.; Wang, J.; Liu, H.Q.; Zhou, L.N.; Zhong, S.Y.; Li, Y.; Zhu, C.; Lai, J.S.; et al. A large transposon insertion in the stiff1 promoter increases stalk strength in maize. Plant Cell 2020, 32, 152–165. [Google Scholar] [PubMed]
- Xu, L.; Yuan, K.; Yuan, M.; Meng, X.; Chen, M.; Wu, J.; Li, J.; Qi, Y. Regulation of rice tillering by RNA directed DNA methylation at miniature inverted-repeat transposable elements. Mol. Plant 2020, 13, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.H.; Tao, S.T.; Li, X.; Gao, D.Y.; Tang, M.F.; Liu, C.B.; Wu, D.; Bai, L.L.; He, Z.K.; Wang, X.D.; et al. The Harbinger transposon-derived gene PANDA epigenetically coordinates panicle number and grain size in rice. Plant Biotech. J. 2022, 20, 1154–1166. [Google Scholar] [CrossRef]
- Li, X.; Dai, X.; He, H.; Lv, Y.; Yang, L.; He, W.; Liu, C.; Wei, H.; Liu, X.; Yuan, Q.; et al. A pan-TE map highlights transposable elements underlying domestication and agronomic traits in Asian rice. Nat. Sci. Rev. 2024, 11, nwae188. [Google Scholar] [CrossRef]
- Kobayashi, S.; Goto-Yamamoto, N.; Hirochika, H. Retrotransposon-induced mutations in grape skin color. Science 2004, 304, 982. [Google Scholar] [CrossRef]
- Butelli, E.; Licciardello, C.; Zhang, Y.; Liu, L.; Mackay, S.; Bailey, P.; Reforgiato-Recupero, G.; Martin, C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 2012, 24, 1242–1255. [Google Scholar] [CrossRef]
- Huang, D.; Yuan, Y.; Tang, Z.; Huang, Y.; Kang, C.; Deng, X.; Xu, Q. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange. Plant Cell Environ. 2019, 42, 3092–3104. [Google Scholar]
- Huang, H.Y.; Zhang, S.Q.; Choucha, F.A.; Verdenaud, M.; Tan, F.Q.; Pichot, C.; Parsa, H.S.; Slavkovic, F.; Chen, Q.H.; Troadec, C.; et al. Harbinger transposon insertion in ethylene signaling gene leads to emergence of new sexual forms in cucurbits. Nat. Commun. 2024, 15, 4877. [Google Scholar]
- Zhang, W.; Liao, S.; Zhang, J.; Sun, H.; Li, S.; Zhang, H.; Gong, G.; Shen, H.; Xu, Y. Recurrent excision of a hAT-like transposable element in CmAPRR2 leads to the “shooting star” melon phenotype. Plant J. 2024, 120, 1206–1220. [Google Scholar]
- Zhang, K.; Yu, H.; Zhang, L.; Cao, Y.; Li, X.; Mei, Y.; Wang, X.; Zhang, Z.; Li, T.; Jin, Y.; et al. Transposon proliferation drives genome architecture and regulatory evolution in wild and domesticated peppers. Nat. Plants 2025, 11, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Jiang, N.; Schaffner, E.; Stockinger, E.J.; van der Knaap, E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 2008, 319, 1527–1530. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Guan, X.; Chen, Z.J. Dynamic roles for small RNAs and DNA methylation during ovule and fiber development in allotetraploid cotton. PLoS Genet. 2015, 11, e1005724. [Google Scholar] [CrossRef]
- Cai, X.; Lin, R.M.; Liang, J.L.; King, G.J.; Wu, J.; Wang, X.W. Transposable element insertion: A hidden major source of domesticated phenotypic variation in Brassica rapa. Plant Biotech. J. 2022, 20, 1298–1310. [Google Scholar] [CrossRef]
- Zhou, P.; Jiang, H.; Li, J.; He, X.; Jin, Q.; Wang, Y.; Xu, Y. A transposon DNA/hAT-Ac insertion promotes the formation of yellow tepals in lotus (Nelumbo). Int. J. Biol. Macromol. 2024, 283, 137724. [Google Scholar] [CrossRef]
- Casacuberta, E.; Gonzalez, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 2013, 22, 1503–1517. [Google Scholar] [CrossRef]
- Zervudacki, J.; Yu, A.; Amesefe, D.; Wang, J.; Drouaud, J.; Navarro, L.; Deleris, A. Transcriptional control and exploitation of an immune-responsive family of plant retrotransposons. EMBO J. 2018, 37, e98482. [Google Scholar] [CrossRef]
- Parker, A.H.; Wilkinson, S.W.; Ton, J. Epigenetics: A catalyst of plant immunity against pathogens. New Phytol. 2022, 233, 66–83. [Google Scholar] [CrossRef]
- Ito, H.; Gaubert, H.; Bucher, E.; Mirouze, M.; Vaillant, I.; Paszkowski, J. A siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 2011, 472, 115–119. [Google Scholar] [CrossRef]
- Xu, W.; Thieme, M.; Roulin, A.C. Natural diversity of heat-induced transcription of retrotransposons in Arabidopsis thaliana. Genome Biol. Evol. 2024, 16, evae242. [Google Scholar] [CrossRef]
- Liang, Z.K.; Anderson, S.N.; Noshay, J.M.; Crisp, P.A.; Tara, A.; Enders, T.A.; Springer, N.M. Epigenetic variation in transposable element expression responses to abiotic stress in maize. Plant Physiol. 2021, 186, 420–433. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Lepere, G.; Jay, F.; Wang, J.; Bapaume, L.; Wang, Y.; Abraham, A.L.; Penterman, J.; Fischer, R.L.; Voinnet, O.; et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Nat. Acad. Sci. USA 2013, 110, 2389–2394. [Google Scholar] [CrossRef] [PubMed]
- Barco, B.; Kim, Y.; Clay, N.K. Expansion of a core regulon by transposable elements promotes Arabidopsis chemical diversity and pathogen defense. Nat. Commun. 2019, 10, 3444. [Google Scholar] [CrossRef]
- Raingeval, M.; Leduque, B.; Baduel, P.; Edera, A.; Roux, F.; Colot, V.; Quadrana, L. Retrotransposon-driven environmental regulation of FLC leads to adaptive response to herbicide. Nat. Plants 2024, 10, 1672–1681. [Google Scholar] [CrossRef]
- Huang, Y.; Sahu, S.K.; Liu, X. Deciphering recent transposition patterns in plants through comparison of 811 genome assemblies. Plant Biotechnol. J. 2025, 23, 1121–1132. [Google Scholar] [CrossRef]
- Schrader, L.; Schmitz, J. The impact of transposable elements in adaptive evolution. Mol. Ecol. 2019, 28, 1537–1549. [Google Scholar] [CrossRef]
- Choudhury, R.R.; Parisod, C. Jumping genes: Genomic ballast or powerhouse of biological diversification. Mol. Ecol. 2017, 26, 4587–4590. [Google Scholar] [CrossRef]
- Serrato-Capuchina, A.; Matute, D.R. The role of transposable elements in speciation. Genes 2018, 9, 254. [Google Scholar] [CrossRef]
- Wicker, T.; Gundlach, H.; Spannagl, M.; Uauy, C.; Borrill, P.; Ramírez-González, R.H.; De Oliveira, R.; International Wheat Genome Sequencing Consortium; Mayer, K.F.X.; Paux, E.; et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018, 19, 103. [Google Scholar] [CrossRef]
- Agren, J.A.; Huang, H.R.; Wright, S.I. Transposable element evolution in the allotetraploid Capsella bursa-pastoris. Am. J. Bot. 2016, 103, 1197–1202. [Google Scholar] [CrossRef]
- Chen, Z.J.; Sreedasyam, A.; Ando, A.; Song, Q.X.; De Santiago, L.M.; Hulse-Kemp, A.M.; Ding, M.Q.; Ye, W.X.; Kirkbride, R.C.; Jenkins, J.; et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat. Genet. 2020, 52, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Y.; Song, Q.X.; Ye, W.X.; Chen, Z.J. Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids. Nat. Ecol. Evol. 2021, 5, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Tao, X.Y.; Feng, S.L.; Wang, L.Y.; Hong, H.; Ma, W.; Shang, G.D.; Guo, S.S.; He, Y.X.; Zhou, B.L.; et al. LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctionalization. Genome Biol. 2018, 19, 195. [Google Scholar] [CrossRef] [PubMed]
- Session, A.M.; Rokhsar, D.S. Transposon signatures of allopolyploid genome evolution. Nat. Commun. 2023, 14, 3180. [Google Scholar] [CrossRef]
- He, X.; Qi, Z.Y.; Liu, Z.P.; Chang, X.; Zhang, X.L.; Li, J.Y.; Wang, M.J. Pangenome analysis reveals transposon-driven genome evolution in cotton. BMC Biol. 2024, 22, 92. [Google Scholar] [CrossRef]
- Satheesh, V.; Fan, W.; Chu, J.; Cho, J. Recent advancement of NGS technologies to detect active transposable elements in plants. Genes Genom. 2021, 43, 289–294. [Google Scholar] [CrossRef]
- Vendrell-Mir, P.; Leduque, B.; Quadrana, L. Ultra-sensitive detection of transposon insertions across multiple families by transposable element display sequencing. Genome Biol. 2025, 26, 48. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Wang, J. Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome. Plants 2025, 14, 1160. https://doi.org/10.3390/plants14081160
Xiao Y, Wang J. Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome. Plants. 2025; 14(8):1160. https://doi.org/10.3390/plants14081160
Chicago/Turabian StyleXiao, Yafang, and Jianbo Wang. 2025. "Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome" Plants 14, no. 8: 1160. https://doi.org/10.3390/plants14081160
APA StyleXiao, Y., & Wang, J. (2025). Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome. Plants, 14(8), 1160. https://doi.org/10.3390/plants14081160