Changes in Soil Chemical Attributes in an Agrosilvopastoral System Six Years After Thinning of Eucalyptus
Abstract
:1. Introduction
2. Results
2.1. 0% Eucalyptus Thinning Treatment
2.2. 50% Eucalyptus Thinning Treatment
2.3. 100% Eucalyptus Thinning Treatment
3. Discussion
3.1. Soil P Content
3.2. Soil Organic Matter and S Contents
3.3. Soil pH and Total Acidity pH 7.0 (H+ + Al3+)
3.4. Soil K+, Ca2+, and Mg2+ Contents
3.5. Soil Al3+ Content
3.6. Soil BS
3.7. Considerations
4. Materials and Methods
4.1. Description of Site, Soil, Climate, and Treatments
4.2. Crop Management
4.2.1. 2009–10 Season
4.2.2. 2010–11 Season
4.2.3. 2015–16 Season
4.2.4. 2016–17 Season
4.2.5. 2017–18 Season
4.3. Sampling and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borges, W.L.B.; Calonego, J.C.; Rosolem, C.A. Impact of crop-livestock-forest integration on soil quality. Agrofor. Syst. 2019, 93, 2111–2119. [Google Scholar] [CrossRef]
- Tonucci, R.G.; Nair, V.D.; Nair, P.K.R.; Garcia, R. Grass vs. tree origin of soil organic carbon under different land-use systems in the Brazilian Cerrado. Plant Soil. 2017, 419, 281–292. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Integrated crop-livestock systems in the Southeastern USA. Agron. J. 2007, 99, 361–372. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A. Crop and cattle production responses to tillage and cover crop management in an integrated crop–livestock system in the southeastern USA. Eur. J. Agron. 2014, 57, 62–70. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; Carvalho, P.C.; Dedieu, D.F. Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Salton, J.C.; Mercante, F.M.; Tomazi, M.; Zanatta, J.A.; Concenço, G.; Silva, W.M.; Retore, M. Integrated crop-livestock system in tropical Brazil: Toward a sustainable production system. Agric. Ecosyst. Environ. 2014, 190, 70–79. [Google Scholar] [CrossRef]
- Garcia, R.A.; Crusciol, C.A.C.; Calonego, J.C.; Rosolem, C.A. Potassium cycling in a corn-brachiaria cropping system. Eur. J. Agron. 2008, 28, 579–585. [Google Scholar] [CrossRef]
- Calonego, J.C.; Rosolem, C.A. Soybean root growth and yield in rotation with cover crops under chiseling and no-till. Eur. J. Agron. 2010, 33, 242–249. [Google Scholar] [CrossRef]
- Almeida, D.S.; Menezes-Blackburn, D.; Turner, B.L.; Wearing, C.; Hatgrath, P.M.; Rosolem, C.A. Urochloa ruziziensis cover crop increases the cycling of soil inositol phosphates. Biol. Fertil. Soils 2018, 54, 935–994. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Chappell, J.C.; Shi, W.; Cubbage, F.W. Greenhouse gas emissions in an agroforestry system of the southeastern USA. Nutr. Cycl. Agroecosyst. 2017, 108, 85–100. [Google Scholar] [CrossRef]
- Borges, W.L.B.; Juliano, P.H.G.; Rodrigues, L.N.R.; Freitas, R.S.; Silva, G.S. Soybean and maize in agrosilvipastoral system after thinning of eucalyptus at seven years of implantation. Int. J. Adv. Eng. Res. Sci. 2020, 7, 73–80. [Google Scholar] [CrossRef]
- Costa, N.R.; Andreotti, M.; Lopes, K.S.M.; Yokobatake, K.L.; Ferreira, J.P.; Pariz, C.M.; Bonini, C.S.B.; Longhini, V.Z. Atributos do solo e acúmulo de carbono na integração lavoura-pecuária em Sistema plantio direto. Rev. Bras. Cienc. Solo 2015, 39, 852–863. (In Portuguese) [Google Scholar] [CrossRef]
- Sarto, M.V.M.; Borges, W.L.B.; Bassegio, D.; Nunes, M.R.; Rice, C.W.; Rosolem, C.A. Deep soil water content and forage production in a tropical agroforestry system. Agriculture 2022, 12, 359. [Google Scholar] [CrossRef]
- Selles, F.; Kochann, R.A.; Denardin, J.E.; Zentner, R.P.; Faganello, A. Distribution of phosphorus fractions in a Brazilian Oxisol under different tillage systems. Soil Till. Res. 1997, 44, 23–34. [Google Scholar] [CrossRef]
- Borges, W.L.B.; Hipolito, J.L.; Cruz, L.C.P.; Souza, I.M.D.; Sporch, H.B.S.; Juliano, P.H.G.; Rodrigues, L.N.F. Evaluation of the influence of surface and subsurface acidity correction methodologies on soil compaction in agropastoral systems under no-till. Soil Sci. Soc. Am. J. 2024, 88, 339–353. [Google Scholar] [CrossRef]
- Myers, R.J.K.; Palm, C.A.; Cuevas, E.; Gunatilleke, I.U.N.; Brossard, M. The synchronisation of nutrient mineralisation and plant nutrient demand. In The Biological Management of Tropical Soil Fertility; Woomer, P.L., Swift, M.J., Eds.; Wiley-Sayce Publications: New York, NY, USA, 1994; pp. 81–112. [Google Scholar]
- Kuzyakov, Y.; Domanski, G. Carbon input by plants into the soil. J. Soil Sci. Plant Nutr. 2000, 163, 421–431. [Google Scholar] [CrossRef]
- Souza, W.; Barbosa, O.R.; Marques, J.A.; Costa, M.A.; Gasparino, E.; Limberger, E. Microclimate in silvipastoral systems with eucalyptus in rank with different heights. Rev. Bras. Zootec. 2010, 39, 685–694. [Google Scholar] [CrossRef]
- Baliscei, M.A.; Souza, W.; Barbosa, O.R.; Cecato, U.; Krutzmann, A.; Queiroz, E.O. Behavior of beef cattle and the microclimate with and without shade. Acta Sci. Anim. Sci. 2012, 34, 409–415. [Google Scholar] [CrossRef]
- Trani, P.E.; Terra, M.M.; Teccio, M.A.; Teixeira, L.A.T.; Hanasiro, J. Adubação Orgânica de Hortaliças e Frutíferas; Instituto Agronômico: Campinas, Brasil, 2013. (In Portuguese) [Google Scholar]
- Butterly, C.R.; Baldock, J.A.; Tang, C. The contribution of crop residues to changes in soil pH under field conditions. Plant Soil 2013, 366, 185–198. [Google Scholar] [CrossRef]
- Echart, C.L.; Cavalli-Molina, S. Fitotoxicidade do alumínio: Efeitos, mecanismo de tolerância e seu controle genético. Cienc. Rural. 2001, 31, 531–541. (In Portuguese) [Google Scholar] [CrossRef]
- Souza, R.E.T. Produção de soja em sistema agrossilvipastoril com eucalipto no Cerrado. Bachelor’s Thesis, Universidade de Brasília, Brasília, DF, Brazil, 2011. (In Portuguese). [Google Scholar]
- Paciullo, D.S.C.; Castro, C.R.T.; Gomide, C.A.M.; Fernandes, P.B.; Rocha, W.S.D.; Müller, M.D.; Rossiello, R.O.P. Soil bulk density and biomass partitioning of Brachiaria decumbens in a silvopastoral system. Sci. Agric. 2010, 67, 598–603. [Google Scholar] [CrossRef]
- Paciullo, D.S.C.; Gomide, C.A.M.; Castro, C.R.T.; Fernandes, P.B.; Müller, M.D.; Pires, M.F.Á.; Fernandes, E.N.; Xavier, D.F. Características produtivas e nutricionais do pasto em sistema agrossilvipastoril, conforme a distância das árvores. Pesq. Agropec. Bras. 2011, 46, 1173–1186. (In Portuguese) [Google Scholar] [CrossRef]
- Kang, H.; Shannon, D.A.; Prior, S.A.; Arriaga, F.J. Hedgerow pruning effects on light interception, water relations and yield in alley-cropped maize. J. Sustain. Agric. 2008, 31, 115–137. [Google Scholar] [CrossRef]
- Ding, S.; Su, P. Effects of tree shading on maize crop within a Poplar-maize compound system in Hexi Corridor oasis, Northwestern China. Agrofor. Syst. 2010, 80, 117–129. [Google Scholar] [CrossRef]
- Santos, M.V.; Silva, D.V.; Fonseca, D.M.; Reis, M.R.; Ferreira, L.R.; Oliveira Neto, S.N.; Oliveira, F.R. Componentes produtivos do milho sob diferentes manejos de plantas daninhas e arranjos de plantio em sistema agrossilvipastoril. Cienc. Rural. 2015, 45, 1545–1550. [Google Scholar] [CrossRef]
- Oliveira, T.K.; Macedo, R.L.G.; Venturin, N.; Botelho, S.A.; Higashikawa, E.M.; Magalhães, W.M. Radiação solar no sub-bosque de sistema agrossilvipastoril com eucalipto em diferentes arranjos estruturais. Cerne 2007, 13, 40–50. (In Portuguese) [Google Scholar]
- Malavolta, E. Manual de Nutrição Mineral de Plantas; Ceres: São Paulo, Brasil, 2006. (In Portuguese) [Google Scholar]
- Laclau, J.P.; Arnaud, M.; Bouillet, J.P.; Ranger, J. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: Relationships with the ability of the stand to take up water and nutrients. Tree Physiol. 2001, 21, 129–136. [Google Scholar] [CrossRef]
- Madeira, M.V.; Fabião, A.; Pereira, J.S.; Araújo, M.C.; Ribeiro, C. Changes in carbon stocks in Eucalyptus globulus Labill, plantations induced by different water and nutrient availability. For. Ecol. Manag. 2002, 171, 75–85. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal, 4th ed.; Artmed: Porto Alegre, Brasil, 2009. (In Portuguese) [Google Scholar]
- Ritchey, K.D.; Silva, S.E.; Costa, V.F. Calcium deficiency in clayey B horizons of savannah Oxisols. Soil Sci. 1982, 133, 378–382. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Moller, I.S.; White, P. Functions of macronutrients. In Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier: New York, NY, USA, 2012; pp. 171–178. [Google Scholar]
- Borges, W.L.B.; Juliano, P.H.G.; Souza, I.M.D.; Rodrigues, L.N.F.; Hipolito, J.L.; Andreotti, M. New Methodologies for the surface application of limestone and gypsum in different crop systems. Sustainability 2022, 14, 8926. [Google Scholar] [CrossRef]
- Borges, W.L.B.; Hipolito, J.L.; Juliano, P.H.G.; Souza, I.M.D.; Freitas, R.S.; Andreotti, M. Surface application of hydrated lime in different crop systems. Commun. Soil Sci. Plant Anal. 2023, 54, 258–286. [Google Scholar] [CrossRef]
- Franchini, J.C.; Gonzalez-Villa, F.J.; Miyazawa, M.; Pavan, M.A. Rapid transformations of plant water soluble organic compounds in relation to cation mobilization in acid Oxisol. Plant Soil 2001, 231, 55–63. [Google Scholar] [CrossRef]
- Franchini, J.C.; Hoffmann-Campo, C.B.; Torres, E.; Miyazawa, M.; Pavan, M.A. Organic composition of green manures during growth and its effect on cation mobilization in an acid Oxisol. Commun. Soil Sci. Plant Anal. 2003, 34, 2045–2058. [Google Scholar] [CrossRef]
- Flores, J.P.C.; Cassol, L.C.; Anghinoni, I.; Carvalho, P.C.F. Atributos químicos do solo em função da aplicação superficial de calcário em sistema de integração lavoura-pecuária submetido a pressões de pastejo em plantio direto. Rev. Bras. Cienc. Solo 2008, 32, 2385–2396. (In Portuguese) [Google Scholar] [CrossRef]
- Dalla Nora, D.; Amado, T.J.C. Improvement in chemical attributes of Oxisol subsoil and crop yields under no-till. Agron. J. 2013, 105, 1393–1403. [Google Scholar] [CrossRef]
- Bohnen, H. Acidez e calagem. In Princípios de Fertilidade de Solo; Gianello, C., Bissani, C.A., Tedesco, M.J., Eds.; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 1995; pp. 51–76. [Google Scholar]
- Jones, U.S. Fertilizers & Soil Fertility; Reston Publishing Company: Reston, VA, USA, 1979. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA Natural Resources Conservation Service: Lincoln, NE, USA, 2014. [Google Scholar]
- van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. (Eds.) . Análise Química Para Avaliação da Fertilidade do Solo; Instituto Agronômico: Campinas, Brazil, 2001. [Google Scholar]
- Danielson, R.E.; Sutherland, P.L. Porosity. In Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; pp. 443–461. [Google Scholar]
- Day, P.R. Particle fractionation and particle-size analysis. In Methods of Soil Analysis: Part 1. Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; Blake, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 545–567. [Google Scholar]
- Kemper, W.D.; Chepil, W.S. Size distribution of aggregates. In Methods of Soil Analysis: Part 1. Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; Blake, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 499–510. [Google Scholar]
Depth | P | OM (1) | pH | K+ | Ca2+ | Mg2+ | H+ + Al3+ (2) | BS (3) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | mg dm−3 | g dm−3 | ----------------- cmolc dm−3 ------------------ | % | |||||||||
0–0.2 | 7 | 17 | 5.2 | 0.03 | 0.18 | 0.08 | 0.16 | 64 | |||||
0.2–0.4 | 3 | 15 | 5 | 0.02 | 0.16 | 0.06 | 0.16 | 59 | |||||
Sand | Silt | Clay | |||||||||||
----------------------------------g kg−1------------------------------------ | |||||||||||||
0–0.2 | 815 | 104 | 81 | ||||||||||
0.2–0.4 | 783 | 142 | 75 | ||||||||||
M (4) | µ (5) | TP (6) | BD (7) | >2 mm (8) | MWD (9) | ||||||||
-------------- m3 m−3 --------------- | kg dm−3 | % | mm | ||||||||||
0–0.2 | 0.03 | 0.34 | 0.38 | 1.59 | 57.88 | 2.76 | |||||||
0.2–0.4 | 0.03 | 0.34 | 0.37 | 1.58 | 52.26 | 2.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, W.L.B.; Andreotti, M.; Pianta da Cruz, L.C.; Osaki de Oliveira, D.Y.; Borges, J.F.; Silva, L.d.C. Changes in Soil Chemical Attributes in an Agrosilvopastoral System Six Years After Thinning of Eucalyptus. Plants 2024, 13, 3050. https://doi.org/10.3390/plants13213050
Borges WLB, Andreotti M, Pianta da Cruz LC, Osaki de Oliveira DY, Borges JF, Silva LdC. Changes in Soil Chemical Attributes in an Agrosilvopastoral System Six Years After Thinning of Eucalyptus. Plants. 2024; 13(21):3050. https://doi.org/10.3390/plants13213050
Chicago/Turabian StyleBorges, Wander Luis Barbosa, Marcelo Andreotti, Luan Carlos Pianta da Cruz, Douglas Yuri Osaki de Oliveira, João Francisco Borges, and Laryssa de Castro Silva. 2024. "Changes in Soil Chemical Attributes in an Agrosilvopastoral System Six Years After Thinning of Eucalyptus" Plants 13, no. 21: 3050. https://doi.org/10.3390/plants13213050
APA StyleBorges, W. L. B., Andreotti, M., Pianta da Cruz, L. C., Osaki de Oliveira, D. Y., Borges, J. F., & Silva, L. d. C. (2024). Changes in Soil Chemical Attributes in an Agrosilvopastoral System Six Years After Thinning of Eucalyptus. Plants, 13(21), 3050. https://doi.org/10.3390/plants13213050