Cryopreservation of Indigenous Plums and Monitoring of Multiplication and Rooting Capacity of Shoots Obtained from Cryopreserved Specimens
Abstract
:1. Introduction
2. Results
2.1. Monitoring of Growth Recovery
2.1.1. The First Experimental Setup
2.1.2. The Second Experimental Setup
2.2. Multiplication and Rooting Capacity of Shoot Regenerated from Cryo-Preserved Specimens
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Explant Dissection, Pregrowth, and Loading
4.3. Cryopreservation Using Cryo-Plate Methods
4.3.1. The First Experimental Setup
4.3.2. The Second Experimental Setup
- Dehydration with PVS A3 for 40 min at 23 °C in ‘Belošljiva’, ‘Požegača’, ‘Moravka’, and ‘Dragačevka’;
- Dehydration with PVS3 for 80 min at 23 °C in ‘Sitnica’, ‘Crnošljiva’, ‘Cerovački Piskavac’, and ‘Trnovača’;
- Desiccation for 2 h over silica gel at 23 °C in ‘Belošljiva’, ‘Sitnica’, ‘Požegača’, ‘Dragačevka’, and ‘Trnovača’;
- Desiccation for 3 h over silica gel at 23 °C in ‘Moravka’, ‘Crnošljiva’, and ‘Cerovački Piskavac’.
4.4. Growth Recovery and Statistical Analysis
4.5. Multiplication and Rooting Capacity of Shoots Regenerated from Cryo-Preserved Specimens
- 1 mg L−1 IBA and 0.1 mg L−1 GA3 in ‘Belošljiva’, ‘Trnovača’, ‘Dragačevka’, and ‘Cerovački Piskavac’;
- 1 mg L−1 NAA and 0.1 mg L−1 GA3 in ‘Sitnica’, ‘Požegača’, ‘Crnošljiva’, and ‘Moravka’.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Botu, M.; Visanu, F.; Stefanescu, I.; Vicol, A.; Cernatescu, M. Structure of the plum cultivar assortment for region of Oltenia-Romania. Acta Hortic. 2012, 968, 115–120. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N. Phenotypic diversity of autochthonous European (Prunus domestica L.) and Damson (Prunus insititia L.) plum accessions based on multivariate analysis. Hortic. Sci. 2012, 39, 8–20. [Google Scholar] [CrossRef]
- Neumüller, M. Fundamental and applied aspects of plum (Prunus domestica) breeding. Fruit Veg. Cereal Sci. Biotechnol. 2011, 5, 139–156. [Google Scholar]
- Sonnino, A. International instruments for conservation and sustainable use of plant genetic resources for food and agriculture: An historical appraisal. Diversity 2017, 9, 50. [Google Scholar] [CrossRef]
- Paunović, S.A.; Paunović, A.S. Investigations of plum and prune cultivars (Prunus domestica L. and Prunus insititia L.) in situ in SFR Yugoslavia. Acta Hortic. 1994, 359, 49–54. [Google Scholar] [CrossRef]
- Usenik, V.; Stampar, F.; Fajt, N. Pomological and phenological characteristics of some autochthonous Slovenian plum cultivars. Acta Hortic. 2007, 734, 53–59. [Google Scholar] [CrossRef]
- Jelacic, T.; Dermic, E.; Halapija-Kazija, D.; Vujevic, P.; Savic, Z.; Bisko, A.; Cvjetkovic, B. Analysis of autochthonous plum cultivars (Prunus domestica L.) in Croatia for the presence of Plum Pox Virus. J. Plant Pathol. 2008, 90, 3–7. [Google Scholar]
- Vukojevic, D.; Simic, J.; Dragisic, N.; Sevo, D.; Misimovic, M.; Zavisic, N.; Bolic, E.; Radanovic, B. Evaluation of the quality of autochthonous plum cultivars in the area of Bosanski Petrovac. In Proceedings of the Third International Scientific Symposium ‘Agrosym 2012’, Jahorina, Bosnia and Herzegovina, 15–17 November 2012; pp. 161–166. [Google Scholar]
- Manco, R.; Basile, B.; Capuozzo, C.; Scognamiglio, P.; Forlani, M.; Rao, R.; Corrado, G. Molecular and phenotypic diversity of traditional European plum (Prunus domestica L.) germplasm of Southern Italy. Sustainability 2019, 11, 4112. [Google Scholar] [CrossRef]
- Tomić, J.; Štampar, F.; Glišić, I.; Jakopič, J. Phytochemical assessment of plum (Prunus domestica L.) cultivars selected in Serbia. Food Chem. 2019, 299, 125113. [Google Scholar] [CrossRef]
- Höfer, M.; Hanke, M.V. Cryopreservation of fruit germplasm. In Vitro Cell. Dev. Biol. Plant 2017, 53, 372–381. [Google Scholar] [CrossRef]
- Ruta, C.; Lambardi, M.; Ozudogru, E.A. Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation. Biodivers. Conserv. 2020, 29, 3495–3532. [Google Scholar] [CrossRef]
- Panis, B.; Nagel, M.; Van den Houwe, I. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Pan, C.; Hao, X.Y.; Cui, Z.H.; Kher, M.M.; Marković, Z.; Wang, Q.C.; da Silva, J.A.T. Cryopreservation of grapevine (Vitis spp.)—A review. In Vitro Cell. Dev. Biol. Plant 2017, 53, 449–460. [Google Scholar] [CrossRef]
- Lambardi, M.; Shaarawi, S. Importance of in vitro culture for developing cryopreservation strategies of woody plants. Acta Hortic. 2017, 1187, 177–188. [Google Scholar] [CrossRef]
- Sakai, A. Development of cryopreservation techniques. In Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application; Engelmann, F., Takagi, H., Eds.; JIRCAS & IPGRI: Tsukuba, Japan; Rome, Italy, 2000; pp. 1–7. [Google Scholar]
- Reed, B.M. Implementing cryogenic storage of clonally propagated plants. CryoLetters 2001, 22, 97–104. [Google Scholar]
- Zamecnik, J.; Faltus, M.; Bilavcik, A. Vitrification solutions for plant cryopreservation: Modification and properties. Plants 2021, 10, 2623. [Google Scholar] [CrossRef] [PubMed]
- Niino, T.; Arizaga, M.V. Cryopreservation for preservation of potato genetic resources. Breed Sci. 2015, 65, 41–52. [Google Scholar] [CrossRef] [PubMed]
- De Carlo, A.; Benelli, C.; Lambardi, M. Development of a shoot-tip vitrification protocol and comparison with encapsulation-based procedures for plum (Prunus domestica L.) cryopreservation. CryoLetters 2000, 21, 215–222. [Google Scholar]
- De Boucaud, M.T.; Brison, M.; Helliot, B.; Hervé-Paulus, V. Cryopreservation of Prunus. In Cryopreservation of Plant Germplasm II—Biotechnology in Agriculture and Forestry; Towill, L.E., Bajaj, Y.P.S., Eds.; Springer: Berlin, Germany, 2002; pp. 287–311. [Google Scholar]
- Vujović, T.I.; Ružić, Đ.V.; Cerović, R.M. Cryopreservation of Serbian autochthonous Prunus spp. by droplet-vitrification. Biologia 2015, 70, 1359–1365. [Google Scholar] [CrossRef]
- Yamamoto, S.; Rafique, T.; Priyantha, W.S.; Fukui, K.; Matsumoto, T.; Niino, T. Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters 2011, 32, 256–265. [Google Scholar]
- Niino, T.; Yamamoto, S. Base procedures of V and D cryo-plate methods. In Manual of Cryopreservation Methods Using Cryo-Plates; Nino, T., Matsumoto, T., Yamamoto, S., Maki, S., Tanaka, D., Engelmann, F., Eds.; Plant Tissue Culture and Cryopreservation Group (PTCCryoG): Jalisco, Mexico, 2017; pp. 16–26. [Google Scholar]
- Vujović, T.; Chatelet, P.; Ružić, Đ.; Engelmann, F. Cryopreservation of Prunus sp. using aluminium cryo-plates. Sci. Hortic. 2015, 195, 173–182. [Google Scholar] [CrossRef]
- Vujović, T.; Jevremović, D.; Marjanović, T.; Ružić, Đ. Cryopreservation of Serbian autochthonous plum ‘Crvena Ranka’ using aluminium cryo-plates. Genetika 2021, 53, 283–294. [Google Scholar] [CrossRef]
- Botu, M.; Tomić, L.; Cvetković, M.; Gjamovski, V.; Jemrić, T.; Lazović, B.; Ognjanov, V.; Pintea, M.; Sevo, R.; Achim, G.; et al. Balkan Pomology—Plums; SEEDNet’s WG for Fruit and Vitis: Alnarp, Sweden, 2012; pp. 16–164. [Google Scholar]
- Kaviani, B.; Kulus, D. Cryopreservation of endangered ornamental plants and fruit crops from tropical and subtropical regions. Biology 2022, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-R.; Bi, W.; Shukla, M.R.; Ren, L.; Hamborg, Z.; Blystad, D.-R.; Saxena, P.K.; Wang, Q.-C. Epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants. Plants 2021, 10, 1889. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, J.C.; Bonnart, R.; Volk, G.M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell Tissue Organ Cult. 2021, 144, 21–34. [Google Scholar] [CrossRef]
- Zhang, A.-L.; Wang, M.-R.; Li, Z.; Panis, B.; Bettoni, J.C.; Vollmer, R.; Xu, L.; Wang, Q.-C. Overcoming challenges for shoot tip cryopreservation of root and tuber crops. Agronomy 2023, 13, 219. [Google Scholar] [CrossRef]
- Yamamoto, S.; Fukui, K.; Rafique, T.; Khan, N.; Castillo Martinez, C.; Sekizawa, K.; Niino, T. Cryopreservation of in vitro-grown shoot tips of strawberry by the vitrification method using aluminium cryo-plates. Plant Genet. Resour. 2012, 10, 14–19. [Google Scholar] [CrossRef]
- Brison, M.; de Boucaud, M.T.; Dosba, F. Cryopreservation of in vitro grown shoot tips of two interspecific Prunus rootstocks. Plant Sci. 1995, 105, 235–242. [Google Scholar] [CrossRef]
- Helliot, B.; De Boucaud, M.T. Effect of various parameters on the survival of cryopreserved Prunus Ferlenain in vitro plantlets shoot tips. CryoLetters 1997, 18, 133–142. [Google Scholar]
- Helliot, B.; Madur, D.; Dirlewanger, E.; De Boucaud, M.T. Evaluation of genetic stability in cryopreserved Prunus. In Vitro Cell. Dev. Biol. Plant 2002, 38, 493–500. [Google Scholar] [CrossRef]
- Yamamoto, S.; Refique, T.; Fukai, K.; Sekizawa, K.; Niino, T. V-cryo-plate procedure as an effective protocol for cryobanks. Case study of mint cryopreservation. CryoLetters 2012, 33, 12–23. [Google Scholar] [PubMed]
- Volk, G.M.; Harris, J.L.; Rotindo, K.E. Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology 2006, 52, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, D.; Niino, T.; Isuzugawa, K.; Hikage, T.; Uemura, M. Cryopreservation of shoot apices of in-vitro grown gentian plants: Comparison of vitrification and encapsulation-vitrification protocols. CryoLetters 2004, 25, 167–176. [Google Scholar] [PubMed]
- Kim, H.H.; Lee, Y.G.; Park, S.U.; Lee, S.C.; Baek, H.J.; Cho, E.G.; Engelmann, F. Development of alternative loading solutions in droplet-vitrification procedures. CryoLetters 2009, 30, 291–299. [Google Scholar] [PubMed]
- Kim, H.H.; Lee, Y.G.; Shin, D.J.; Ko, H.C.; Gwag, J.G.; Cho, E.G.; Engelmann, F. Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 2009, 30, 320–334. [Google Scholar] [CrossRef]
- Niino, T.; Wunna, T.; Watanabe, K.; Nohara, N.; Rafique, T.; Yamamoto, S.; Fukui, K.; Arizaga, M.V.; Castillo Martínez, C.R.; Matsumoto, T.; et al. Cryopreservation of mat rush lateral buds by air dehydration using aluminum cryo-plate. Plant Biotechnol. 2014, 31, 281–287. [Google Scholar] [CrossRef]
- Wilms, H.; Fanega Sleziak, N.; Van der Auweraer, M.; Brands, M.; Verleije, M.; Hardeman, D.; Andre, E.; Panis, B. Development of a fast and user-friendly cryopreservation protocol for sweet potato genetic resources. Sci. Rep. 2020, 10, 14674. [Google Scholar] [CrossRef]
- Benson, E.E.; Harding, K. Cryopreservation of shoot tips and meristems: An overview of contemporary methodologies. In Plant Cell Culture Protocols, Methods in Molecular Biology; Loyola-Vargas, V.M., Ochoa-Alejo, N., Eds.; Humana: Totowa, NJ, USA, 2012; Volume 877, pp. 191–226. [Google Scholar]
- Reed, B.M. Antioxidants and cryopreservation, the new normal? Acta Hortic. 2014, 1039, 41–48. [Google Scholar] [CrossRef]
- Mathew, L.; McLachlan, A.; Jibran, R.; Burritt, D.J.; Pathirana, R. Cold, antioxidant and osmotic pre-treatments maintain the structural integrity of meristematic cells and improve plant regeneration in cryopreserved kiwifruit shoot tips. Protoplasma 2018, 255, 1–13. [Google Scholar] [CrossRef]
- Brandova, P.; Sedlak, J.; Paprstein, F. Cryopreservation of genetic resources of plum and apple. Acta Hortic. 2021, 1307, 141–146. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Kretzschmar, A.A.; Bonnart, R.; Shepherd, A.; Volk, G.M. Cryopreservation of 12 Vitis species using apical shoot tips derived from plants grown in vitro. HortScience 2019, 54, 976–981. [Google Scholar] [CrossRef]
- Dumet, D.; Chang, Y.; Reed, B.M.; Benson, E.E. Replacement of cold acclimatization with high sucrose pretreatment in black currant cryopreservation. In Cryopreservation of Tropical Plant Germplasm. Current Research Progress and Application; Engelmann, F., Takagi, H., Eds.; Japan International Research Center for Agricultural Sciences/International Plant Genetic Resources Institute: Tsukuba, Japan; Rome, Italy, 2000; pp. 385–387. [Google Scholar]
- Barraco, G.; Chatele, P.; Balsemin, E.; Decourcelle, T.; Sylvestre, I.; Engelmann, F. Cryopreservation of Prunus cerasus through vitrification and replacement of cold hardening with preculture on medium enriched with sucrose and/or glycerol. Sci. Hortic. 2012, 148, 104–108. [Google Scholar] [CrossRef]
- Bachiri, Y.; Bajon, C.; Sauvanet, A.; Gazeau, C.; Morisset, C. Effect of osmotic stress on tolerance of air-drying and cryopreservation of Arabidopsis thaliana suspension cells. Protoplasma 2000, 214, 227–243. [Google Scholar] [CrossRef]
- Niino, T.; Tashiro, K.; Suzuki, M.; Ohuchi, S.; Magoshi, J.; Akihama, T. Cryopreservation of in vitro grown shoot tips of cherry and sweet cherry by one-step vitrification. Sci. Hortic. 1997, 70, 155–163. [Google Scholar] [CrossRef]
- Uchendu, E.E.; Reed, B.M. Desiccation tolerance and cryopreservation of in vitro grown blueberry and cranberry shoot tips. Acta Hortic. 2009, 810, 567–574. [Google Scholar] [CrossRef]
- Reed, B.M. Cryopreservation—Practical considerations. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 3–13. [Google Scholar]
- Vujović, T.; Ružić, Đ.; Vranić, D.; Marjanović, T. Cryopreservation in vitro of apple shoot tips following droplet-vitrification. Acta Hortic. 2020, 1289, 1–8. [Google Scholar] [CrossRef]
- Vujović, T.; Sylvestre, I.; Ružić, Đ.; Engelmann, F. Droplet-vitrification of apical shoot tips of Rubus fruticosus L. and Prunus cerasifera Ehrh. Sci. Hortic. 2011, 130, 222–228. [Google Scholar] [CrossRef]
- Bradaï, F.; Sánchez-Romero, C. Effect of cryopreservation on the ex vitro establishment of olive plants regenerated via somatic embryogenesis. Plants 2021, 10, 396. [Google Scholar] [CrossRef]
- Paunović, S.A. Fruit Gene Bank of Yougoslavia (The Form of Temperate Fruit and Tree Nuts Gene Bank in Yugoslavia); University of Kragujevac—Faculty of Agronomy: Čačak, Serbia, 1992; pp. 136–183. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Nishizawa, S.; Sakai, A.; Amano, Y.; Matsuzawa, T. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci. 1993, 91, 67–73. [Google Scholar] [CrossRef]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Forsline, P.L.; Towill, L.E.; Waddell, J.W.; Stushnoff, C.; Lamboy, W.F.; McFerson, J.R. Recovery and longevity of cryopreserved dormant apple buds. J. Am. Soc. Hortic. Sci. 1998, 123, 365–370. [Google Scholar] [CrossRef]
Treatment | Regrowth (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Belošljiva’ | ‘Sitnica’ | ‘Požegača’ | ‘Moravka’ | ‘Crnošljiva’ | ‘Cerovački Piskavac’ | ‘Dragačevka’ | ‘Trnovača’ | |||||||||
−LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | |
Dissection control | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 90.0 b | - |
Pre-growth control | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 90.0 b | - |
LS1 control | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 50.0 c | - | 100.0 a | - | 60.0 de | - | 50.0 c | - |
C4 control | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 90.0 b | - | 80.0 bc | - | 100.0 a | - |
C4–PVS2 20 min | 90.0 b | 4.2 j | 100.0 a | 4.2 e | 60.0 def | 12.9 kl | 100.0 a | 0.0 i | 100.0 a | 17.2 ef | 60.0 cd | 0.0 h | 40.0 fg | 4.2 i | 20.0 de | 0.0 g |
C4–PVS2 40 min | 100.0 a | 33.3 gh | 100.0 a | 25.0 cd | 20.0 jk | 25.0 ij | 90.0 b | 20.8 fg | 100.0 a | 0.0 g | 30.0 ef | 30.0 ef | 30.0 g | 0.0 i | 20.0 de | 8.3 ef |
C4–PVS A3 20 min | 90.0 b | 17.4 i | 100.0 a | 12.5 d | 90.0 b | 9.7 l | 100.0 a | 0.0 i | 100.0 a | 30.0 de | 80.0 bc | 8.3 gh | 90.0 b | 0.0 i | 30.0 cd | 8.3 ef |
C4–PVS A3 40 min | 80.0 bc | 37.5 fgh | 50.0 b | 16.7 d | 60.0 def | 33.3 hi | 80.0 c | 62.5 de | 100.0 a | 0.0 g | 30.0 ef | 16.7 fg | 80.0 bc | 12.5 h | 10.0 def | 4.2 fg |
C4–PVS3 60 min | 90.0 b | 25.0 hi | 100.0 a | 37.5 bc | 50.0 fg | 4.2 m | 50.0 e | 48.1 e | 100.0 a | 25.0 def | 60.0 cd | 20.8 ef | 70.0 cd | 0.0 i | 10.0 def | 4.2 fg |
C4–PVS3 80 min | 70.0 cd | 29.2 ghi | 100.0 a | 45.8 b | 20.0 jk | 8.3 l | 30.0 f | 13.3 gh | 88.9 b | 42.9 cd | 30.0 ef | 25.0 ef | 50.0 ef | 16.7 h | 11.1 def | 11.1 def |
LS1–2 h desiccation | 60.0 de | 41.7 fg | 50.0 b | 41.6 b | 80.0 c | 65.0 de | 70.0 cd | 10.0 h | 30.0 de | 12.5 f | 40.0 de | 0.0 h | 10.0 h | 0.0 i | 0.0 g | 0.0 g |
LS1–2.5 h desiccation | 50.0 ef | 29.2 ghi | 50.0 b | 39.4 b | 70.0 cd | 55.0 ef | 60.0 de | 29.2 f | 20.0 ef | 12.5 f | 30.0 ef | 8.3 gh | 10.0 h | 0.0 i | 8.3 ef | 4.2 fg |
LS1–3 h desiccation | 30.0 ghi | 33.3 gh | 20.0 d | 25.0 cd | 63.3 def | 40.0 gh | 50.0 e | 25.0 f | 20.0 ef | 16.7 ef | 30.0 ef | 25.0 ef | 0.0 i | 0.0 i | 0.0 g | 0.0 g |
Significance | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 |
Treatment | Regrowth (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Belošljiva’ | ‘Sitnica’ | ‘Požegača’ | ‘Moravka’ | ‘Crnošljiva’ | ‘Cerovački Piskavac’ | ‘Dragačevka’ | ‘Trnovača’ | |||||||||
−LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | −LN | +LN | |
Dissection control | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 90.0 b | - |
Pre-growth control * | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - |
LS1 control | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 50.0 bcd | - | 100.0 a | - | 60.0 c | - | 50.0 d | - |
C4 control * | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - | 100.0 a | - |
C4–PVS A3 40 min | 80.0 b | 37.5 d | NC. | 60.0 ef | 33.3 g | 80.0 b | 62.5 c | NC. | NC. | 80.0 b | 12.5 e | NC. | ||||
C4–PVS A3 40 min * | 100.0 a | 54.2 cd | 90.0 b | 58.3 f | 100.0 a | 68.7 c | 100.0 a | 39.9 d | ||||||||
C4–PVS3 80 min | NC. | 100.0 a | 45.8 cd | NC. | NC. | 88.9 a | 42.9 cd | 30.0 d | 25.0 d | NC. | 11.1 g | 11.1 g | ||||
C4–PVS3 80 min * | 100.0 a | 59.8 c | 100.0 a | 68.4 b | 80.0 b | 45.7 c | 70.0 c | 41.7 e | ||||||||
LS1–2 h desiccation | 60.0 c | 41.7 d | 50.0 cd | 41.6 d | 80.0 c | 65.0 e | NC. | NC. | NC. | 10.0 e | 0.0 f | 0.0 h | 0.0 h | |||
C4–2 h desiccation * | 96.7 a | 66.7 bc | 83.3 b | 75.0 b | 100.0 a | 72.2 d | 76.7 b | 35.3 d | 63.3 c | 30.6 f | ||||||
LS1–3 h desiccation | NC. | NC. | NC. | 50.0 d | 25.0 e | 20.0 ef | 16.7 f | 30.0 d | 25.0 d | NC. | NC. | |||||
C4–3 h desiccation * | 90.0 a | 61.1 c | 63.3 bc | 40.2 de | 86.7 b | 58.3 c | ||||||||||
p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 | p ≤ 0.05 |
Genotype/ Parameter | Treatment | ||||||
---|---|---|---|---|---|---|---|
Dissection Control | Pre-growth Control | C4 Control | C4—PVSA3 40 min −LN | C4—PVSA3 40 min +LN | C4—2 h Desic. −LN | C4—2 h Desic. +LN | |
‘Belošljiva’ | |||||||
Index of multiplication | 4.6 bc | 4.2 c | 5.3 a | 5.0 ab | 5.3 a | 4.5 bc | 4.2 c |
Length of axial shoot (mm) | 13.2 b | 12.3 c | 14.4 a | 14.3 a | 12.4 bc | 11.0 d | 11.8 cd |
Length of lateral shoot (mm) | 7.5 b | 7.3 bc | 6.9 c | 7.2 bc | 8.2 a | 7.5 b | 7.3 bc |
‘Požegača’ | |||||||
Index of multiplication | 4.4 a | 3.6 bc | 3.9 b | 3.6 b | 4.3 a | 3.0 d | 3.6 bc |
Length of axial shoot (mm) | 11.0 a | 11.2 a | 11.6 a | 11.3 a | 11.5 a | 10.3 b | 11.6 a |
Length of lateral shoot (mm) | 7.6 a | 7.6 a | 6.6 b | 6.3 b | 6.5 b | 6.4 b | 6.4 b |
‘Dragačevka’ | |||||||
Index of multiplication | 4.6 a | 4.8 a | 3.9 b | 4.9 a | 5.1 a | 3.2 c | 3.4 bc |
Length of axial shoot (mm) | 12.1 a | 1.14 b | 1.11 b | 1.22 a | 1.24 a | 1.03 c | 1.01 c |
Length of lateral shoot (mm) | 9.1 b | 9.9 ab | 7.5 c | 10.2 a | 10.8 a | 6.4 d | 6.4 d |
Genotype/ Parameter | Dissection control | Pre-growth control | C4 control | C4—PVSA3 40 min − LN | C4—PVSA3 40 min + LN | C4—3 h desic. − LN | C4—3 h desic. + LN |
‘Moravka’ | |||||||
Index of multiplication | 3.8 abc | 4.2 a | 4.1 ab | 3.8 abc | 3.6 bc | 3.4 c | 4.1 ab |
Length of axial shoot (mm) | 10.8 | 10.2 | 11.4 | 11.2 | 10.7 | 11.0 | 10.6 |
Length of lateral shoot (mm) | 6.5 bc | 7.1 ab | 7.1 ab | 7.2 a | 6.8 abc | 6.9 abc | 6.3 c |
Genotype/ Parameter | Dissection control | Pre-growth control | C4 control | C4—PVS3 80 min − LN | C4—PVS3 80 min + LN | C4—2 h desic. − LN | C4—2 h desic. + LN |
‘Sitnica’ | |||||||
Index of multiplication | 4.1 c | 4.3 c | 3.5 d | 4.4 c | 4.8 b | 3.8 d | 5.1 a |
Length of axial shoot (mm) | 12.1 cd | 14.7 a | 12.7 bcd | 13.0 bc | 13.2 b | 12.0 d | 14.2 a |
Length of lateral shoot (mm) | 6.5 c | 7.4 b | 6.8 c | 7.4 b | 7.2 b | 6.7 c | 8.0 a |
‘Trnovača’ | |||||||
Index of multiplication | 3.9 b | 3.9 b | 4.2 ab | 4.1 ab | 4.3 a | 3.2 c | 3.2 c |
Length of axial shoot (mm) | 12.0 b | 13.2 a | 11.8 bc | 11.6 bcd | 10.8 d | 11.9 b | 10.9 cd |
Length of lateral shoot (mm) | 6.8 abc | 6.6 cd | 7.2 a | 7.1 ab | 6.3 d | 6.6 cd | 6.7 bc |
Genotype/ Parameter | Dissection control | Pre-growth control | C4 control | C4—PVS3 80 min − LN | C4—PVS3 80 min + LN | C4—3 h desic. − LN | C4—3 h desic. + LN |
‘Crnošljiva’ | |||||||
Index of multiplication | 4.2 c | 4.1 c | 3.9 cd | 5.1 b | 6.5 a | 3.5 d | 4.3 c |
Length of axial shoot (mm) | 11.8 ab | 11.3 bc | 12.2 a | 12.6 a | 11.9 ab | 10.8 c | 11.2 bc |
Length of lateral shoot (mm) | 7.3 b | 6.9 b | 7.1 b | 9.5 a | 9.2 a | 6.0 c | 7.3 b |
‘Cerovački Piskavac’ | |||||||
Index of multiplication | 3.2 de | 3.4 cd | 3.8 b | 4.7 a | 4.8 a | 3.1 e | 3.7 bc |
Length of axial shoot (mm) | 9.6 d | 10.0 cd | 11.7 a | 10.8 bc | 11.0 ab | 10.4 bcd | 10.6 bc |
Length of lateral shoot (mm) | 6.6 bcd | 6.4 cd | 6.9 b | 6.7 bc | 7.6 a | 6.2 d | 6.6 bcd |
Genotype/ Parameter | Treatment | ||||||
---|---|---|---|---|---|---|---|
Dissection Control | Pre-growth Control | C4 Control | C4—PVSA3 40 min −LN | C4—PVSA3 40 min +LN | C4—2 h Desic. −LN | C4—2 h Desic. +LN | |
‘Belošljiva’ | |||||||
Rooting rate (%) | 93.3 | 93.3 | 82.2 | 73.3 | 80.0 | 86.7 | 90.0 |
No. of roots | 3.3 a | 2.8 a | 2.1 b | 1.4 c | 1.9 bc | 1.6 bc | 2.8 a |
Root length (mm) | 45.3 b | 44.9 b | 37.9 c | 48.1 ab | 44.3 b | 52.8 a | 45.6 b |
Shoot height (mm) | 15.5 b | 16.1 b | 20.5 a | 19.8 a | 21.2 a | 19.8 a | 19.7 a |
‘Požegača’ | |||||||
Rooting rate (%) | 77.8 ab | 82.2 a | 71.1 ab | 43.3 ab | 71.1 ab | 53.3 c | 62.2 bc |
No. of roots | 2.2 a | 1.9 ab | 2.3 a | 1.4 bc | 2.0 a | 1.4 c | 1.2 c |
Root length (mm) | 19.3 bc | 15.6 c | 31.9 a | 34.8 a | 22.3 b | 34.8 a | 23.7 b |
Shoot height (mm) | 13.7 abc | 15.3 ab | 13.4 abc | 15.8 a | 16.0 a | 12.9 bc | 12.2 c |
‘Dragačevka’ | |||||||
Rooting rate (%) | 95.6 a | 75.6 b | 66.7 b | 66.7 b | 75.6 b | 77.8 b | 95.6 a |
No. of roots | 2.6 a | 2.7 a | 2.1 b | 2.6 a | 2.8 a | 1.6 c | 2.0 bc |
Root length (mm) | 45.9 d | 66.3 ab | 35.0 e | 72.5 a | 54.9 c | 61.9 b | 61. bc |
Shoot height (mm) | 14.9 | 13.6 | 13.7 | 14.8 | 15.0 | 14.8 | 15.4 |
Genotype/ Parameter | Dissection control | Pre-growth control | C4 control | C4—PVSA3 40 min − LN | C4—PVSA3 40 min + LN | C4—3 h desic. − LN | C4—3 h desic. + LN |
‘Moravka’ | |||||||
Rooting rate (%) | 86.7 ab | 95.6 a | 76.7 bc | 73.3 c | 68.9 c | 84.5 ab | 97.7 a |
No. of roots | 2.2 bc | 2.0 c | 1.6 d | 1.6 d | 1.3 d | 2.8 a | 2.5 ab |
Root length (mm) | 43.0 a | 36.5 ab | 27.3 c | 26.0 c | 26.2 c | 36.9 ab | 35.2 b |
Shoot height (mm) | 21.8 a | 18.4 b | 22.1 a | 23.1 a | 21.8 a | 22.3 a | 19.5 ab |
Genotype/ Parameter | Dissection control | Pre-growth control | C4 control | C4—PVS3 80 min − LN | C4—PVS3 80 min + LN | C4—2 h desic. − LN | C4—2 h desic. + LN |
‘Sitnica’ | |||||||
Rooting rate (%) | 71.1 | 84.3 | 82.2 | 86.7 | 50 | 73.33 | 64.45 |
No. of roots | 1.4 c | 2.0 b | 2.1 b | 2.7 a | 2.6 a | 1.4 c | 1.7 bc |
Root length (mm) | 64.8 a | 51.0 b | 47.4 bc | 10.4 c | 45.0 bc | 70.2 a | 45.2 bc |
Shoot height (mm) | 15.0 ab | 14.2 bc | 14.1 bc | 16.2 a | 16.0 a | 13.1 cd | 12.3 d |
‘Trnovača’ | |||||||
Rooting rate (%) | 84.5 ab | 93.3 a | 82.2 ab | 80.0 ab | 84.5 ab | 77.8 b | 82.2 ab |
No. of roots | 2.9 b | 4.3 a | 2.7 bc | 2.3 bc | 2.8bc | 2.0 c | 2.2 bc |
Root length (mm) | 40.8 bc | 36.7 c | 44.9 ab | 40.7 bc | 45.6 ab | 49.3 a | 46.9 a |
Shoot height (mm) | 14.1 | 15.0 | 14.8 | 13.8 | 14.4 | 14.5 | 14.1 |
Genotype/ Parameter | Dissection control | Pre-growth control | C4 control | C4—PVS3 80 min − LN | C4—PVS3 80 min + LN | C4—3 h desic. −LN | C4—3 h desic. +LN |
‘Crnošljiva’ | |||||||
Rooting rate (%) | 91.1 a | 73.3 bc | 66.7 c | 71.1 bc | 75.6 bc | 71.1bc | 84.5 ab |
No. of roots | 2.0 b | 1.8 bc | 1.7 bcd | 1.5 cd | 1.4 d | 2.0 b | 2.4 a |
Root length (mm) | 67.7 a | 64.2 ab | 67.5 a | 59.4 bc | 52.2 d | 69.5 a | 57.7 cd |
Shoot height (mm) | 17.5 a | 12.2 d | 12.0 d | 12.4 cd | 12.4 cd | 14.0 bc | 14.4 b |
‘Cerovački Piskavac’ | |||||||
Rooting rate (%) | 75.6 b | 95.6 a | 84.5 ab | 84.5 ab | 84.5 ab | 86.7 ab | 86.7 ab |
No. of roots | 2.0 cd | 1.8 d | 2.4 cd | 3.3 b | 4.4 a | 2.3 cd | 2.7 bc |
Root length (mm) | 64.6 a | 55.6 bc | 58.1 b | 46.8 d | 40.9 e | 52.0 cd | 56.0 bc |
Shoot height (mm) | 12.9 | 13.2 | 13.5 | 13.8 | 15.1 | 13.0 | 13.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vujović, T.; Anđelić, T.; Vasilijević, B.; Jevremović, D.; Engelmann, F. Cryopreservation of Indigenous Plums and Monitoring of Multiplication and Rooting Capacity of Shoots Obtained from Cryopreserved Specimens. Plants 2023, 12, 3108. https://doi.org/10.3390/plants12173108
Vujović T, Anđelić T, Vasilijević B, Jevremović D, Engelmann F. Cryopreservation of Indigenous Plums and Monitoring of Multiplication and Rooting Capacity of Shoots Obtained from Cryopreserved Specimens. Plants. 2023; 12(17):3108. https://doi.org/10.3390/plants12173108
Chicago/Turabian StyleVujović, Tatjana, Tatjana Anđelić, Bojana Vasilijević, Darko Jevremović, and Florent Engelmann. 2023. "Cryopreservation of Indigenous Plums and Monitoring of Multiplication and Rooting Capacity of Shoots Obtained from Cryopreserved Specimens" Plants 12, no. 17: 3108. https://doi.org/10.3390/plants12173108
APA StyleVujović, T., Anđelić, T., Vasilijević, B., Jevremović, D., & Engelmann, F. (2023). Cryopreservation of Indigenous Plums and Monitoring of Multiplication and Rooting Capacity of Shoots Obtained from Cryopreserved Specimens. Plants, 12(17), 3108. https://doi.org/10.3390/plants12173108