Facultative Annual Life Cycles in Seagrasses
Abstract
:1. Introduction
2. A Facultative Annual Life History Is Widespread among Seagrass Species and Occurs Worldwide
3. Seed Production Is Higher in Annual Than Perennial Populations
4. Annual Populations Live in More Stressful Environments
- In subtidal or submersed environments with low or moderate eutrophication (this is the typical environment and life cycle for Z. marina);
- Exceptionally, in mid-intertidal environments that probably remain sufficiently moist during low tide, namely (a) in tidal pools where the plants remain submersed (US [28,29,30]; probably NW Europe [31]) and (b) where high air moisture during the growing season (humid climate and sea mists) may protect the plants from desiccation in the mid-intertidal zone: along the eastern shores of the UK and Ireland [32,33]; Z. marina is here referred to as Z. angustifolia), and probably also along the Southwest coast of US, as suggested by the low flowering frequency (33% in Carlsbad [28]), and the robust perennial growth form encountered in San Diego, pers. obs. first author);
- Even more exceptionally, in coarse sanded mid-intertidal areas, at a slightly higher tidal level than the nearby annual population, where they experience even more desiccation. They lose aboveground biomass during summer as a consequence, but rhizomes survive both during summer and winter, the latter likely due to the coarse sediments that allow for flushing (observed in the southern and northern Wadden Sea [34]).
- 4.
- In mid-intertidal environments that are twice-daily exposed to air on the east and west coast of North America and in NW Europe. All seedlings may develop into reproductive shoots [7], or, alternatively, a consistent part of the population may consist of vegetative shoots during the growing season, but they disappear (including belowground parts) during winter (e.g., in Zandkreek, Europe [35,36]). In North America (both east and west coast), transitions from annual to perennial populations coincide with the tidal depth gradient; from the mid-intertidal towards the low tide level, an increasing number of plants becomes perennial [7,29,30];
- 5.
- Permanently submersed environments on the east coast of the USA, in NW Europe, Japan, and Korea, with muddier, more turbid, warmer, more eutrophicated, and/or less saline conditions as compared to those of nearby perennial populations [37,38,39]. Generally, not all shoots are reproductive; some shoots are vegetative and may last longer than the reproductive shoots until they finally disappear (including belowground parts) during winter [13,36]. These populations may represent a transition between perennial and annual life histories;
- 6.
- 7.
- Permanently submersed environments with yearly recurrent heat stress. There are no perennial populations nearby, described for several populations in the Gulf of California, at the southern distribution limit of this species. All shoots of these plants become reproductive [42].
5. Shifts between Annual and Perennial Life Histories in Zostera marina
6. What Mechanisms May Induce an Annual or Perennial Life Cycle? Future Avenues of Research
7. Perspectives for Plant Culture
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, D. On strict and facultative biennials. Oecologia 1985, 67, 292–294. [Google Scholar] [CrossRef]
- Sano, Y. Adaptive strategy in wild rice. Jpn. J. Genet. 1980, 55, 507–508. [Google Scholar]
- Friedman, J.; Twyford, A.D.; Willis, J.H.; Blackman, B.K. The extent and genetic basis of phenotypic divergence in life history traits in Mimulus guttatus. Mol. Ecol. 2015, 24, 111–122. [Google Scholar] [CrossRef]
- Friedman, J. The evolution of annual and perennial plant life histories: Ecological correlates and genetic mechanisms. Annu. Rev. Ecol. Evol. Syst. 2020, 51, 461–481. [Google Scholar] [CrossRef]
- Verma, R.; Kaul, V. Annual to perennial reproductive shift in Anisomeles indica (L.) Kuntze: A strategic seasonal switch. Nord. J. Bot. 2022, 2022, e03203. [Google Scholar] [CrossRef]
- den Hartog, C. The Sea-Grasses of the World; North-Holland: Amsterdam, The Netherlands, 1970; pp. 1–275. [Google Scholar]
- Keddy, C.J.; Patriquin, D.G. An annual form of eelgrass in Nova Scotia. Aquat. Bot. 1978, 5, 163–170. [Google Scholar] [CrossRef]
- Duarte, C.M.; Planas, D.; Penuelas, J. Macrophytes, taking control of an ancestor home. In Limnology Now: A Paradigm of Planetary Problems; Margalet, R., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 59–79. [Google Scholar]
- van Tussenbroek, B.I.; Marquéz Guzmán, J.; Wong, R. Phenology of marine angiosperms [seagrasses]: Reporductive synchrony in the sea. In Functional Approach to Sexual Plant Reproduction; Gamboa-deBuen, A., Orozco-Segovia, A., Cruz-Garcia, F., Eds.; Research Signpost: Kerala, India, 2009; pp. 17–46. [Google Scholar]
- Kuo, J.; Long, W.L.; Coles, R.G. Occurrence and fruit and seed biology of Halophila tricostata Greenway (Hydrocharitaceae). Aust. J. Mar. Freshw. Res. 1993, 44, 43–57. [Google Scholar] [CrossRef]
- Chartrand, K.M. Growth Dynamics and Drivers of Deep-Water Seagrasses from the Great Barrier Reef Lagoon. Doctoral Dissertation, University of Technology, Sydney, Australia, 2021. [Google Scholar]
- Les, D.H.; Cleland, M.A.; Waycott, M. Phylogenetic studies in Alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst. Bot. 1997, 22, 443–463. [Google Scholar] [CrossRef]
- Jarvis, J.C.; Moore, K.A.; Kenworthy, W.J. Characterization and ecological implication of eelgrass life history strategies near the species’ southern limit in the western North Atlantic. Mar. Ecol. Prog. Ser. 2012, 444, 43–56. [Google Scholar] [CrossRef]
- Meling-Lopez, A.E.; Ibarra-Obando, S.E. Annual life cycles of two Zostera marina L. populations in the Gulf of California: Contrasts in seasonality and reproductive effort. Aquat. Bot. 1999, 65, 59–69. [Google Scholar] [CrossRef]
- Vico, G.; Manzoni, S.; Nkurunziza, L.; Murphy, K.; Weih, M. Trade-offs between seed output and life span-a quantitative comparison of traits between annual and perennial congeneric species. N. Phytol. 2016, 209, 104–114. [Google Scholar] [CrossRef]
- Hjertaas, A.C.; Preston, J.C.; Kainulainen, K.; Humphreys, A.M.; Fjellheim, S. Convergent evolution of the annual life history syndrome from perennial ancestors. Front. Plant Sci. 2023, 13, 1048656. [Google Scholar] [CrossRef]
- Cook, R.E. Growth and development in clonal plant populations. In Population Biology and Evolution of Clonal Organisms; Jackson, J.B.C.B.L.W., Cook, R.E., Eds.; Yale University Press: New Haven, CT, USA, 1985; pp. 259–296. [Google Scholar]
- Ruesink, J.L.; Ortiz, B.A.B.; Mawson, C.H.; Boardman, F.C. Tradeoffs in life history investment of eelgrass Zostera marina across estuarine intertidal conditions. Mar. Ecol. Prog. Ser. 2022, 686, 61–70. [Google Scholar] [CrossRef]
- Mayfield, M.M.; Dwyer, J.M.; Main, A.; Levine, J.M. The germination strategies of widespread annual plants are unrelated to regional climate. Glob. Ecol. Biogeogr. 2014, 23, 1430–1439. [Google Scholar] [CrossRef]
- Harrison, P.G.; Bigley, R.E. The Recent Introduction of the Seagrass Zostera japonica Aschers and Graebn to the Pacific Coast of North-America. Can. J. Fish. Aquat. Sci. 1982, 39, 1642–1648. [Google Scholar] [CrossRef]
- Kautsky, L. Seed and tuber banks o3f aquatic macrophytes in the Askoe area, northern Baltic proper. Holarct. Ecol. 1990, 13, 143–148. [Google Scholar]
- Zakaria, M.H.; Bujang, J.S.; Arshad, A. Flowering, fruiting and seedling of annual Halophila beccarii Aschers in peninsular Malaysia. Bull. Mar. Sci. 2002, 71, 1199–1205. [Google Scholar]
- Roca, G.; Alcoverro, T.; Krause-Jensen, D.; Balsby, T.J.S.; van Katwijk, M.M.; Marba, N.; Santos, R.; Arthur, R.; Mascaro, O.; Fernandez-Torquemada, Y.; et al. Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. Ecol. Indic. 2016, 63, 310–323. [Google Scholar] [CrossRef]
- Lamers, L.P.M.; Govers, L.L.; Janssen, I.C.J.M.; Geurts, J.J.M.; van der Welle, M.E.W.; van Katwijk, M.M.; van der Heide, T.; Roelofs, J.G.M.; Smolders, A.J.P. Sulfide as a soil phytotoxin-a review. Front. Plant Sci. 2013, 4, 268. [Google Scholar] [CrossRef]
- Govers, L.L.; de Brouwer, J.H.F.; Suykerbuyk, W.; Bouma, T.J.; Lamers, L.P.M.; Smolders, A.J.P.; van Katwijk, M.M. Toxic effects of increased sediment nutrient and organic matter loading on the seagrass Zostera noltii. Aquat. Toxicol. 2014, 155, 253–260. [Google Scholar] [CrossRef]
- van der Heide, T.; Peeters, E.T.H.M.; Hermus, D.C.R.; van Katwijk, M.M.; Roelofs, J.G.M.; Smolders, A.J.P. Predicting habitat suitability in temperate seagrass ecosystems. Limnol. Oceanogr. 2009, 54, 2018–2024. [Google Scholar] [CrossRef]
- Dolch, T.; Buschbaum, C.; Reise, K. Persisting intertidal seagrass beds in the northern Wadden Sea since the 1930s. J. Sea Res. 2013, 82, 134–141. [Google Scholar] [CrossRef]
- Phillips, R.C.; Grant, W.S.; McRoy, C.P. Reproductive strategies of eelgrass (Zostera marina L.). Aquat. Bot. 1983, 16, 1–20. [Google Scholar] [CrossRef]
- Bayer, R.D. Intertidal zonation of Zostera marina in the Yaquina Estuary, Oregon. Syesis 1979, 12, 147–154. [Google Scholar]
- Keddy, C.J. Reproduction of annual eelgrass: Variation among habitats and comparison with perennial eelgrass (Zostera marina L.). Aquat. Bot. 1987, 27, 243–256. [Google Scholar] [CrossRef]
- Reigersman, C.J.A.; Houben, G.F.H.; Havinga, B. Rapport Omtrent Den Invloed Van De Wierziekte Op Den Achteruitgang Van De Wierbedrijven, Met Bijlagen; Provinciale Waterstaat in Noord-Holland: Haarlem, Holland, 1939; pp. 1–67. [Google Scholar]
- Tutin, T.G. Zostera marina L. J. Ecol. 1942, 30, 217–226. [Google Scholar] [CrossRef]
- Davison, D.M.H.D.J. Zostera biotopes (Volume I). An Overview of Dynamics and Sensitivity Characteristics for Conservation Management of Marine SACs; Scottish Association for Marine Science (UK Marine SACs Project): Oban, UK, 1998; p. 95. [Google Scholar]
- van Katwijk, M.M.; Schmitz, G.H.W.; Hanssen, L.S.A.M.; den Hartog, C. Suitability of Zostera marina populations for transplantation to the Wadden Sea as determined by a mesocosm shading experiment. Aquat. Bot. 1998, 60, 283–305. [Google Scholar] [CrossRef]
- Harrison, P.G. Variations in demography of Zostera marina and Zostera noltii on an intertidal gradient. Aquat. Bot. 1993, 45, 63–77. [Google Scholar] [CrossRef]
- van Lent, F.; Verschuure, J.M. Intraspecific variability of Zostera marina L. (eelgrass) in the estuaries and lagoons of the southwestern Netherlands: I. Population dynamics. Aquat. Bot. 1994, 48, 31–58. [Google Scholar] [CrossRef]
- Harlin, M.M.; Thorne-Miller, B.; Boothroyd, J. Seagrass-sediment dynamics of a flood-tidal delta in Rhode Island (U.S.A.). Aquat. Bot. 1982, 14, 127–138. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A.; Van Vierssen, W. Distribution and structure of communities dominated by Ruppia, Zostera and Potamogeton species in the inland waters of ‘De Bol’, Texel, The Netherlands. Estuar. Coast. Mar. Sci. 1978, 6, 417–428. [Google Scholar] [CrossRef]
- van Lent, F.; Verschuure, J.M. Intraspecific variability of Zostera marina L. (eelgrass) in the estuaries and lagoons of the southwestern Netherlands: II. Relation with environmental factors. Aquat. Bot. 1994, 48, 59–75. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, J.H.; Park, S.R.; Lee, K.S. Annual and perennial life history strategies of Zostera marina populations under different light regimes. Mar. Ecol. Prog. Ser. 2014, 509, 1–13. [Google Scholar] [CrossRef]
- Nienhuis, P.H.; de Bree, B.H.H. Production and growth dynamics of eelgrass (Zostera marina) in Brackish Lake Grevelingen (The Netherlands). Neth. J. Sea Res. 1980, 14, 102–118. [Google Scholar] [CrossRef]
- Santamaria-Gallegos, N.A.; Sanchez-Lizaso, J.L.; Felix-Pico, E.F. Phenology and growth cycle of annual subtidal eelgrass in a subtropical locality. Aquat. Bot. 2000, 66, 329–339. [Google Scholar] [CrossRef]
- Qin, L.Z.; Li, W.T.; Zhang, X.M.; Nie, M.; Li, Y. Sexual reproduction and seed dispersal pattern of annual and perennial Zostera marina in a heterogeneous habitat. Wetl. Ecol. Manag. 2014, 22, 671–682. [Google Scholar] [CrossRef]
- Becheler, R.; Diekmann, O.; Hily, C.; Moalic, Y.; Arnaud-Haond, S. The concept of population in clonal organisms: Mosaics of temporally colonized patches are forming highly diverse meadows of Zostera marina in Brittany. Mol. Ecol. 2010, 19, 2394–2407. [Google Scholar] [CrossRef]
- van Katwijk, M.M.; Cronau, R.J.T.; Lamers, L.P.M.; Kamermans, P.; van Tussenbroek, B.I.; de Jong, D.J. Salinity-Induced extinction of Zostera marina in Lake Grevelingen? How strong habitat modification may require introduction of a suitable ecotype. Sustainability 2023, 15, 3472. [Google Scholar] [CrossRef]
- Wijnhoven, S.; Escaravage, V.; Daemen, E.; Hummel, H. The Decline and Restoration of a Coastal Lagoon (Lake Veere) in the Dutch Delta. Estuaries Coasts 2010, 33, 1261–1278. [Google Scholar] [CrossRef]
- Louters, T.; van den Berg, J.H.; Mulder, J.P.M. Geomorphological changes of the Oosterschelde tidal system during and after the implementation of the delta project. J. Coast. Res. 1998, 14, 1134–1151. [Google Scholar]
- Beeftink, W.G. De zoutvegetatie van ZW-Nederland beschouwd in Europees verband. Meded. Landbouwhogesch. Wagening. 1965, 65–1, 82–85. [Google Scholar]
- Phillips, R.C.; Lewis, R.L., III. Influence of environmental gradients on variations in leaf width and transplant success in North American seagrasses. Mar. Technol. Soc. J. 1983, 17, 59–68. [Google Scholar]
- Ruesink, J.L. Size and fitness responses of eelgrass (Zostera marina L.) following reciprocal transplant along an estuarine gradient. Aquat. Bot. 2018, 146, 31–38. [Google Scholar] [CrossRef]
- Cabaço, S.; Santos, R. Seagrass reproductive effort as an ecological indicator of disturbance. Ecol. Indic. 2012, 23, 116–122. [Google Scholar] [CrossRef]
- Xu, S.C.; Xu, S.; Zhou, Y.; Yue, S.D.; Qiao, Y.L.; Liu, M.J.; Gu, R.T.; Song, X.Y.; Zhang, Y.; Zhang, X.M. Sonar and in situ surveys of eelgrass distribution, reproductive effort, and sexual recruitment contribution in a eutrophic bay with intensive human activities: Implication for seagrass conservation. Mar. Pollut. Bull. 2020, 161, 111706. [Google Scholar] [CrossRef]
- Ito, M.A.; Lin, H.J.; O’Connor, M.I.; Nakaoka, M. Large-scale comparison of biomass and reproductive phenology among native and non-native populations of the seagrass Zostera japonica. Mar. Ecol. Prog. Ser. 2021, 675, 1–21. [Google Scholar] [CrossRef]
- Yue, S.D.; Zhang, X.M.; Xu, S.C.; Zhang, Y.; Zhao, P.; Wang, X.D.; Zhou, Y. Reproductive strategies of the seagrass Zostera japonica under different geographic conditions in northern China. Front. Mar. Sci. 2020, 7, 574790. [Google Scholar] [CrossRef]
- Vercaemer, B.M.; Scarrow, M.A.; Roethlisberger, B.; Krumhansl, K.A.; Wong, M.C. Reproductive ecology of Zostera marina L. (eelgrass) across varying environmental conditions. Aquat. Bot. 2021, 175, 103444. [Google Scholar] [CrossRef]
- van Tussenbroek, B.I.; Soissons, L.M.; Bouma, T.J.; Asmus, R.; Auby, I.; Brun, F.G.; Cardoso, P.G.; Desroy, N.; Fournier, J.; Ganthy, F.; et al. Pollen limitation may be a common Allee effect in marine hydrophilous plants: Implications for decline and recovery in seagrasses. Oecologia 2016, 182, 595–609. [Google Scholar] [CrossRef]
- Johnson, A.J.; Moore, K.A.; Orth, R.J. The influence of resource availability on flowering intensity in Zostera marina (L.). J. Exp. Mar. Biol. Ecol. 2017, 490, 13–22. [Google Scholar] [CrossRef]
- Suonan, Z.; Kim, S.H.; Qin, L.; Kim, H.; Zhang, F.; Lee, K.S. Increased Coastal Nutrient Loading Enhances Reproductive Intensity of Zostera marina: Implications for Seagrass Meadow Resilience. Front. Mar. Sci. 2022, 9, 832035. [Google Scholar] [CrossRef]
- Suonan, Z.; Kim, S.H.; Qin, L.Z.; Lee, K.S. Reproductive strategy of the intertidal seagrass Zostera japonica under different levels of disturbance and tidal inundation. Estuar. Coast. Shelf Sci. 2017, 197, 185–193. [Google Scholar] [CrossRef]
- Strazisar, T.; Koch, M.S.; Santangelo, C.W.; Madden, C.J. Abiotic and biotic interactions control Ruppia maritima life history development within a heterogeneous coastal landscape. Estuaries Coasts 2021, 44, 1975–1993. [Google Scholar] [CrossRef]
- Reusch, T.B.H. Microsatellites reveal high population connectivity in eelgrass (Zostera marina) in two contrasting coastal areas. Limnol. Oceanogr. 2002, 47, 78–85. [Google Scholar] [CrossRef]
- Ort, B.S.; Cohen, C.S.; Boyer, K.E.; Wyllie-Echeverria, S. Population structure and genetic diversity among eelgrass (Zostera marina) beds and depths in San Francisco Bay. J. Hered. 2012, 103, 533–546. [Google Scholar] [CrossRef]
- Reynolds, L.K.; Stachowicz, J.J.; Hughes, A.R.; Kamel, S.J.; Ort, B.S.; Grosberg, R.K. Temporal stability in patterns of genetic diversity and structure of a marine foundation species (Zostera marina). Heredity 2017, 118, 404–412. [Google Scholar] [CrossRef]
- Muñiz-Salazar, R.; Talbot, S.L.; Sage, G.K.; Ward, D.H.; Cabello-Pasini, A. Population genetic structure of annual and perennial populations of Zostera marina L. along the Pacific coast of Baja California and the Gulf of California. Mol. Ecol. 2005, 14, 711–722. [Google Scholar] [CrossRef]
- Oetjen, K.; Ferber, S.; Dankert, I.; Reusch, T.B.H. New evidence for habitat-specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers. Mar. Biol. 2010, 157, 81–89. [Google Scholar] [CrossRef]
- von Staats, D.A.; Hanley, T.C.; Hays, C.G.; Madden, S.R.; Sotka, E.E.; Hughes, A.R. Intra-Meadow Variation in Seagrass Flowering Phenology Across Depths. Estuaries Coasts 2021, 44, 325–338. [Google Scholar] [CrossRef]
- Melzer, S.; Lens, F.; Gennen, J.; Vanneste, S.; Rohde, A.; Beeckman, T. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat. Genet. 2008, 40, 1489–1492. [Google Scholar] [CrossRef]
- Cai, H.W.; Morishima, H. QTL clusters reflect character associations in wild and cultivated rice. Theor. Appl. Genet. 2002, 104, 1217–1228. [Google Scholar] [CrossRef]
- Onishi, K.; Horiuchi, Y.; Ishigoh-Oka, N.; Takagi, K.; Ichikawa, N.; Maruoka, M.; Sano, Y. A QTL cluster for plant architecture and its ecological significance in Asian wild rice. Breed. Sci. 2007, 57, 7–16. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kaya, H.; Goto, K.; Iwabuchi, M.; Araki, T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 1999, 286, 1960–1962. [Google Scholar] [CrossRef] [PubMed]
- Aukerman, M.J.; Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 2003, 15, 2730–2741. [Google Scholar] [CrossRef] [PubMed]
- Hyun, Y.; Vincent, C.; Tilmes, V.; Bergonzi, S.; Kiefer, C.; Richter, R.; Martinez-Gallegos, R.; Severing, E.; Coupland, G. A regulatory circuit conferring varied flowering response to cold in annual and perennial plants. Science 2019, 363, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev. 2009, 23, 781–783. [Google Scholar] [CrossRef]
- van Katwijk, M.M.; van Tussenbroek, B.I.; Hanssen, S.V.; Hendriks, A.J.; Hanssen, L. Rewilding the Sea with Domesticated Seagrass. Bioscience 2021, 71, 1171–1178. [Google Scholar] [CrossRef]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased Food and Ecosystem Security via Perennial Grains. Science 2010, 328, 1638–1639. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Hernandez-Santana, V.; Liebman, M.; Bayala, J.; Chen, J.; Helmers, M.; Ong, C.K.; Schulte, L.A. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew. Agric. Food Syst. 2014, 29, 101–125. [Google Scholar] [CrossRef]
- Toensmeier, E. The Carbon Farming Solution: A Global Toolkit of Perennial Crops and Regenerative Agriculture Practices for Climate Change Mitigation and Food Security; Chelsea Green Publishing: London, UK, 2016. [Google Scholar]
- DeHaan, L.R.; Van Tassel, D.L. Gourmet grasslands: Harvesting a perennial future. One Earth 2022, 5, 14–17. [Google Scholar] [CrossRef]
- Windes, S.; Carrijo, D.; Curwen-McAdams, C.; Hayes, P. Improving the sustainability of malting barley production: Prospects for perennial and annual growth habit varieties. Crop Sci. 2019, 59, 2289–2296. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Huang, G.F.; Zhang, S.L.; Zhang, J.; Gan, S.X.; Cheng, M.; Hu, J.; Huang, L.Y.; Hu, F.Y. An innovated crop management scheme for perennial rice cropping system and its impacts on sustainable rice production. Eur. J. Agron. 2021, 122, 11. [Google Scholar] [CrossRef]
- Les, D.H. Breeding systems, population-structure, and evolution in hydrohilous angiosperms. Ann. Mo. Bot. Gard. 1988, 75, 819–835. [Google Scholar] [CrossRef]
- Barrett, S.C.H.; Eckert, C.G.; HUSBAND, B.C. Evolutionary processes in aquatic plant populations. Aquat. Bot. 1993, 44, 105–145. [Google Scholar] [CrossRef]
- Grace, J.B. The adaptive significance of clonal reproduction in angiosperms: An aquatic perspective. Aquat. Bot. 1993, 44, 159–180. [Google Scholar] [CrossRef]
- van Groenendael, J.M.; Klimes, L.; Klimesova, J.; Hendriks, R.J.J. Comparative ecology of clonal plants. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1996, 351, 1331–1339. [Google Scholar] [CrossRef]
- Edgeloe, J.M.; Severn-Ellis, A.A.; Bayer, P.E.; Mehravi, S.; Breed, M.F.; Krauss, S.L.; Batley, J.; Kendrick, G.A.; Sinclair, E.A. Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proc. R. Soc. B Biol. Sci. 2022, 289, 20220538. [Google Scholar] [CrossRef]
- Procaccini, G.; Mazzella, L. Population genetic structure and gene flow in the seagrass Posidonia oceanica assessed using microsatellite analysis. Mar. Ecol. Prog. Ser. 1998, 169, 133–141. [Google Scholar] [CrossRef]
- Migliaccio, M.; De Martino, F.; Silvestre, F.; Procaccini, G. Meadow-scale genetic structure in Posidonia oceanica. Mar. Ecol. Prog. Ser. 2005, 304, 55–65. [Google Scholar] [CrossRef]
- Arnaud-Haond, S.; Duarte, C.M.; Diaz-Almela, E.; Marba, N.; Sintes, T.; Serrao, E.A. Implications of extreme life span in clonal organisms: Millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS ONE 2012, 7, e30454. [Google Scholar] [CrossRef]
- Reusch, T.B.H.; Böstrom, C.; Stam, W.T.; Olsen, J.L. An ancient eelgrass clone in the Baltic. Mar. Ecol. Prog. Ser. 1999, 183, 301–304. [Google Scholar] [CrossRef]
- van Dijk, J.K.; Van Tussenbroek, B.I. Clonal diversity and structure related to habitat of the marine angiosperm Thalassia testudinum along the Atlantic coast of Mexico. Aquat. Bot. 2010, 92, 63–69. [Google Scholar] [CrossRef]
- Bricker, E.; Calladine, A.; Virnstein, R.; Waycott, M. Mega clonality in an aquatic plant-A potential survival strategy in a changing environment. Front. Plant Sci. 2018, 9, 435. [Google Scholar] [CrossRef] [PubMed]
- Hootsmans, M.J.M.; Vermaat, J.E.; Van Vierssen, W. Seed-bank development, germination and early seedling survival of two seagrass species from the Netherlands: Zostera marina L and Z. noltii Hornemann. Aquat. Bot. 1987, 28, 275–285. [Google Scholar] [CrossRef]
- Vermaat, J.E.; Verhagen, F.C.A. Seasonal variation in the intertidal seagrass Zostera noltii Hornem.: Coupling demographic and physiological patterns. Aquat. Bot. 1996, 52, 259–281. [Google Scholar] [CrossRef]
- Zipperle, A.M.; Coyer, J.A.; Reise, K.; Gitz, E.; Stam, W.T.; Olsen, J.L. Clonal architecture in an intertidal bed of the dwarf eelgrass Zostera noltii in the Northern Wadden Sea: Persistence through extreme physical perturbation and the importance of a seed bank. Mar. Biol. 2009, 156, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
- Zipperle, A.M.; Coyer, J.A.; Reise, K.; Stam, W.T.; Olsen, J.L. Evidence for persistent seed banks in dwarf eelgrass Zostera noltii in the German Wadden Sea. Mar. Ecol. Prog. Ser. 2009, 380, 73–80. [Google Scholar] [CrossRef]
- Wood, E.J.F. Some east Australian sea-grass communities. Proc. Linn. Soc. New South Wales 1959, 84, 218–226. [Google Scholar]
- Hamdorf, I.; Kirkman, H. Status of Australian Seagrass: Issues Paper; Fisheries Pollution and Marine Environment Committee: Canberra, Australia, 1995; pp. 1–32. [Google Scholar]
- Maher, D.; Squire, P.; Eyre, B. Benthic Habitat Mapping, Primary Productivity Measurements and Macrofauna Surveys in the Camden Haven and Hastings River Estuaries; Centre for coastal Biogeochemistry, Southern Cross University: Lismore, Australia, 2007. [Google Scholar]
- Angsupanich, S. Seagrasses and epiphytes in Thale Sap Songkhla, Soujythern Thailand. Mer 1996, 34, 67–73. [Google Scholar]
- Rasheed, M.A.; McKenna, S.A.; Carter, A.B.; Coles, R.G. Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar. Pollut. Bull. 2014, 83, 491–499. [Google Scholar] [CrossRef]
- Brock, M.A. Biology of the salinity tolerant genus Ruppia L. in saline lakes in South-Australia. 1. Morphological variation wsithin and between species and ecophysiology. Aquat. Bot. 1982, 13, 219–248. [Google Scholar] [CrossRef]
- Brock, M.A. Biology of the salinity tolerant genus Ruppia L. in saline lakes in South-Australia 2. Population ecology and reproductive biology. Aquat. Bot. 1982, 13, 249–268. [Google Scholar] [CrossRef]
- Brock, M.A. Reproductive allocation in annual and perennial species of the submerged aquatic halophyte Ruppia. J. Ecol. 1983, 71, 811–818. [Google Scholar] [CrossRef]
- Porter, J.L. Constrasting emergence patterns of Lamprothamnium macropogon (Characeae, Charophyceae) and Ruppia tuberosa (Potamogetonaceae) from arid-zone saline wetlands in Australia. Charophytes 2007, 1, 19–27. [Google Scholar]
- Jacobs, S.W.L.; Brock, M.A. A revision of the genus Ruppia (Potamogetonaceae) in Australia. Aquat. Bot. 1982, 14, 325–337. [Google Scholar] [CrossRef]
- Burnell, O.W.; Connell, S.D.; Irving, A.D.; Russell, B.D. Asymmetric patterns of recovery in two habitat forming seagrass species following simulated overgrazing by urchins. J. Exp. Mar. Biol. Ecol. 2013, 448, 114–120. [Google Scholar] [CrossRef]
- Christianen, M.J.A.; van Katwijk, M.M.; van Tussenbroek, B.I.; Pages, J.F.; Ballorain, K.; Kelkar, N.; Arthur, R.; Alcoverro, T. A dynamic view of seagrass meadows in the wake of successful green turtle conservation. Nat. Ecol. Evol. 2021, 5, 553–555. [Google Scholar] [CrossRef]
- Pérez, D.; Galindo, L. Efectos de la hiposalinidad en Thalassia testudinum (Hydrocharitaceae) del Parque Nacional Morrocoy, Venezuela. Rev. Biol. Trop. 2000, 48, 251–260. [Google Scholar]
- Chollett, I.; Bone, D.; Perez, D. Effects of heavy rainfall on Thalassia testudinum beds. Aquat. Bot. 2007, 87, 189–195. [Google Scholar] [CrossRef]
- Van Tussenbroek, B.I.; Galindo, C.A.; Marquez, J. Dormancy and foliar density regulation in Thalassia testudinum. Aquat. Bot. 2000, 68, 281–295. [Google Scholar] [CrossRef]
- Lipkin, Y. Seagrass Vegetation of Sinai and Israel; McRoy, C.P., Helfferich, C., Eds.; M. Dekker Inc.: New York, NY, USA, 1977; pp. 263–293. [Google Scholar]
- Lipkin, Y.; Beer, S.; Zakai, D. The Seagrasses of the Eastern Mediterranean and the Red Sea; Green, E.P., Short, F.T., Eds.; UNEP, University of California Press: Berkeley, CA, USA, 2003; pp. 65–73. [Google Scholar]
- Fraser, M.W.; Kendrick, G.A.; Statton, J.; Hovey, R.K.; Zavala-Perez, A.; Walker, D.I. Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J. Ecol. 2014, 102, 1528–1536. [Google Scholar] [CrossRef]
- Den Hartog, C.; Triest, L. A profound view and discourse on the typification and status of three confused taxa: Ruppia maritima, R. spiralis and R. cirrhosa. Bot. Mar. 2020, 63, 229–239. [Google Scholar] [CrossRef]
- Abu Hena, M.K.; Short, F.T.; Sharifuzzaman, S.M.; Hasan, M.; Rezowan, M.; Ali, M. Salt marsh and seagrass communities of Bakkhali Estuary, Cox’s Bazar, Bangladesh. Estuar. Coast. Shelf Sci. 2007, 75, 72–78. [Google Scholar] [CrossRef]
- Phan, T.T.H.; De Raeymaeker, M.; Luong, Q.D.; Triest, L. Clonal and genetic diversity of the threatened seagrass Halophila beccarii in a tropical lagoon: Resilience through short distance dispersal. Aquat. Bot. 2017, 142, 96–104. [Google Scholar] [CrossRef]
- Aye, A.A.; Hsan, A.M.; Soe-Htun, U. The morphotaxonomy and phytosociology of Halophila beccarii (Family: Hydrocharitaceae) inKalegauk Island, Mon State. Mawlamyine Univ. Res. J. 2014, 5, 1–5. [Google Scholar]
- Jagtap, T.G.; Untawale, A.G. Ecology of seagrass sed of Halophila beccarii (Aschers) in Mandovi Estuary, Goa. Indian J. Mar. Sci. 1981, 10, 402–404. [Google Scholar]
- Zakaria, M.H.; Sidik, B.J.; Hishamuddin, O. Flowering, fruiting and seedling of Halophila beccarii Aschers. (Hydrocharitaceae) from Malaysia. Aquat. Bot. 1999, 65, 199–207. [Google Scholar] [CrossRef]
- Kuo, J.; Kirkman, H. Halophila decipiens Ostenfeld in estuaries of southwestern Australia. Aquat. Bot. 1995, 51, 335–340. [Google Scholar] [CrossRef]
- Kenworthy, W.J. The role of sexual reproduction in maintaining populations of Halophila decipiens: Implications for the biodiversity and conservation of tropical seagrass ecosystems. Pac. Conserv. Biol. 2000, 5, 260–268. [Google Scholar] [CrossRef]
- Kuo, J.; Kanamoto, Z.; Toma, T.; Nishihira, M. Occurrence of Halophila decipiens Ostenfeld (hydrocharitaceae) in Okinawa island, Japan. Aquat. Bot. 1995, 51, 329–334. [Google Scholar] [CrossRef]
- Bell, S.S.; Fonseca, M.S.; Kenworthy, W.J. Dynamics of a subtropical seagrass landscape: Links between disturbance and mobile seed banks. Landsc. Ecol. 2008, 23, 67–74. [Google Scholar] [CrossRef]
- Kuo, J.; Kanamoto, Z.; Iizumi, H.; Mukai, H. Seagrasses of the genus Halophila Thouars (Hydrocharitaceae) from Japan. Acta Phytotaxon. Geobot. 2006, 57, 129–154. [Google Scholar]
- York, P.H.; Carter, A.B.; Chartrand, K.; Sankey, T.; Wells, L.; Rasheed, M.A. Dynamics of a deep-water seagrass population on the Great Barrier Reef: Annual occurrence and response to a major dredging program. Sci. Rep. 2015, 5, 13167. [Google Scholar] [CrossRef] [PubMed]
- Lewmanomont, K.; Supanwanid, C. Species composition of seagrasses at Haad Chao Mai National Part, Trang province, Thailand. Kasetsart Univ. Fish. Res. Bull. 2000, 22, 1–9. [Google Scholar]
- Hammerstrom, K.K.; Kenworthy, W.J.; Fonseca, M.S.; Whitfield, P.E. Seed bank, biomass, and productivity of Halophila decipiens, a deep water seagrass on the west Florida continental shelf. Aquat. Bot. 2006, 84, 110–120. [Google Scholar] [CrossRef]
- Santamaria-Gallegos, N.A.; Riosmena-Rodriguez, R.; Sanchez-Lizaso, J.L. Occurrence and seasonality of Halophila decipiens Ostenfeld in the Gulf of California. Aquat. Bot. 2006, 84, 363–366. [Google Scholar] [CrossRef]
- McDermid, K.J.; Gregoritza, M.C.; Freshwater, D.W. A new record of a second seagrass species from the Hawaiian archipelago: Halophila decipiens Ostenfeld. Aquat. Bot. 2002, 74, 257–262. [Google Scholar] [CrossRef]
- Josselyn, M.; Fonseca, M.; Niesen, T.; Larson, R. Biomass, production and decomposition of a deep-water seagrass, Halophila decipiens Ostenf. Aquat. Bot. 1986, 25, 47–61. [Google Scholar] [CrossRef]
- Williams, S.L. Disturbance and recovery of a deep-water Caribbean seagrass bed. Mar. Ecol. Prog. Ser. 1988, 42, 63–71. [Google Scholar] [CrossRef]
- McMillan, C.; Soong, K. An annual cycle of flowering, fruiting and seed reserve for Halophila decipiens Ostenfeld (Hydrocharitaceae) in Panama. Aquat. Bot. 1989, 34, 375–379. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A. Ecology of Ruppia-dominated communities in western Europe. 1. Distribution of Ruppia representatives in relation to their autecology. Aquat. Bot. 1979, 6, 197–268. [Google Scholar] [CrossRef]
- Gesti, J.; Badosa, A.; Quintana, X.D. Reproductive potential in Ruppia cirrhosa (Petagna) Grande in response to water permanence. Aquat. Bot. 2005, 81, 191–198. [Google Scholar] [CrossRef]
- Riddin, T.; Adams, J.B. Influence of mouth status and water level on the macrophytes in a small temporarily open/closed estuary. Estuar. Coast. Shelf Sci. 2008, 79, 86–92. [Google Scholar] [CrossRef]
- Riddin, T.; Adams, J.B. The seed banks of two temporarily open/closed estuaries in South Africa. Aquat. Bot. 2009, 90, 328–332. [Google Scholar] [CrossRef]
- Vromans, D.C.; Adams, J.B.; Riddin, T. The phenology of Ruppia cirrhosa (Petagna) Grande and Chara sp. in a small temporarily open/closed estuary, South Africa. Aquat. Bot. 2013, 110, 1–5. [Google Scholar] [CrossRef]
- Kiorboe, T. Production of Ruppia cirrhosa (Petagna) Grande in mixed beds in Ringkobing Fjord (Denmark). Aquat. Bot. 1980, 9, 135–143. [Google Scholar] [CrossRef]
- Ménendez, M.; Comín, F.A. Seasonal patterns of biomass variation of Ruppia cirrhosa (Petagna) Grande and Potamogeton pectinatus L. in a coastal lagoon. Scient. Mar. 1989, 53, 633–638. [Google Scholar]
- Ménendez, M. Net production of Ruppia cirrhosa in the Ebro Delta. Aquat. Bot. 2002, 73, 107–113. [Google Scholar] [CrossRef]
- Ballester, R. Biomasa, estacionalidad y distribución de tres macrófitos: Ruppia cirrhosa, Cymodocea nodosa 7 Caulerpa prolifera en al mar Menor (Murcia, SE de España). An. De Biol. 1985, 4, 31–36. [Google Scholar]
- Calado, G.; Duarte, P. Modelling growth of Ruppia cirrhosa. Aquat. Bot. 2000, 68, 29–44. [Google Scholar] [CrossRef]
- Casagranda, C.; Boudouresque, C.F. Biomass of Ruppia cirrhosa and Potamogeton pectinatus in a Mediterranean brackish lagoon, Lake Ichkeul, Tunisia. Fundam. Appl. Limnol. 2007, 168, 243–255. [Google Scholar] [CrossRef]
- Bonis, A.; Lepart, J.; Grillas, P. Seed bank dynamics and coexistence of annual macrophytes in a temporary and variable habitat. Oikos 1995, 74, 81–92. [Google Scholar] [CrossRef]
- Malea, P.; Kevrekidis, T.; Mogias, A. Annual versus perennial growth cycle in Ruppia maritima L.: Temporal variation in population characteristics in Mediterranean lagoons (Monolimni and Drana Lagoons, Northern Aegean Sea). Bot. Mar. 2004, 47, 357–366. [Google Scholar] [CrossRef]
- Bigley, R.E. The Population Biology of Two Intertidal Seagrasses, Zostera japonica and Ruppia maritima, at Roberts Bank, British Columbia. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 1981. [Google Scholar]
- Richardson, F.D. Ecology of Ruppia maritima L. in New Hampshire (USA) tidal marshes. Rhodora 1980, 82, 403–439. [Google Scholar]
- Acosta, L.W.; Sabbatini, M.R.; Fernandez, O.A.; Burgos, M.A. Propagule bank and plant emergence of macrophytes in artificial channels of a temperate irrigation area in Argentina. Hydrobiologia 1999, 415, 1–5. [Google Scholar] [CrossRef]
- Silberhorn, G.M.; Dewing, S.; Mason, P.A. Production of reproductive shoots, vegetative shoots, and seeds in populations of Ruppia maritima L from the Chesapeake Bay, Virginia. Wetlands 1996, 16, 232–239. [Google Scholar] [CrossRef]
- Koch, E.W.; Seeliger, U. Germination ecology of 2 Ruppia maritima L. populations in southern Brazil. Aquat. Bot. 1988, 31, 321–327. [Google Scholar] [CrossRef]
- McGovern, T.M. Growth and reproduction of Ruppia maritima in the northern Gulf of Mexico. Gulf Mex. Sci. 2009, 2, 91–101. [Google Scholar] [CrossRef]
- Dunton, K.H. Production ecology of Ruppia maritima l. S1 and Halodule wrightii Aschers in 2 subtropical estuaries. J. Exp. Mar. Biol. Ecol. 1990, 143, 147–164. [Google Scholar] [CrossRef]
- Flores-Verdugo, F.J.; Day, J.W.; Mee, L.; Briseño-Dueñas, R. Phytoplankton production and seasonal biomass variation of seagrass, Ruppia maritima L., in a tropical Mexican lagoon with an ephemeral inlet. Estuaries 1988, 11, 51–56. [Google Scholar] [CrossRef]
- Rosenzweig, M.S.; Parker, B.C. Turion production by Ruppia maritima in Chesapeake Bay. Rhodora 2002, 104, 309–311. [Google Scholar]
- Taxeira da Silva, E.; Asmus, M.L. A dynamic simulation model of the widgeon grass Ruppia maritima and its epiphytes in the estuary of the Patos Lagoon, RS, Brazil. Ecol. Model. 2001, 137, 161–179. [Google Scholar] [CrossRef]
- Cho, H.J.; Poirrier, M.A. Seasonal growth and reproduction of Ruppia maritima L. s.l. in Lake Pontchartrain, Louisiana, USA. Aquat. Bot. 2005, 81, 37–49. [Google Scholar] [CrossRef]
- Pulich, W.M. Seasonal growth dynamics of Ruppia maritima L SL and Halodule wrightii Aschers in southern Texas and evaluation of sediment fertility status. Aquat. Bot. 1985, 23, 53–66. [Google Scholar] [CrossRef]
- McMillan, C. The seed reserve for Halodule wrightii, Syringodium filiforme and Ruppia maritima in Laguna Madre, Texas. Contrib. Mar. Sci. 1985, 28, 141–149. [Google Scholar]
- Lazar, A.C.; Dawes, C.J. A seasonal study of the seagrass Ruppia maritima L. in Tampa Bay, Florida (USA): Organic constituents and tolerances to salinity and temperature. Bot. Mar. 1991, 34, 265–269. [Google Scholar] [CrossRef]
- Strazisar, T.; Koch, M.S.; Dutra, E.; Madclen, C.J. Ruppia maritima L. seed bank viability at the Everglades-Florida Bay ecotone. Aquat. Bot. 2013, 111, 26–34. [Google Scholar] [CrossRef]
- Lopez-Calderon, J.; Riosmena-Rodriguez, R.; Rodriguez-Baron, J.M.; Carrion-Cortez, J.; Torre, J.; Meling-Lopez, A.; Hinojosa-Arango, G.; Hernandez-Carmona, G.; Garcia-Hernandez, J. Outstanding appearance of Ruppia maritima along Baja California Sur, Mexico and its influence in trophic networks. Mar. Biodivers. 2010, 40, 293–300. [Google Scholar] [CrossRef]
- Congdon, R.A.; McComb, A.J. Productivity of Ruppia—Seasonal—Changes and dependence on light in an Australian estuary. Aquat. Bot. 1979, 6, 121–132. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Xu, S.; Wang, P.; Zhao, P.; Yue, S.; Gu, R.; Song, X.; Xu, S.; Liu, J.X.; et al. Differences in reproductive effort and sexual recruitment of the seagrass Zostera japonica between two geographic populations in northern China. Mar. Ecol. Prog. Ser. 2020, 638, 65–81. [Google Scholar] [CrossRef]
- Lee, S.Y.; Oh, J.H.; Choi, C.I.; Suh, Y.; Mukai, H. Leaf growth and population dynamics of intertidal Zostera japonica on the western coast of Korea. Aquat. Bot. 2005, 83, 263–280. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, J.B.; Lee, S.M. Temporal dynamics of subtidal Zostera marina and intertidal Zostera japonica on the southern coast of Korea. Mar. Ecol. Evol. Perspect. 2006, 27, 133–144. [Google Scholar] [CrossRef]
- Nakaoka, M.; Aioi, K. Ecology of seagrasses Zostera spp. (Zosteraceae) in Japanese waters: A review. Otsuchi Mar. Sci. 2001, 26, 7–22. [Google Scholar]
- Park, S.R.; Kim, Y.K.; Kim, J.H.; Kang, C.K.; Lee, K.S. Rapid recovery of the intertidal seagrass Zostera japonica following intense Manila clam (Ruditapes philippinarum) harvesting activity in Korea. J. Exp. Mar. Biol. Ecol. 2011, 407, 275–283. [Google Scholar] [CrossRef]
- Lee, S.Y. Annual cycle of biomass of a threatened population of the intertidal seagrass Zostera japonica in Hong Kong. Mar. Biol. 1997, 129, 183–193. [Google Scholar] [CrossRef]
- Huong, T.T.L.; Vermaat, J.E.; Terrados, J.; Van Tien, N.; Duarte, C.M.; Borum, J.; Tri, N.H. Seasonality and depth zonation of intertidal Halophila ovalis and Zostera japonica in Ha Long Bay (northern Vietnam). Aquat. Bot. 2003, 75, 147–157. [Google Scholar] [CrossRef]
- Ruesink, J.L.; Hong, J.S.; Wisehart, L.; Hacker, S.D.; Dumbauld, B.R.; Hessing-Lewis, M.; Trimble, A.C. Congener comparison of native (Zostera marina) and introduced (Z. japonica) eelgrass at multiple scales within a Pacific Northwest estuary. Biol. Invasions 2010, 12, 1773–1789. [Google Scholar] [CrossRef]
- Kaldy, J.E. Production ecology of the non-indigenous seagrass, dwarf eelgrass (Zostera japonica Ascher. & Graeb.), in a Pacific Northwest estuary, USA. Hydrobiologia 2006, 553, 201–217. [Google Scholar]
- Lopez-Calderon, J.M.; Riosmena-Rodriguez, R.; Torre, J.; Meling, A.; Basurto, X. Zostera marina meadows from the Gulf of California: Conservation status. Biodivers. Conserv. 2016, 25, 261–273. [Google Scholar] [CrossRef]
- Morita, T.; Okumura, H.; Abe, M.; Kurashima, A.; Maegawa, M. Density and distribution of seeds in bottom sediments in Zostera marina beds in Ago Bay, central Japan. Aquat. Bot. 2007, 87, 38–42. [Google Scholar] [CrossRef]
- Imao, K.; Fushimi, H. Ecology of the eelgrass (Zostera marina), especially environmental factors determining the occurrence of annual eelgrass in Lake Hamana-ko (Japan). Jpn. J. Phycol. 1985, 33, 320–327. [Google Scholar]
- Boese, B.L.; Robbins, B.D.; Thursby, G. Desiccation is a limiting factor for eelgrass (Zostera marina L.) distribution in the intertidal zone of a northeastern Pacific (USA) estuary. Bot. Mar. 2005, 48, 274–283. [Google Scholar] [CrossRef]
- Robertson, A.I.; Mann, K.H. Disturbance by ice and life-history adaptations of the seagrass Zostera marina. Mar. Biol. 1984, 80, 131–141. [Google Scholar] [CrossRef]
- van Katwijk, M.M.; Bos, A.R.; Kennis, P.; de Vries, R. Vulnerability to eutrophication of a semi-annual life history: A lesson learnt from an extinct eelgrass (Zostera marina) population. Biol. Conserv. 2010, 143, 248–254. [Google Scholar] [CrossRef]
- Erftemeijer, P.L.A.; van Beek, J.K.L.; Ochieng, C.A.; Jager, Z.; Los, H.J. Eelgrass seed dispersal via floating generative shoots in the Dutch Wadden Sea: A model approach. Mar. Ecol. Prog. Ser. 2008, 358, 115–124. [Google Scholar] [CrossRef]
- Cabello-Pasini, A.; Muniz-Salazar, R.; Ward, D.H. Annual variations of biomass and photosynthesis in Zostera marina at its southern end of distribution in the North Pacific. Aquat. Bot. 2003, 76, 31–47. [Google Scholar] [CrossRef]
- Poumian-Tapia, M.; Ibarra-Obando, S.E. Demography and biomass of the seagrass Zostera marina in a Mexican coastal lagoon. Estuaries 1999, 22, 837–847. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, J.I.; Kim, Y.K.; Park, S.R.; Kim, J.H. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: The role of new shoot recruitment from seed banks. Mar. Ecol. Prog. Ser. 2007, 342, 105–115. [Google Scholar] [CrossRef]
- Xu, S.C.; Wang, P.M.; Zhou, Y.; Zhang, X.M.; Gu, R.T.; Liu, X.J.; Liu, B.J.; Song, X.Y.; Xu, S.; Yue, S.D. New Insights into Different Reproductive Effort and Sexual Recruitment Contribution between Two Geographic Zostera marina L. Populations in Temperate China. Front. Plant Sci. 2018, 9, 15. [Google Scholar] [CrossRef]
- Jarvis, J.C.; Moore, K.A. The role of seedlings and seed bank viability in the recovery of Chesapeake Bay, USA, Zostera marina populations following a large-scale decline. Hydrobiologia 2010, 649, 55–68. [Google Scholar] [CrossRef]
- Silberhorn, G.M.; Orth, R.J.; Moore, K.A. Anthesis and seed production in Zostera marina L. (Eelgrass) from the Chesapeake Bay. Aquat. Bot. 1983, 15, 133–144. [Google Scholar] [CrossRef]
- Harwell, M.C.; Orth, R.J. Seed bank patterns in Chesapeake Bay eelgrass (Zostera marina L.): A bay-wide perspective. Estuaries 2002, 25, 1196–1204. [Google Scholar] [CrossRef]
- Greve, T.M.; Krause-Jensen, D.; Rasmussen, M.B.; Christensen, P.B. Means of rapid eelgrass (Zostera marina L.) recolonisation in former dieback areas. Aquat. Bot. 2005, 82, 143–156. [Google Scholar] [CrossRef]
- Olesen, B.; Krause-Jensen, D.; Christensen, P.B. Depth-related changes in reproductive strategy of a cold-temperate Zostera marina meadow. Estuaries Coasts 2017, 40, 553–563. [Google Scholar] [CrossRef]
- Olesen, B. Reproduction in Danish eelgrass (Zostera marina L.) stands: Size-dependence and biomass partitioning. Aquat. Bot. 1999, 65, 209–219. [Google Scholar] [CrossRef]
- Thorne-Miller, B.; Harlin, M.M. The production of Zostera marina L. and other submerged macrophytes in a coastal lagoon in Rhode Island, U.S.A. Bot. Mar. 1984, 27, 539–546. [Google Scholar] [CrossRef]
- Harmsen, G.W. Systematische Beobachtungen der Nordwest-Europäischen Seegrasformen. Ned. Kruidkd. Arch. 1936, 46, 852–877. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Katwijk, M.M.; van Tussenbroek, B.I. Facultative Annual Life Cycles in Seagrasses. Plants 2023, 12, 2002. https://doi.org/10.3390/plants12102002
van Katwijk MM, van Tussenbroek BI. Facultative Annual Life Cycles in Seagrasses. Plants. 2023; 12(10):2002. https://doi.org/10.3390/plants12102002
Chicago/Turabian Stylevan Katwijk, Marieke M., and Brigitta I. van Tussenbroek. 2023. "Facultative Annual Life Cycles in Seagrasses" Plants 12, no. 10: 2002. https://doi.org/10.3390/plants12102002