Unexpected Vulnerability to High Temperature in the Mediterranean Alpine Shrub Erysimum scoparium (Brouss. ex Willd.) Wettst
Abstract
:1. Introduction
2. Results
2.1. Effects of Low-Temperature in E. scoparium Leaves
2.2. Effects of High-Temperature in E. scoparium Leaves
3. Discussion
3.1. Low Temperature and Mature Leaves of E. scoparium
3.2. High Temperature and Mature Leaves of E. scoparium
3.3. Young Leaves of E. scoparium Are Remarkably Freezing-Tolerant but Unexpectedly Vulnerable to High Temperatures
3.4. Rfd and ChlaF Imaging: Useful Tools to Diagnose Temperature-Induced Leaf-Damage
4. Materials and Methods
4.1. Field Site and Experimental Design
4.2. Temperature-Tolerance Treatments
4.3. Chlorophyll Fluorescence Analyses
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 2nd ed.; Körner, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 3540003479. [Google Scholar]
- Körner, C.; Basler, D.; Hoch, G.; Kollas, C.; Lenz, A.; Randin, C.; Vitasse, Y.; Zimmermann, E. Where, why and how? Explaining the low-temperature range limits of temperate tree species. J. Ecol. 2016, 104, 1076–1088. [Google Scholar] [CrossRef]
- Bigler, C.; Bugmann, H. Climate-Induced shifts in leaf unfolding and frost risk of European trees and shrubs. Sci. Rep. 2018, 8, 9865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Plazola, J.; Hernandez, A.; Fernandez-Marin, B.; Esteban, R.; Peguero-Pina, J.; Vehoeven, A.; Cavender-Bares, J. Photoprotective mechanisms in the genus Quercus in response to winter cold and summer drought. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Photoprotective; Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D., Eds.; Springer International Publishing AG: Cham, Germany, 2017; pp. 361–392. ISBN 9783319665436. [Google Scholar]
- Marcante, S.; Erschbamer, B.; Buchner, O.; Neuner, G. Heat tolerance of early developmental stages of glacier foreland species in the growth chamber and in the field. Plant Ecol. 2014, 215, 747–758. [Google Scholar] [CrossRef] [Green Version]
- García-Plazaola, J.I.; Esteban, R.; Hormaetxe, K.; Fernández-Marín, B.; Becerril, J.M. Photoprotective responses of Mediterranean and Atlantic trees to the extreme heat-wave of summer 2003 in Southwestern Europe. Trees-Struct. Funct. 2008, 22, 385–392. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Powers, J.; Cochard, H.; Choat, B. Hanging by a thread? Forests and drought. Science 2020, 368, 261–266. [Google Scholar] [CrossRef]
- Salisbury, F.; Spomer, G. Leaf temperatures of alpine plants in the field. Planta 1964, 60, 497–505. [Google Scholar] [CrossRef]
- Vyse, K.; Pagter, M.; Zuther, E.; Hincha, D.K. Deacclimation after cold acclimation—A crucial, but widely neglected part of plant winter survival. J. Exp. Bot. 2019, 70, 4595–4604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuner, G.; Buchner, O. Dynamics of tissue heat tolerance and thermotolerance of PS II in Alpine plants. In Plants in Alpine Regions. Cell Physiology of Adaptaion and Survival Strategies; Lütz, C., Ed.; Springe: Wien, Austria, 2012; pp. 61–74. [Google Scholar]
- Neuner, G. Frost resistance in alpine woody plants. Front. Plant Sci. 2014, 5, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sklenar, P. Seasonal variation of freezing resistance mechanisms in north-temperate alpine plants. Alp. Bot. 2017, 127, 31–39. [Google Scholar] [CrossRef]
- Larcher, W.; Kainmüller, C.; Wagner, J. Survival types of high mountain plants under extreme temperatures. Flora 2010, 205, 3–18. [Google Scholar] [CrossRef]
- Wisniewski, M.; Gusta, L.; Neuner, G. Adaptive mechanisms of freeze avoidance in plants: A brief update. Environ. Exp. Bot. 2014, 99, 133–140. [Google Scholar] [CrossRef]
- Kuprian, E.; Munkler, C.; Resnyak, A.; Zimmermann, S.; Tan, D.; Neuner, G.; Iii, D.P.L. Complex bud architecture and cell—Specific chemical patterns enable supercooling of Picea abies bud primordia. Plant Cell Environ. 2017, 40, 3101–3112. [Google Scholar] [CrossRef] [Green Version]
- Vitasse, Y.; Schneider, L.; Rixen, C.; Christen, D.; Rebetez, M. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric. For. Meteorol. 2018, 248, 60–69. [Google Scholar] [CrossRef]
- Neuner, G.; Huber, B.; Plangger, A.; Pohlin, J.; Walde, J. Low temperatures at higher elevations require plants to exhibit increased freezing resistance throughout the summer months. Environ. Exp. Bot. 2020, 169, 103882. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; BeX, V.; Midgley, P. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Mountain Research Initiative EDW Working Group Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [CrossRef] [Green Version]
- Karadar, M.; Neuner, G.; Kranner, I.; Holzinger, A.; Buchner, O. Solar irradiation levels during simulated long- and short-term heat waves significantly influence heat survival, pigment and ascorbate composition, and free radical scavenging activity in alpine Vaccinium gaultherioides. Physiol. Plant. 2018, 163, 211–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francon, L.; Corona, C.; Till-Bottraud, I.; Carlson, B.Z.; Stoffel, M. Some (do not) like it hot: Shrub growth is hampered by heat and drought at the alpine treeline in recent decades. Am. J. Bor. 2020, 107, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchner, O.; Stoll, M.; Karadar, M.; Kranner, I.; Neuner, G. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants. Plant Cell Environ. 2015, 38, 812–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchner, O.; Roach, T.; Gertzen, J.; Schenk, S.; Karadar, M.; Stöggl, W.; Miller, R.; Bertel, C.; Neuner, G.; Kranner, I. Drought affects the heat-hardening capacity of alpine plants as indicated by changes in xanthophyll cycle pigments, singlet oxygen scavenging, a-tocopherol and plant hormones. Environ. Exp. Bot. 2017, 133, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Magaña Ugarte, R.; Escudero, A.; Gavil, R.G. Metabolic and physiological responses of Mediterranean high-mountain and Alpine plants to combined abiotic stresses. Physiol. Plant. 2019, 165, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.L.; Bethencourt, J.; Cuevas-Agulló, E. Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Clim. Chang. 2012, 114, 343–355. [Google Scholar] [CrossRef]
- Martin-Esquivel, J.; Perez-Gonzalez, M. Cambio Climático en Canarias. “Impactos”; Publicaciones Turquesa: Gobierno de Canarias, Santa Cruz de Tenerife, Spain, 2019. [Google Scholar]
- Acebes, J.R.; León, M.C.; Rodríguez, M.L.; del Arco, M.; García, A.; Pérez de Paz, P.; Rodríguez, O.; Martín, V.; Widpret, W. Pteridophyta, Spermatophyta. In Lista de Especies Silvestres de Canarias. Hongos, Plantas y Animales Terrestres 2009; Arechavaleta, M., Rodríguez, S., Zurita, N., GarcíA, A., Eds.; Gobierno de Canarias: Santa Cruz de Tenerife, Spain, 2010; pp. 119–172. [Google Scholar]
- del Arco Aguilar, M.J.; Rodríguez Delgado, O. Vegetation of the Canary Islands; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9783319772547. [Google Scholar]
- Martín-Esquivel, J.; Marrero-Gómez, M.; Cubas, J.; González-Mancebo, J.; Olano, J.; del Arco, M. Climate warming and introduced herbivores disrupt alpine plant community of an oceanic island (Tenerife, Canary Islands). Plant Ecol. 2020, 221, 1117–1131. [Google Scholar] [CrossRef]
- Perera-Castro, A.V.; Brito, P.; González-Rodríguez, Á.M. Light response in alpine species: Different patterns of physiological plasticity. Flora 2017, 234, 165–172. [Google Scholar] [CrossRef]
- González-Rodríguez, A.; Brito, P.; Fernández-marín, B. Summit evergreen shrubs living at a semi-arid treeline: Photoprotection systems activation in an open vs an understory site. Physiol. Plant. 2020. [Google Scholar] [CrossRef]
- Olano, J.M.; Brito, P.; González-Rodríguez, Á.M.; Martín-Esquivel, J.L.; García-Hidalgo, M.; Rozas, V. Thirsty peaks: Drought events drive keystone shrub decline in an oceanic island mountain. Biol. Conserv. 2017, 215, 99–106. [Google Scholar] [CrossRef]
- Perera-Castro, A.; Brito, P.; González-Rodríguez, A. Changes in thermic limits and acclimation assessment for an alpine plant by chlorophyll fluorescence analysis: Fv/Fm vs. Rfd. Photosynthetica 2018, 56, 527–536. [Google Scholar] [CrossRef] [Green Version]
- González-Rodríguez, Á.M.; Brito, P.; Lorenzo, J.R.; Gruber, A.; Oberhuber, W.; Wieser, G. Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp. Bot. 2017, 127, 97–108. [Google Scholar] [CrossRef]
- Cubas, J.; Martín-Esquivel, J.L.; Nogales, M.; Irl, S.D.H.; Hernández-Hernández, R.; López-Darias, M.; Marrero-Gómez, M.; del Arco, M.J.; González-Mancebo, J.M. Contrasting effects of invasive rabbits on endemic plants driving vegetation change in a subtropical alpine insular environment. Biol. Invasions 2018, 20, 793–807. [Google Scholar] [CrossRef]
- Bramwell, D.; Bramwell, Z. Erysimum. In Wild Flowers of the Canary Islands; Editorial Rueda: Madrid, Spain, 2001; pp. 145–146. ISBN 84-7207-129-4. [Google Scholar]
- Taschler, D.; Neuner, G. Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ. 2004, 27, 737–746. [Google Scholar] [CrossRef]
- Almeida, A.S.; Bahamonde, C.R.; Cavieres, L.A. Drought increases the freezing resistance of high—Elevation plants of the Central Chilean Andes. Oecologia 2016, 181, 1011–1023. [Google Scholar] [CrossRef]
- 3Verhoeven, A.; García-Plazaola, J.I.; Fernández-Marín, B. Shared mechanisms of photoprotection in photosynthetic organisms tolerant to desiccation or to low temperature. Environ. Exp. Bot. 2018, 154, 66–79. [Google Scholar] [CrossRef]
- Fernández-Marín, B.; Neuner, G.; Kuprian, E.; Laza, J.M.; García-Plazaola, J.I.; Verhoeven, A. First evidence of freezing tolerance in a resurrection plant: Insights into molecular mobility and zeaxanthin synthesis in the dark. Physiol. Plant. 2018, 163, 472–489. [Google Scholar] [CrossRef]
- Fernández-Marin, B.; Nadal, M.; Gago, X.; Fernie, A.; Lopez-Pozo, M.; Artetxe, U.; Garcia-Plazaola, J.; Verhoeven, A. Born to revive: Molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. New Phytol. 2020, 226, 741–759. [Google Scholar] [CrossRef] [PubMed]
- Köhler, L.; Gieger, T.; Leuschner, C. Altitudinal change in soil and foliar nutrient concentrations and in microclimate across the tree line on the subtropical island mountain Mt. Teide (Canary Islands). Flora 2006, 201, 202–214. [Google Scholar] [CrossRef]
- Fernández-Marín, B.; Hernández, A.; Garcia-Plazaola, J.I.; Esteban, R.; Míguez, F.; Artetxe, U.; Gómez-Sagasti, M.T. Photoprotective strategies of mediterranean plants in relation to morphological traits and natural environmental pressure: A meta-analytical approach. Front. Plant Sci. 2017, 8, 1051. [Google Scholar] [CrossRef] [Green Version]
- Buchner, O.; Neuner, G. Variability of heat tolerance in alpine plant species measured at different altitudes. Arctic Antarct. Alp. Res. 2003, 35, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Perera-Castro, A.V.; Waterman, M.J.; Turnbull, J.D.; Ashcroft, M.B.; McKinley, E.; Watling, J.R.; Bramley-Alves, J.; Casanova-Katny, A.; Zuniga, G.; Flexas, J.; et al. It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Front. Plant Sci. 2020, 11, 1–17. [Google Scholar] [CrossRef]
- 4González-Rodríguez, Á.M.; Brito, P.; Lorenzo, J.R.; Jiménez, M.S. Photosynthetic performance in Pinus canariensis at semiarid treeline: Phenotype variability to cope with stressful environment. Forests 2019, 10, 845. [Google Scholar] [CrossRef] [Green Version]
- Larcher, W.; Wagner, J.; Lütz, C. The effect of heat on photosynthesis, dark respiration and cellular ultrastructure of the arctic-alpine psychrophyte Ranunculus glacialis. Photosynthetica 1997, 34, 219–232. [Google Scholar] [CrossRef]
- Gray, G.R.; Hope, B.J.; Qin, X.; Taylor, B.G.; Whitehead, C.L. The characterization of photoinhibition and recovery during cold acclimation in Arabidopsis thaliana using chlorophyll fluorescence imaging. Physiol. Plant. 2003, 119, 365–375. [Google Scholar] [CrossRef]
- Ehlert, B.; Hincha, D.K. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods 2008, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hacker, J.; Spindelböck, J.P.; Neuner, G. Mesophyll freezing and effects of freeze dehydration visualized by simultaneous measurement of IDTA and differential imaging chlorophyll fluorescence. Plant Cell Environ. 2008, 31, 1725–1733. [Google Scholar] [CrossRef]
- Silva-Cancino, C.; Esteban, R.; Artetxe, U.; García-Plazaola, J.I. Patterns of spatio-temporal distribution of winter chronic photoinhibition in leaves of three evergreen Mediterranean species with contrasting acclimation responses. Physiol. Plant. 2012, 144, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Neuner, G.; Pramsohler, M. Freezing and high temperature thresholds of photosystem 2 compared to ice nucleation, frost and heat damage in evergreen subalpine plants. Physiol. Plant. 2006, 126, 196–204. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Rinderle, U.; Schmuck, G. Application of chlorophyll fluorescence in ecophysiology. Radiat. Environ. Biophys. 1986, 25, 297–308. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Hacker, J.; Neuner, G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA). Tree Physiol. 2007, 27, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Gashi, B.; Babani, F.; Kongjika, E. Chlorophyll fluorescence imaging of photosynthetic activity and pigment contents of the resurrection plants Ramonda serbica and Ramonda nathaliae during dehydration and rehydration. Physiol. Mol. Biol. Plants 2013, 19, 333–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannister, P.; Maegli, Æ.T.; Dickinson, K.J.M.; Halloy, Æ.S.R.P.; Knight, A.; Lord, Æ.J.M.; Mark, Æ.A.F.; Spencer, K.L. Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage? Oecologia 2005, 144, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Bannister, P. Godley review: A touch of frost? cold hardiness of plants in the southern hemisphere. N. Z. J. Bot. 2007, 45, 1–33. [Google Scholar] [CrossRef]
LT | (°C) Fv/Fm | p-Value | R2 | (°C) Rfd | p-Value | R2 | |
---|---|---|---|---|---|---|---|
February | LT10 | −9.1 ± 1.3 | 0.000 | 0.72 | −5.9 ± 1.6 | 0.000 | 0.74 |
LT50 | −10.7 ± 1.1 | −8.7 ± 1.3 | |||||
April | LT10 | −5.5 ± 1.3 | 0.000 | 0.75 | −4.1 ± 1.3 | 0.000 | 0.81 |
LT50 | −7.8 ± 1.2 | −5.6 ± 0.9 | |||||
April (young leaves) | LT10 | −6.2 ± 3.5 | 0.003 | 0.75 | −8.6 ± 2.8 | 0.010 | 0.92 |
LT50 | −10.1 ± 3.6 | −10.3 ± 2.1 | |||||
June | LT10 | −8.3 ± 0.5 | 0.000 | 0.94 | −4.1 ± 1.8 | 0.000 | 0.67 |
LT50 | −9.3 ± 0.4 | −6.9 ± 1.5 | |||||
November | LT10 | −10.2 ± 1.9 | 0.000 | 0.61 | −8.5 ± 3.2 | 0.000 | 0.67 |
LT50 | −12.9 ± 1.5 | −11.1 ± 1.6 |
LT | (°C) Fv/Fm | p-Value | R2 | (°C) Rfd | p-Value | R2 | |
---|---|---|---|---|---|---|---|
February | LT10 | 38.1 ± 1.1 | 0.000 | 0.90 | 34.2 ± 1.2 | 0.000 | 0.91 |
LT50 | 40.3 ±0.7 | 38.2 ± 0.8 | |||||
April | LT10 | 38.3 ± 0.9 | 0.000 | 0.91 | 38.3 ± 0.7 | 0.000 | 0.93 |
LT50 | 40.6 ± 0.6 | 40.0 ± 0.5 | |||||
April (young leaves) | LT10 | 37.9 ± 1.7 | 0.000 | 0.88 | 38.2 ± 0.07 | 0.000 | 0.99 |
LT50 | 39.7 ± 1.1 | 39.0 ± 0.1 | |||||
June | LT10 | 39.0 ± 0.8 | 0.000 | 0.91 | 38.3 ± 0.8 | 0.000 | 0.66 |
LT50 | 41.1 ± 0.6 | 40.1 ± 0.5 | |||||
November | LT10 | 37.1 ± 0.8 | 0.000 | 0.94 | 38.1 ± 1.1 | 0.000 | 0.87 |
LT50 | 39.8 ± 0.6 | 39.6 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rodríguez, Á.M.; Pérez-Martín, E.M.; Brito, P.; Fernández-Marín, B. Unexpected Vulnerability to High Temperature in the Mediterranean Alpine Shrub Erysimum scoparium (Brouss. ex Willd.) Wettst. Plants 2021, 10, 379. https://doi.org/10.3390/plants10020379
González-Rodríguez ÁM, Pérez-Martín EM, Brito P, Fernández-Marín B. Unexpected Vulnerability to High Temperature in the Mediterranean Alpine Shrub Erysimum scoparium (Brouss. ex Willd.) Wettst. Plants. 2021; 10(2):379. https://doi.org/10.3390/plants10020379
Chicago/Turabian StyleGonzález-Rodríguez, Águeda María, Eva María Pérez-Martín, Patricia Brito, and Beatriz Fernández-Marín. 2021. "Unexpected Vulnerability to High Temperature in the Mediterranean Alpine Shrub Erysimum scoparium (Brouss. ex Willd.) Wettst" Plants 10, no. 2: 379. https://doi.org/10.3390/plants10020379