# Analysis of Spatial Characteristics of Digital Signage in Beijing with Multi-Source Data

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Area and Data Source

^{®}ArcGIS

^{TM}10.2. With the purpose of integrating the inferencing factor data, we assigned the value of each influencing factor to the digital signage point as attributes. For each digital signage, the attribute values were determined by the closest inferencing factor data.

## 3. Methodology

#### 3.1. Standard Deviational Ellipse Analysis

^{®}ArcGIS

^{TM}10.2.

#### 3.2. Kernel Density Analysis

^{®}ArcGIS

^{TM}10.2.

#### 3.3. Ripley’s K(r) Function

#### 3.4. K-Means Clustering

## 4. Results and Discussion

#### 4.1. Spatial Distribution Characteristics of Digital Signage

#### 4.2. Hierarchical Characteristics of Digital Signage

#### 4.3. Correlation Analysis of the Factors Influencing Digital Signage

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Hyun, W.; Huh, M.Y.; Kim, S.H.; Park, J.Y. Standardizations and considerations on P2P-based contents distribution for digital signage service. In Proceedings of the 17th IEEE International Conference on Advanced Communications Technology (ICACT), PyeonhChang, South Korea, 1–3 July 2015; pp. 509–512. [Google Scholar]
- Schaeffler, J. Digital Signage: Software, Networks, Advertising, and Displays a Primer for Understanding the Business; Focal Press: Waltham, MA, USA, 2008; pp. 40–55. [Google Scholar]
- Krumm, J. Ubiquitous advertising: The killer application for the 21st century. IEEE Pervasive Comput.
**2010**, 10, 66–73. [Google Scholar] [CrossRef] - Bauer, C.; Dohmen, P.; Strauss, C. Interactive digital signage—An innovative service and its future strategies. In Proceedings of the IEEE International Conference on Emerging Intelligent Data and Web Technologies, Tirana, Albania, 7–9 September 2011; pp. 137–142. [Google Scholar]
- Davies, N.; Langheinrich, M.; Rui, J. Open display networks: A communications medium for the 21st century. Computer
**2012**, 45, 58–64. [Google Scholar] [CrossRef] - Want, R.; Schilit, B.N. Interactive digital signage. Computer
**2012**, 45, 21–24. [Google Scholar] [CrossRef] - Lee, J.; Lee, J.; Jung, H.; Moon, S.; Yoon, K. Smart digital signage using smartphone. In Proceedings of the 15th IEEE International Conference on Advanced Communication Technology (ICACT), PyeongChang, South Korea, 27–30 January 2013; pp. 978–981. [Google Scholar]
- Grobelny, J.; Michalski, R. Various approaches to a human preference analysis in a digital signage display design. Hum. Factors Ergon. Manuf.
**2011**, 21, 529–542. [Google Scholar] [CrossRef] [Green Version] - Dennis, C.; Michon, R.; Newman, A.; Brakus, J.J.; Alamanos, E. New insights into the impact of digital signage as a retail atmospheric tool. J. Consum. Behav.
**2012**, 11, 454–466. [Google Scholar] [CrossRef] - Bonfanti, A. Towards an approach to signage management quality (SMQ). J. Serv. Mark.
**2013**, 27, 312–321. [Google Scholar] [CrossRef] - Dennis, C.; Brakus, J.J.; Gupta, S.; Alamanos, E. The effect of digital signage on shoppers’ behavior: The role of the evoked experience. J. Bus. Res.
**2014**, 67, 2250–2257. [Google Scholar] [CrossRef] - Ijaz, M.F.; Tao, W.; Rhee, J.; Kang, Y.S.; Alfian, G. Efficient digital signage-based online store layout: An experimental study. Sustainability
**2016**, 8, 511. [Google Scholar] [CrossRef] - Inoue, H.; Suzuki, K.; Sakata, K.; Maeda, K. Development of a digital signage system for automatic collection and distribution of its content from the existing digital contents and its field trials. In Proceedings of the IEEE/IPSJ International Symposium on Applications and the Internet, Munich, Bavaria, Germany, 18–21 July 2011; pp. 463–468. [Google Scholar]
- Chen, Y. Optimization Design and Implementation of Multimedia Information Publishing System; Fudan University: Shanghai, China, 2013. (In Chinese) [Google Scholar]
- Kim, J.S. A study of contact frequency and consumer preference for digital signage advertisement. In Green and Smart Technology with Sensor Applications; Springer: Berlin & Heidelberg, Germany, 2012. [Google Scholar]
- Xie, X.; Zhang, X.; Fu, J.; Jiang, D.; Yu, C.; Jin, M. Location recommendation of digital signage based on multi-source information fusion. Sustainability
**2018**, 10, 2357. [Google Scholar] [CrossRef] - Yu, W.; Ai, T.; Yang, M. Detecting “hot spots” of facility POIs based on kernel density estimation and spatial autocorrelation technique. Available online: https://www.researchgate.net/publication/301557481_Detecting_hot_spots_of_facility_POIs_based_on_kernel_density_estimation_and_spatial_autocorrelation_technique (accessed on 1 May 2019).
- Wang, S.; Li, J. Analysis and visualization of POI distribution density based on urban network space. Urban Geotech. Investig. Surv.
**2015**, 1, 21–25. [Google Scholar] - Tang, L.; Kan, Z.; Liu, H. A kernel density estimation method for linear features in network space. Acta Geodaetica et Cartographica Sinica
**2017**, 46, 107–113. [Google Scholar] - Besag, J. Contribution to the discussion of Dr. Ripley’s paper. J. R. Stat. Soc.
**1977**, 39, 193–195. [Google Scholar] - Cottrell, M.; Fort, J.C.; Pagès, G. Theoretical aspects of the SOM algorithm. Neurocomputing
**2007**, 21, 119–138. [Google Scholar] [CrossRef] - Har-Peled, S.; Kushal, A. Smaller coresets for k-median and k-means clustering. Discrete Comput. Geom.
**2005**, 37, 3–19. [Google Scholar] [CrossRef] - Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognition.
**2003**, 36, 451–461. [Google Scholar] [CrossRef] [Green Version] - Viswanath, P.; Babu, V.S. Rough-DBSCAN: A fast hybrid density based clustering method for large data sets. Pattern Recognit. Lett.
**2009**, 30, 1477–1488. [Google Scholar] [CrossRef] - Kumar, K.M.; Reddy, A.R.M. A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method. Pattern Recognit.
**2016**, 58, 39–48. [Google Scholar] [CrossRef] - Tramacere, A.; Vecchio, C. γ-ray DBSCAN: A clustering algorithm applied to Fermi-LAT γ-ray data. Astron. Astrophys.
**2012**, 549, 705–708. [Google Scholar] - Hartigan, J.A.; Wong, M.A. Algorithm as 136: A K-Means clustering algorithm. R. Stat. Soc.
**1979**, 28, 100–108. [Google Scholar] [CrossRef] - Łukasik, S.; Kowalski, P.A.; Charytanowicz, M. Clustering using flower pollination algorithm and Calinski-Harabasz index. In Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; pp. 2724–2728. [Google Scholar]
- Lisa, M.L.; Joanne, C.K.; Keselman, H.J. Consequences of assumption violations revisited: A quantitative review of alternatives to the One-Way analysis of variance F test. Am. Educ. Res. Assoc.
**1996**, 66, 579–619. [Google Scholar] - Xie, Z.; Yan, J. Kernel density estimation of traffic accidents in a network space. Comput. Environ. Urban Syst.
**2008**, 32, 396–406. [Google Scholar] [CrossRef] - Yan, X. Beijing business development outlook: Building an international business center. J. Beijing Technol. Bus. Univ.
**2012**, 27, 5–8. [Google Scholar] - Four key factors in billboard site selection. Available online: http://butlertill.com/blog/media/offline/four-key-factors-in-billboard-site-selection/ (accessed on 26 January 2015).
- Aboulola, O.I. GIS spatial analysis: A new approach to site selection and decision making for small retail facilities. Ph.D. Thesis, Claremont Graduate University, Claremont, CA, USA.
- Jayasinghe, A.; Sano, K.; Nishiuchi, H. Explaining traffic flow patterns using centrality measures. Int. J. Traffic Transp. Eng.
**2015**, 5, 134–149. [Google Scholar] [CrossRef] - Zhong, Y.; Yuan, N.J.; Zhong, W.; Zhang, F.Z.; Xie, X. You are where you go: Inferring demographic attributes from location check-ins. In Proceedings of the 8th ACM international conference on web search and data mining, Shanghai, China, 2–6 February 2015; pp. 295–304. [Google Scholar]
- Yao, R.; Li, W. The life-cycle effects of house price change. J. Money Credit Bank
**2007**, 39, 1375–1409. [Google Scholar] - Eryando, T.; Susanna, D.; Pratiwi, D. Standard deviational ellipse (SDE) models for malaria surveillance, case study: Sukabumi District-Indonesia, In 2012. Malar. J.
**2012**, 11, 1–2. [Google Scholar] [CrossRef] - Yuill, R.S. The standard deviational ellipse; an updated tool for spatial description. Geografiska Annaler
**1971**, 53, 28–39. [Google Scholar] [CrossRef] - Portnov, B.A.; Zusman, M. Big Data Analysis. In Encyclopedia of Business Analytics and Optimization; IGI Global Publishers: Hershey, PA, USA, 2014; p. 13. [Google Scholar]
- Cai, X.; Wu, Z.; Cheng, J. Analysis of road network pattern and landscape fragmentation based on kernel density estimation. Chin. J. Eco.
**2012**, 31, 158–164. [Google Scholar] - Seaman, D.E.; Powell, R.A. An Evaluation of the accuracy of kernel density estimators for home range analysis. Ecology
**1996**, 77, 2075–2085. [Google Scholar] [CrossRef] - Haase, P. Spatial pattern analysis in ecology based on Ripley’s K-function: Introduction and methods of edge correction. J. Veg. Sci.
**2010**, 6, 575–582. [Google Scholar] [CrossRef] - Mrkvicka, T.; Goreaud, F.; Chadoeuf, J. Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction. Kybernetika
**2011**, 47, 696–714. [Google Scholar] - Mislove, A.; Marcon, M.; Gummadi, K.P.; Druschel, P.; Bhattacharjee, B. Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, San Diego, CA, USA, 24–26 October 2007; pp. 29–42. [Google Scholar]
- Meng, B.; Zhang, J.; Wang, J. Application of spatial analysis to the research of real estate: Taking Beijing as a case. Geogr. Res.
**2005**, 24, 956–964. [Google Scholar] - Proudfoot, M.J. City Retail Structure. Econ. Geogr.
**2016**, 13, 425–428. [Google Scholar] [CrossRef] - Zhang, X.; Jin, M.; Fu, J.; Hao, M.; Yu, C.; Xie, X. On the risk assessment of terrorist attacks coupled with multi-source factors. ISPRS Int. J. Geo-Inf.
**2018**, 7, 354. [Google Scholar] [CrossRef] - Wang, J.; Deng, Y.; Song, C.; Tian, D. Measuring time accessibility and its spatial characteristics in the urban areas of Beijing. J. Geogr. Sci.
**2016**, 26, 1754–1768. [Google Scholar] [CrossRef] [Green Version] - Zhu, H.; Liu, J.; Chen, C.; Lin, J.; Tao, H. A spatial-temporal analysis of urban recreational business districts: A case study in Beijing, China. J. Geogr. Sci.
**2015**, 25, 1521–1536. [Google Scholar] [CrossRef] [Green Version]

**Figure 7.**Results of K-means clustering classification ((

**a**) K-means clustering level division; (

**b**) The distribution of traffic-oriented digital signage; (

**c**) The distribution of population-oriented digital signage; (

**d**) The distribution of market-oriented digital signage).

Levene Statistics | df1 | df2 | p | |
---|---|---|---|---|

Social Check-ins (Sina Weibo) | 117.734 | 2 | 3820 | 0.000 |

Housing Price | 31.741 | 2 | 3820 | 0.000 |

Traffic Network Centrality | 291.468 | 2 | 3820 | 0.000 |

Commercial Workers | 470.684 | 2 | 3820 | 0.000 |

Dependent Variable | (I) Category | (J) Category | p |
---|---|---|---|

Social Check-ins (Sina Weibo) | 0 | 1 | 0.000 |

2 | 0.000 | ||

1 | 0 | 0.000 | |

2 | 0.000 | ||

2 | 0 | 0.000 | |

1 | 0.000 | ||

Housing Price | 0 | 1 | 0.000 |

2 | 0.000 | ||

1 | 0 | 0.000 | |

2 | 0.000 | ||

2 | 0 | 0.000 | |

1 | 0.000 | ||

Traffic Network Centrality | 0 | 1 | 0.927 |

2 | 0.000 | ||

1 | 0 | 0.927 | |

2 | 0.000 | ||

2 | 0 | 0.000 | |

1 | 0.000 | ||

Commercial Workers | 0 | 1 | 0.000 |

2 | 0.000 | ||

1 | 0 | 0.000 | |

2 | 0.000 | ||

2 | 0 | 0.000 | |

1 | 0.000 |

**Table 3.**The Spearman correlation analysis—Sig. (two-tailed) and correlation coefficient between the operation cost of digital signage and four attributes.

Social Network Check-ins (Sina Weibo) | Housing Price | Traffic Network Centrality | Commercial Workers | |
---|---|---|---|---|

Sig. (two-sided test) | 0.000 ** | 0.055 | 0.000 ** | 0.000 ** |

Correlation | 0.170 | 0.031 | 0.064 | 0.115 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, X.; Ma, G.; Jiang, L.; Zhang, X.; Liu, Y.; Wang, Y.; Zhao, C.
Analysis of Spatial Characteristics of Digital Signage in Beijing with Multi-Source Data. *ISPRS Int. J. Geo-Inf.* **2019**, *8*, 207.
https://doi.org/10.3390/ijgi8050207

**AMA Style**

Zhang X, Ma G, Jiang L, Zhang X, Liu Y, Wang Y, Zhao C.
Analysis of Spatial Characteristics of Digital Signage in Beijing with Multi-Source Data. *ISPRS International Journal of Geo-Information*. 2019; 8(5):207.
https://doi.org/10.3390/ijgi8050207

**Chicago/Turabian Style**

Zhang, Xun, Guangchi Ma, Li Jiang, Xiaohu Zhang, Ying Liu, Yuxue Wang, and Conghui Zhao.
2019. "Analysis of Spatial Characteristics of Digital Signage in Beijing with Multi-Source Data" *ISPRS International Journal of Geo-Information* 8, no. 5: 207.
https://doi.org/10.3390/ijgi8050207