Next Article in Journal
An Integrated Software Framework to Support Semantic Modeling and Reasoning of Spatiotemporal Change of Geographical Objects: A Use Case of Land Use and Land Cover Change Study
Previous Article in Journal
Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data
Open AccessArticle

Real-Time Spatial Queries for Moving Objects Using Storm Topology

School of Earth Sciences, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
Zhejiang Provincial Key Laboratory of Geographic Information Science, 148 Tianmushan Road, Hangzhou 310028, China
Academy of Forest Inventory and Planning, State Forestry Administration, Beijing 100714, China
Department of Public Order, Zhejiang Police College, 555 Binwen Road, Hangzhou 310053, China
Department of Geography, Kent State University, Kent, OH 44240, USA
Authors to whom correspondence should be addressed.
Academic Editor: Wolfgang Kainz
ISPRS Int. J. Geo-Inf. 2016, 5(10), 178;
Received: 27 July 2016 / Revised: 23 September 2016 / Accepted: 23 September 2016 / Published: 29 September 2016
PDF [5773 KB, uploaded 29 September 2016]


With the rapid development of mobile data acquisition technology, the volume of available spatial data is growing at an increasingly fast pace. The real-time processing of big spatial data has become a research frontier in the field of Geographic Information Systems (GIS). To cope with these highly dynamic data, we aim to reduce the time complexity of data updating by modifying the traditional spatial index. However, existing algorithms and data structures are based on single work nodes, which are incapable of handling the required high numbers and update rates of moving objects. In this paper, we present a distributed spatial index based on Apache Storm, an open-source distributed real-time computation system. Using this approach, we compare the range and K-nearest neighbor (KNN) query efficiency of four spatial indexes on a single dataset and introduce a method of performing spatial joins between two moving datasets. In particular, we build a secondary distributed index for spatial join queries based on the grid-partition index. Finally, a series of experiments are presented to explore the factors that affect the performance of the distributed index and to demonstrate the feasibility of the proposed distributed index based on Storm. As a real-world application, this approach has been integrated into an information system that provides real-time traffic decision support. View Full-Text
Keywords: real time; spatial query; moving objects; Apache Storm real time; spatial query; moving objects; Apache Storm

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Zhang, F.; Zheng, Y.; Xu, D.; Du, Z.; Wang, Y.; Liu, R.; Ye, X. Real-Time Spatial Queries for Moving Objects Using Storm Topology. ISPRS Int. J. Geo-Inf. 2016, 5, 178.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
ISPRS Int. J. Geo-Inf. EISSN 2220-9964 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top