Abstract
Population activity drives urban development, and high-spatiotemporal-resolution population distribution provides critical insights for refined urban management and social services. However, mixed population activity patterns and spatial heterogeneity make simultaneous high-temporal- and -spatial-resolution estimation difficult. Therefore, we propose the High-Spatiotemporal-Resolution Population Distribution Estimation Based on the Strong and Weak Perception of Population Activity Patterns (SWPP-HSTPE) method to estimate hourly population distribution at the building scale. During the weak-perception period, we construct a Modified Dual-Environment Feature Fusion model using building features within small-scale grids to estimate stable nighttime populations. During the strong-perception period, we incorporate activity characteristics of weakly perceived activity populations (minors and older people). Then, the Self-Organizing Map algorithm and spatial environment function purity are used to decompose mixed patterns of strongly perceived activity populations (young and middle-aged) and to extract fundamental patterns, combined with building types, for population calculation. Results demonstrated that the SWPP-HSTPE method achieved high-spatiotemporal-resolution population distribution estimation. During the weak-perception period, the estimated population correlated strongly with actual household counts (r = 0.72) and outperformed WorldPop and GHS-POP by 0.157 and 0.133, respectively. During the strong-perception period, the SWPP-HSTPE model achieves a correlation with hourly population estimates that is approximately 4% higher than that of the baseline model, while reducing estimation errors by nearly 2%. By jointly accounting for temporal dynamics and population activity patterns, this study provides valuable data support and methodological insights for fine-grained urban management.