Reference Evapotranspiration (ETo) Methods Implemented as ArcMap Models with Remote-Sensed and Ground-Based Inputs, Examined along with MODIS ET, for Peloponnese, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. FAO 56 Penman–Monteith
2.1.2. Hansen Equation
2.1.3. Hargreaves–Samani Equation
2.2. Data and Models of the Three Methods
2.3. Statistical Models
2.4. MODIS ET Products
3. Study Area
4. Statistical Measures
5. Results
5.1. Descriptive Statistics (Mean, SD) of Areal Daily ETo and MODIS ET
5.2. Daily Mean ETo Estimates for Decembers and Augusts
5.2.1. Spatial Distributions of Daily Mean ETo for Decembers and Augusts
5.2.2. Statistical Measures between Estimates by Empirical Methods
5.3. Daily Mean MODIS ET Estimates for Decembers and Augusts
5.3.1. Spatial Distributions of Daily Mean MODIS ET for Decembers and Augusts
5.3.2. Statistical Measures for Investigating the Difference between Empirical ETo and MODIS ET Estimates for Decembers and Augusts
6. Discussion
6.1. Parameters Differentiating the Distributions of Reference Evapotranspiration (ETo) and MODIS ET
6.2. Differences and Similarities between Estimates of Reference Evapotranspiration (ETo) and MODIS ET
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
ID | Station | X | Y | Elevation (m) | Municipality | ID | Station | X | Y | Elevation (m) | Municipality |
---|---|---|---|---|---|---|---|---|---|---|---|
Meteorological Stations for the 3 Empirical Methods (ETo) | Meteorological Stations for the 3 Empirical Methods (ETo) | ||||||||||
1 | Kalavrita | 33,4349.9 | 4,210,128 | 781 | Achaia | 32 | Oleni | 282,783.4 | 4,177,872 | 61 | Ilia |
2 | Kato Vlassia | 317,683.4 | 4,208,558 | 773 | Achaia | 33 | Pineia | 285,425.3 | 4,191,240 | 184 | Ilia |
3 | Lappa | 273,550 | 4,218,928 | 15 | Achaia | 34 | Pirgos | 273,886.9 | 4,171,891 | 22 | Ilia |
4 | Olenia | 288,845.1 | 4,221,654 | 34 | Achaia | 35 | Vartholomio | 253,773.8 | 4,193,127 | 15 | Ilia |
5 | Panachaiko | 313,491.4 | 4,235,800 | 1588 | Achaia | 36 | Zacharo | 290,302.6 | 4,150,806 | 5 | Ilia |
6 | Panagopoula | 318,709.5 | 4,243,842 | 15 | Achaia | 37 | Amoni Sofikou | 424,227.5 | 4,186,898 | 55 | Korinthia |
7 | Panepistimio | 305,972.3 | 4,239,289 | 66 | Achaia | 38 | Derveni | 362,057.1 | 4,221,737 | 5 | Korinthia |
8 | Patra | 301,697.8 | 4,236,694 | 6 | Achaia | 39 | Isthmos | 408,645.4 | 4,200,499 | 6 | Korinthia |
9 | Rio | 305,898.1 | 4,242,177 | 2 | Achaia | 40 | Kiato | 389,163.5 | 4,207,722 | 15 | Korinthia |
10 | Romanos | 313,476.1 | 4,235,744 | 228 | Achaia | 41 | Krioneri | 378,491.9 | 4,203,310 | 887 | Korinthia |
11 | Sageika | 280,638.4 | 4,219,575 | 26 | Achaia | 42 | Loutraki | 410,248.7 | 4,202,636 | 30 | Korinthia |
12 | Argos | 386,329.1 | 4,165,059 | 38 | Argolida | 43 | Nemea | 381,197.9 | 4,188,976 | 290 | Korinthia |
13 | Didima | 426,936.9 | 4,146,702 | 175 | Argolida | 44 | Perigiali | 397,303.1 | 4,199,344 | 38 | Korinthia |
14 | Kranidi | 424,615.7 | 4,137,411 | 110 | Argolida | 45 | Trikala Korinthias | 365,493.7 | 4,206,835 | 1077 | Korinthia |
15 | Lagadia | 326,139.9 | 4,172,057 | 970 | Arkadia | 46 | Agioi Theodoroi | 423,533.6 | 4,198,395 | 37 | Korinthia |
16 | Levidi | 349,386.5 | 4,171,330 | 853 | Arkadia | 47 | Apidia | 392,819.7 | 4,082,655 | 230 | Lakonia |
17 | Lykochia | 337,772.6 | 4,151,113 | 870 | Arkadia | 48 | Asteri | 386,527.1 | 4,076,757 | 8 | Lakonia |
18 | Magouliana | 334,497.7 | 4,171,275 | 1256 | Arkadia | 49 | Geraki | 384,706.6 | 4,094,508 | 330 | Lakonia |
19 | Megalopoli | 335,363 | 4,140,782 | 432 | Arkadia | 50 | Krokees | 371,576.2 | 4,082,640 | 241 | Lakonia |
20 | Stemnitsa | 330,377.8 | 4,157,967 | 1094 | Arkadia | 51 | Molaoi | 397,984.6 | 4,072,957 | 128 | Lakonia |
21 | Tripoli | 359,989.3 | 4,152,250 | 650 | Arkadia | 52 | Monemvasia | 413,811.4 | 4,059,051 | 17 | Lakonia |
22 | Vytina | 339,989.8 | 4,170,409 | 1013 | Arkadia | 53 | Sparti | 360,929.9 | 4,101,670 | 204 | Lakonia |
23 | Spetses | 424,919.5 | 4,124,662 | 3 | Attiki | 54 | Alagonia | 343,840.9 | 4,107,863 | 765 | Messinia |
24 | Taktikoupoli Troizinias | 443,373.2 | 4,152,374 | 15 | Attiki | 55 | Arfara | 326,299.4 | 4,113,666 | 96 | Messinia |
25 | Ydra | 452,645.8 | 4,133,727 | 2 | Attiki | 56 | Filiatra | 285,439.9 | 4,115,175 | 65 | Messinia |
26 | Amaliada | 264,604.9 | 4,186,923 | 26 | Ilia | 57 | Kalamata | 331,127 | 4,098,974 | 5 | Messinia |
27 | Andritsaina | 314,220.3 | 4,152,125 | 731 | Ilia | 58 | Kalamata Dytika | 329,347.3 | 4,100,001 | 10 | Messinia |
28 | Archaia Olympia | 287,981.3 | 4,163,856 | 45 | Ilia | 59 | Kardamili | 347,857.7 | 4,074,651 | 13 | Messinia |
29 | Foloi | 297,082.7 | 4,174,732 | 600 | Ilia | 60 | Kopanaki | 306,288.6 | 4,128,741 | 184 | Messinia |
30 | Katakolo | 263,537.2 | 4,169,327 | 2 | Ilia | 61 | Kyparissia | 291,691 | 4,123,584 | 36 | Messinia |
31 | Lampeia | 306,840.3 | 4,192,041 | 840 | Ilia | 62 | Pylos | 294,556.8 | 4,087,590 | 5 | Messinia |
References
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Yu, Z.; Yang, C.; Ji, X.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Liu, Z.; Ballantyne, A.P.; Cooper, L.A. Biophysical feedback of global forest fires on surface temperature. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulos, P.; Dalezios, N.R.; Loukas, A.; Mylopoulos, N.; Spiliotopoulos, M.; Faraslis, I.N.; Alpanakis, N.; Sakellariou, S. Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment. Hydrology 2021, 8, 47. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Implementing Crop Evapotranspiration in RDI for Farm-Level Drought Evaluation and Adaptation under Climate Change Conditions. Water Resour Manag. 2020, 34, 4329–4343. [Google Scholar] [CrossRef]
- Vangelis, H.; Tigkas, D.; Tsakiris, G. The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J. Arid Environ. 2013, 88, 130–140. [Google Scholar] [CrossRef]
- Mosavi, A.; Edalatifar, M. A Hybrid Neuro-Fuzzy Algorithm for Prediction of Reference Evapotranspiration. In Recent Advances in Technology Research and Education. INTER-ACADEMIA 2018. Lecture Notes in Networks and Systems; Laukaitis, G., Ed.; Springer: Cham, Switzerland, 2019; Volume 53. [Google Scholar] [CrossRef]
- Sattari, M.T.; Apaydin, H.; Band, S.S.; Mosavi, A.; Prasad, R. Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrol. Earth Syst. Sci. 2021, 25, 603–618. [Google Scholar] [CrossRef]
- Shamshirband, S.; Hashemi, S.; Salimi, H.; Samadianfard, S.; Asadi, E.; Shadkani, S.; Kargar, K.; Mosavi, A.; Nabipour, N.; Chau, K.W. Predicting Standardized Streamflow index for hydrological drought using machine learning models. Eng. Appl. Comput. Fluid Mech. 2020, 14, 339–350. [Google Scholar] [CrossRef]
- Andreu, A.; Kustas, W.P.; Polo, M.J.; Carrara, A.; González-Dugo, M.P. Modeling Surface Energy Fluxes over a Dehesa (Oak Savanna) Ecosystem Using a Thermal Based Two Source Energy Balance Model (TSEB) II—Integration of Remote Sensing Medium and Low Spatial Resolution Satellite Images. Remote Sens. 2018, 10, 558. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.M.; da Silva, R.M.; Santos, C.A.G. Automated surface energy balance algorithm for land (ASEBAL) based on automating endmember pixel selection for evapotranspiration calculation in MODIS orbital images. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 1–11. [Google Scholar] [CrossRef]
- Mutiibwa, D.; Strachan, S.; Albright, T. Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4762–4774. [Google Scholar] [CrossRef]
- Jin, M.; Dickinson, R.E. Land Surface Skin Temperature Climatology: Benefitting from the Strengths of Satellite Observations. Environ. Res. Lett. 2010, 5, 044004. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Raoufi, R.; Beighley, E. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature. Remote Sens. 2017, 9, 1138. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Moore, N.J.; Messina, J.P.; DeVisser, M.H.; Wu, J. Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 128–140. [Google Scholar] [CrossRef]
- Kitsara, G.; Papaioannou, G.; Retalis, A.; Paronis, D.; Kerkides, P. Estimation of air temperature and reference evapotranspiration using MODIS land surface temperature over Greece evapotranspiration using MODIS land surface temperature. Int. J. Remote Sens. 2018, 39, 924–948. [Google Scholar] [CrossRef]
- Trepekli, A.; Loupa, G.; Rapsomanikis, S. Agricultural and Forest Meteorology Seasonal evapotranspiration, energy fluxes and turbulence variance characteristics of a Mediterranean coastal grassland. Agric. For. Meteorol. 2016, 226–227, 13–27. [Google Scholar] [CrossRef]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.; Lin, J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Zhu, W.; Lu, A.; Jia, S. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop evapotranspiration–Guidelines for computing crop water requirements. In Irrigation and Drainage, Paper No. 56; FAO: Rome, Italy, 1998; p. 300. Available online: http://www.fao.org/3/x0490e/x0490e07.htm#estimating%20missing%20climatic%20data (accessed on 21 April 2021).
- Dalezios, N.R.; Loukas, A.; Bampzelis, D. Spatial variability of reference evapotranspiration in Greece. Phys. Chem. Earth 2002, 27, 1031–1038. [Google Scholar] [CrossRef]
- Xu, Y.; Knudby, A.; Ho, H.C. Estimating daily maximum air temperature from MODIS in British Columbia, Canada. Int. J. Remote Sens. 2014, 35, 8108–8121. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Saz-Sánchez, M.A.; Cuadrat, J.M. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Clim. Res. 2003, 24, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Chatzithomas, C.D.; Alexandris, S.G. Solar radiation and relative humidity based, empirical method, to estimate hourly reference evapotranspiration. Agric. Water Manag. 2015, 152, 188–197. [Google Scholar] [CrossRef]
- Allen, R.G.; Walter, I.A.; Elliot, R.; Howell, T.; Itenfisu, D.; Jensen, M. The ASCE standardized reference evapotranspiration equation. Final report. In National Irrigation Symp; ASCE-EWRI: Phoenix, AZ, USA, 2005. [Google Scholar]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO 56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Remote sensing methods to estimate evapotranspiration incorporating MODIS derived data and applications over Greece: A review. In Proceedings of the SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), Paphos, Cyprus, 26 August 2020; p. 1152405. [Google Scholar] [CrossRef]
- Proias, G.; Gravalos, I.; Papageorgiou, E.; Poczęta, K.; Sakellariou-Makrantonaki, M. Forecasting Reference Evapotranspiration Using Time Lagged Recurrent Neural Network. Wseas Trans. Environ. Dev. 2020, 16, 699–707. [Google Scholar] [CrossRef]
- Loukas, A.; Vasiliades, L.; Domenikiotis, C.; Dalezios, N.R. Basin-wide actual evapotranspiration estimation using 3 NOAA/AVHRR satellite data. Phys. Chem. EarthParts A/B/C 2004, 30, 69–79. [Google Scholar] [CrossRef]
- Loukas, A.; Vasiliades, L.; Domenikiotis, C.; Dalezios, N.R. Water balance of forested mountainous watersheds using satellite-derived actual evapotranspiration. In Proceedings of the SPIE 5232, Remote Sensing for Agriculture, Ecosystems, and Hydrology V, Barcelona, Spain, 24 February 2004. [Google Scholar] [CrossRef]
- Gourgoulios, V.; Nalbantis, I. Ungauged drainage basins: Investigation on the basin of Peneios River, Thessaly, Greece. Eur. Water 2017, 57, 163–169. [Google Scholar]
- Toulios, L.; Spiliotopoulos, M.; Papadavid, G.; Loukas, A. Observation Methods and Model Approaches for Estimating Regional Crop Evapotranspiration and Yield in Agro-Landscapes: A Literature Review. In Landscape Modelling and Decision Support. Innovations in Landscape Research; Mirschel, W., Terleev, V., Wenkel, K.O., Eds.; Springer: Cham, Switzerland, 2013; pp. 79–100. ISBN 978-3-030-37420-4. [Google Scholar] [CrossRef]
- Malamos, N.; Tsirogiannis, I.L.; Tegos, A.; Efstratiadis, A.; Koutsoyiannis, D. Spatial interpolation of potential evapotranspiration for precision irrigation purposes. Eur. Water 2017, 59, 303–309. [Google Scholar]
- Nastos, P.; Kapsomenakis, J.; Kotsopoulos, S.; Poulos, S. Present and future projected reference evapotranspiration over Thessaly plain, Greece, based on regional climate models’ simulations. Eur. Water 2015, 51, 63–72. [Google Scholar]
- Sakellariou-Makrantonaki, M.; Vagenas, I.N. Mapping crop evapotranspiration and total crop water requirements estimation in central Greece. Eur. Water 2006, 13–14, 3–13. [Google Scholar]
- Gudulas, K.; Voudouris, K.; Soulios, G.; Dimopoulos, G. Comparison of different methods to estimate actual evapotranspiration and hydrologic balance. Desalination Water Treat. 2013, 51, 2945–2954. [Google Scholar] [CrossRef]
- Voudouris, K.S.; Georgiou, P.E.; Mavromatis, T.; Gianneli, C. Comparison of actual evapotranspiration estimation methods: Application to Korisos basin, NW Greece. In Evapotranspiration: Processes, Sources and Environmental Implications, 1st ed.; Er-Raki, S., Ed.; Nova Sciences Publishers: New York, NY, USA, 2013; pp. 105–118. ISBN 978-1-62417-138-3. [Google Scholar]
- Aschonitis, V.; Miliaresis, G.; Demertzi, K.; Papamichail, D. Terrain Segmentation of Greece Using the Spatial and Seasonal Variation of Reference Crop Evapotranspiration. Adv. Meteorol. 2016, 2016, 3092671. [Google Scholar] [CrossRef] [Green Version]
- Demertzi, K.; Pisinaras, V.; Lekakis, E.; Tziritis, E.; Babakos, K.; Aschonitis, V. Assessing Annual Actual Evapotranspiration based on Climate, Topography and Soil in Natural and Agricultural Ecosystems. Climate 2021, 9, 20. [Google Scholar] [CrossRef]
- Spiliotopoulos, M.; Adaktylou, N.; Loukas, A.; Michalopoulou, H.; Mylopoulos, N.; Toulios, L. A spatial downscaling procedure of MODIS derived actual evapotranspiration using Landsat images at central Greece. In Proceedings of the SPIE 8795, First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), Paphos, Cyprus, 5 August 2013; p. 879508. [Google Scholar] [CrossRef]
- Falalakis, G.; Gemitzi, A. A simple method for water balance estimation based on the empirical method and remotely sensed evapotranspiration estimates. J. Hydroinform. 2020, 22, 440–451. [Google Scholar] [CrossRef]
- Tsouni, A.; Kontoes, C.; Koutsoyiannis, D.; Elias, P. Estimation of Actual Evapotranspiration by Remote Sensing. Sensors 2008, 8, 3586–3600. [Google Scholar] [CrossRef] [PubMed]
- Vasiliades, L.; Spiliotopoulos, M.; Tzabiras, J.; Loukas, A.; Mylopoulos, N. Estimation of crop water requirements using remote sensing for operational water resources management. In Proceedings of the SPIE 9535, Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 19 June 2015; p. 95351. [Google Scholar] [CrossRef]
- Paparrizos, S.; Maris, F.; Matzarakis, A. Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions. Appl. Clim. 2017, 128, 745–759. [Google Scholar] [CrossRef]
- Mamassis, N.; Panagoulia, D.; Novkovic, A. Sensitivity analysis of Penman evaporation method. Glob. Nest J. 2014, 16, 628–639. [Google Scholar]
- Efthimiou, N.; Alexandris, S.; Karavitis, C.; Mamassis, N. Comparative analysis of reference evapotranspiration estimation between various methods and the FAO56 Penman—Monteith procedure. Eur. J. Water Qual. 2013, 42, 19–34. [Google Scholar]
- Diamantopoulou, M.J.; Georgiou, P.E.; Papamichail, D.M. Performance evaluation of artificial neural networks in estimating reference evapotranspiration with minimal meteorological data. Glob. Nest J. 2011, 13, 18–27. [Google Scholar]
- World Meteorological Organization (WMO). WMO Confirms 2019 as Second Hottest Year on Record. 15 January 2020. Available online: https://public.wmo.int/en/media/press-release/wmo-confirms-2019-second-hottest-year-record (accessed on 1 March 2021).
- Mimikou, M.; Baltas, E. Assessment of Climate Change Impacts in Greece: A General Overview. Am. J. Clim. Chang. 2013, 2, 46–56. [Google Scholar] [CrossRef]
- Kotsopoulos, S.I.; Nastos, P.; Lazogiannis, K.; Poulos, S.; Ghionis, G.; Alexiou, I.; Panagopoulos, A.; Farsirotou, E.; Alamanis, N. Evaporation, Evapotranspiration and crop water requirements under present and future climate conditions at Pinios delta plain. In Proceedings of the 14th International Conference on Environmental Science and Technology (CEST), Rhodes, Greece, 3–5 September 2015. [Google Scholar]
- Varotsos, K.V.; Karali, A.; Lemesios, G.; Kitsara, G.; Moriondo, M.; Dibari, C.; Leolini, L.; Giannakopoulos, C. Near future climate change projections with implications for the agricultural sector of three major Mediterranean islands. Reg. Environ. Chang. 2021, 21, 1–15. [Google Scholar] [CrossRef]
- Hansen, S. Estimation of potential and actual evapotranspiration. Nord. Hydrol. 1984, 15, 205–212. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Alexandris, S.G.; Stricevic, R.J.; Petkovic, S. Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman-Monteith formula. Eur. Water 2008, 21/22, 17–28. [Google Scholar]
- Xystrakis, F.; Matzarakis, A. Evaluation of 13 Empirical Reference Potential Evapotranspiration Equations on the Island of Crete in Southern Greece. J. Irrig. Drain. Eng. 2011, 137, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Samani, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. J. Irrig. Drain. Eng. 2000, 126, 265–267. [Google Scholar] [CrossRef]
- Kang, D.; Mathur, R.; Rao, S.T.; Yu, S. Bias adjustment techniques for improving ozone air quality forecasts. J. Geophys. Res. 2008, 113, D23308. [Google Scholar] [CrossRef] [Green Version]
- Tellen, V.A. A comparative analysis of reference evapotranspiration from the surface of rainfed grass in Yaounde, calculated by six empirical methods against the penman monteith formula. Earth Perspect. 2017, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Katsanou, K.; Stratikopoulos, K.; Lambrakis, N. Investigation of the chemical processes controlling the groundwater quality of Ilia Prefecture. Environ. Earth Sci. 2019, 78, 401. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Katsanou, K.; Charalabopoulos, S.; Lambrakis, N. Interpretation of the Factors Defining Groundwater Quality of the Site Subjected to the Wildfire of 2007 in Ilia Prefecture, South-Western Greece. Geosciences 2018, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Koukouvelas, I.; Mpresiakas, A.; Sokos, E.; Doutsos, T. The tectonic setting and earthquake ground hazards of the 1993 Pyrgos earthquake, Peloponnese, Greece. J. Geol. Soc. Lond. 1996, 152, 39–49. [Google Scholar] [CrossRef]
- Argiriou, A.A. The climate of Greece; Hellenic National Meteorological Service: Athens, Greece; pp. 1–6. Available online: http://climatlas.hnms.gr/sdi/?lang=EN (accessed on 28 March 2021).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service. CLC 2018. © European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA). Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 11 January 2021).
- Mataragkas, D.; Triantafillou, E. Geological Map of Greece in Scale 1:1000000; Institute of Geological and Mineralogical Exploration (IGME): Athens, Greece, 1999. [Google Scholar]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness–of–fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Fox, D.G. Judging air quality model performance. A summary of the AMS workshop on Dispersion Model Performance. Bull. Am. Meteorol. 1981, 62, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Raziei, T.; Pereira, L.S. Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agric. Water Manag. 2013, 121, 1–18. [Google Scholar] [CrossRef]
- Bhattarai, N.; Mallick, K.; Brunsell, N.A.; Sun, G.; Jain, M. Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US. Hydrol. Earth Syst. Sci. 2018, 22, 2311–2341. [Google Scholar] [CrossRef] [Green Version]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- Westerhoff, R.S. Using Uncertainty of Penman and Penman Monteith Methods in Combined Satellite and Ground-Based Evapotranspiration Estimates. Remote Sens. Environ. 2015, 169, 102–112. [Google Scholar] [CrossRef] [Green Version]
Symbol | Parameter | Formula |
---|---|---|
δ | solar decimation (rad) | (6) |
sunset hour angle (rad) | (7) | |
inverse relative distance Earth–Sun | (8) | |
extraterrestrial radiation (MJ m2 day−1) | ||
solar shortwave radiation (MJ m−2 day−1) | ||
net solar radiation (the not reflected fraction of Rs (MJ m−2 day−1) | (11) | |
clear-sky solar radiation (MJ m−2 day−1) | ||
net outgoing longwave radiation (MJ m−2 day−1) | ||
Rs/Rso | relative shortwave radiation | (limited to ≤ 1.0) |
net radiation (MJ m−2 day−1) | (14) | |
saturation vapor pressure at the air temperature T (kPa) | ||
actual vapor pressure at the dewpoint T (kPa) ( when is missing) | (16) | |
(Gamma) | psychrometric constant (kPa°C−1) | (17) |
P | atmospheric pressure (kPa) | (18) |
u2(uh) | wind speed at 2 (h) m height (ms−1) | (19) |
(Delta) | slope of the saturation vapor pressure curve (kPa°C−1) | (20) |
Statistical Measures | RMSD | MB | MBE | NMB | NMBE |
---|---|---|---|---|---|
formula |
December ETo Daily Mean (SD) | August ETo Daily Mean (SD) | |||||||
---|---|---|---|---|---|---|---|---|
FAO PM | HS | Hansen | MODIS | FAO PM | HS | Hansen | MODIS | |
2016 | 1.37 (0.17) | 0.89 (0.11) | 0.98 (0.09) | 0.80 (0.12) | 5.30 (0.80) | 4.87 (0.45) | 4.30 (0.33) | 1.58 (0.61) |
2017 | 1.59 (0.31) | 0.89 (0.11) | 0.97 (0.08) | 0.80 (0.13) | 5.53 (0.49) | 5.53 (0.49) | 2.86 (0.16) | 1.46 (0.56) |
2018 | 1.35 (0.28) | 0.92 (0.11) | 1.00 (0.08) | 0.88 (0.15) | 5.21 (0.27) | 4.61 (0.34) | 4.12 (0.17) | 1.93 (0.70) |
2019 | 1.45 (0.23) | 0.96 (0.10) | 1.02 (0.07) | 0.98 (0.17) | 5.74 (0.28) | 5.16 (0.38) | 4.53 (0.26) | 1.71 (0.66) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadou, S.; Nikolakopoulos, K.G. Reference Evapotranspiration (ETo) Methods Implemented as ArcMap Models with Remote-Sensed and Ground-Based Inputs, Examined along with MODIS ET, for Peloponnese, Greece. ISPRS Int. J. Geo-Inf. 2021, 10, 390. https://doi.org/10.3390/ijgi10060390
Dimitriadou S, Nikolakopoulos KG. Reference Evapotranspiration (ETo) Methods Implemented as ArcMap Models with Remote-Sensed and Ground-Based Inputs, Examined along with MODIS ET, for Peloponnese, Greece. ISPRS International Journal of Geo-Information. 2021; 10(6):390. https://doi.org/10.3390/ijgi10060390
Chicago/Turabian StyleDimitriadou, Stavroula, and Konstantinos G. Nikolakopoulos. 2021. "Reference Evapotranspiration (ETo) Methods Implemented as ArcMap Models with Remote-Sensed and Ground-Based Inputs, Examined along with MODIS ET, for Peloponnese, Greece" ISPRS International Journal of Geo-Information 10, no. 6: 390. https://doi.org/10.3390/ijgi10060390
APA StyleDimitriadou, S., & Nikolakopoulos, K. G. (2021). Reference Evapotranspiration (ETo) Methods Implemented as ArcMap Models with Remote-Sensed and Ground-Based Inputs, Examined along with MODIS ET, for Peloponnese, Greece. ISPRS International Journal of Geo-Information, 10(6), 390. https://doi.org/10.3390/ijgi10060390