Special Issue: Robotics and Parallel Kinematic Machines
Conflicts of Interest
References
- Merlet, J.P. Parallel Robots; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Tsai, L.W. Robot Analysis: The Mechanics of Serial and Parallel Manipulators; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Miller, K. Optimal design and modeling of spatial parallel manipulators. Int. J. Robot. Res. 2004, 23, 127–140. [Google Scholar] [CrossRef]
- Soltanov, S.; Roberts, R. Design of a Novel Bio-Inspired Three Degrees of Freedom (3DOF) Spherical Robotic Manipulator and Its Application in Human–Robot Interactions. Robotics 2025, 14, 8. [Google Scholar] [CrossRef]
- Di Gregorio, R. Dimensional synthesis of a novel 3-URU translational manipulator implemented through a novel method. Robotics 2022, 11, 10. [Google Scholar] [CrossRef]
- Riabtsev, M.; Guilhem, J.M.; Petuya, V.; Urizar, M.; Laribi, M.A. A Cartesian Parallel Mechanism for Initial Sonography Training. Robotics 2025, 14, 95. [Google Scholar] [CrossRef]
- Feller, D.; Siemers, C. Mechanical design and analysis of a novel three-legged, compact, lightweight, omnidirectional, serial–parallel robot with compliant agile legs. Robotics 2022, 11, 39. [Google Scholar] [CrossRef]
- Wenger, P. Cuspidal robots. In Singular Configurations of Mechanisms and Manipulators; Springer International Publishing: Cham, Switzerland, 2019; pp. 67–99. [Google Scholar]
- Wenger, P.; Chablat, D. A review of cuspidal serial and parallel manipulators. J. Mech. Robot. 2023, 15, 040801. [Google Scholar] [CrossRef]
- Briot, S.; Arakelian, V.; Bonev, I.A.; Chablat, D.; Wenger, P. Self-motions of general 3-r pr planar parallel robots. Int. J. Robot. Res. 2008, 27, 855–866. [Google Scholar] [CrossRef]
- Chablat, D.; Ottaviano, E.; Venkateswaran, S. Self-motion conditions for a 3-PPPS parallel robot with delta-shaped base. Mech. Mach. Theory 2019, 135, 109–114. [Google Scholar] [CrossRef]
- Cammarata, A.; Maddio, P.D.; Sinatra, R.; Tian, Y.; Zhao, Y.; Xi, F. Elastostatic analysis of a module-based shape morphing snake-like robot. Mech. Mach. Theory 2024, 194, 105580. [Google Scholar] [CrossRef]
- Elsamanty, M.; Faidallah, E.M.; Hossameldin, Y.H.; Rabbo, S.A.; Maged, S.A.; Yang, H.; Guo, K. Workspace analysis and path planning of a novel robot configuration with a 9-DOF serial-parallel hybrid manipulator (SPHM). Appl. Sci. 2023, 13, 2088. [Google Scholar] [CrossRef]
- Maloisel, G.; Knoop, E.; Thomaszewski, B.; Bächer, M.; Coros, S. Singularity-Aware Design Optimization for Multi-Degree-of-Freedom Spatial Linkages. IEEE Robot. Autom. Lett. 2021, 6, 6585–6592. [Google Scholar] [CrossRef]
- Utenov, M.; Sobh, T.; Temirbekov, Y.; Zhilkibayeva, S.; Patel, S.; Baltabay, D.; Zhumasheva, Z. Analysis of Distributed Dynamic Loads Induced by the Own Mass of Manipulator Links and Their Visualization on Interactive 3D Computer Models. Robotics 2025, 14, 46. [Google Scholar] [CrossRef]
- Schappler, M. Dimensional Synthesis of Parallel Robots Using Bilevel Optimization for Design Optimization and Resolution of Functional Redundancy. Robotics 2025, 14, 29. [Google Scholar] [CrossRef]
- Durante, F.; Raparelli, T.; Beomonte Zobel, P. Three-Degree-of-Freedom Cable-Driven Parallel Manipulator with Self-Sensing Nitinol Actuators. Robotics 2024, 13, 93. [Google Scholar] [CrossRef]
- Khanzode, D.; Jha, R.; Thomieres, A.; Duchalais, E.; Chablat, D. Surgical staplers in laparoscopic colectomy: A new innovative flexible design perspective. Robotics 2023, 12, 156. [Google Scholar] [CrossRef]
- Righettini, P.; Strada, R.; Cortinovis, F. Neural network mapping of industrial robots’ task times for real-time process optimization. Robotics 2023, 12, 143. [Google Scholar] [CrossRef]
- Venkateswaran, S.; Chablat, D. Mapping the Tilt and Torsion Angles for a 3-SP SU Parallel Mechanism. Robotics 2023, 12, 50. [Google Scholar] [CrossRef]
- Rosyid, A.; Stefanini, C.; El-Khasawneh, B. A reconfigurable parallel robot for on-structure machining of large structures. Robotics 2022, 11, 110. [Google Scholar] [CrossRef]
- Abarca, V.E.; Elias, D.A. A review of parallel robots: Rehabilitation, assistance, and humanoid applications for neck, shoulder, wrist, hip, and ankle joints. Robotics 2023, 12, 131. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkateswaran, S. Special Issue: Robotics and Parallel Kinematic Machines. Robotics 2025, 14, 125. https://doi.org/10.3390/robotics14090125
Venkateswaran S. Special Issue: Robotics and Parallel Kinematic Machines. Robotics. 2025; 14(9):125. https://doi.org/10.3390/robotics14090125
Chicago/Turabian StyleVenkateswaran, Swaminath. 2025. "Special Issue: Robotics and Parallel Kinematic Machines" Robotics 14, no. 9: 125. https://doi.org/10.3390/robotics14090125
APA StyleVenkateswaran, S. (2025). Special Issue: Robotics and Parallel Kinematic Machines. Robotics, 14(9), 125. https://doi.org/10.3390/robotics14090125