# Forward Kinematic Modelling with Radial Basis Function Neural Network Tuned with a Novel Meta-Heuristic Algorithm for Robotic Manipulators

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

- manipulation robotic systems;
- mobile robots;
- information and control robotic systems.

## 2. Related Work

## 3. Methodology

#### 3.1. Dataset Preparation

#### 3.2. ML-Based Architecture

#### 3.2.1. Radial Basis Function Neural Network (RBFNN)

#### 3.2.2. Cooperative Search Optimisation Algorithm (CSOA)

**a.**- Team Building:

**b.**- Team Communication Phase:

**c.**- Reflective Learning Phase:

Algorithm 1: Pseudo-code for CSOA algorithm. |

Data: Random data in search spaceResult: Output the best final solutionInitialise objective function and random population on search space; Evaluate the fitness of all particles and create I and M vectors; whiletermination criteria not metdoend |

## 4. Results

#### 4.1. CSOA-RBFNN Model

#### 4.1.1. X-axis Prediction Results

#### 4.1.2. Y-axis Prediction Results

#### 4.1.3. Z-axis Prediction Results

#### 4.2. Comparative Study

## 5. Discussion

## 6. Conclusions and Future Work

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## References

- Vukobratović, M. General Introduction to Robots. In Introduction to Robotics; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1–18. [Google Scholar]
- Theofanidis, M.; Sayed, S.I.; Cloud, J.; Brady, J.; Makedon, F. Kinematic estimation with neural networks for robotic manipulators. In Proceedings of the International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 795–802. [Google Scholar]
- Corke, P.I. A simple and systematic approach to assigning Denavit—Hartenberg parameters. IEEE Trans. Robot.
**2007**, 23, 590–594. [Google Scholar] [CrossRef][Green Version] - Merlet, J.P. Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis. Int. J. Robot. Res.
**2004**, 23, 221–235. [Google Scholar] [CrossRef] - Lee, T.Y.; Shim, J.K. Improved dialytic elimination algorithm for the forward kinematics of the general Stewart—Gough platform. Mech. Mach. Theory
**2003**, 38, 563–577. [Google Scholar] [CrossRef] - Raghavan, M. The Stewart Platform of General Geometry Has 40 Configurations. J. Mech. Des.
**1993**, 115, 277–282. [Google Scholar] [CrossRef] - Gan, D.; Liao, Q.; Dai, J.S.; Wei, S.; Seneviratne, L. Forward displacement analysis of the general 6—6 Stewart mechanism using Gröbner bases. Mech. Mach. Theory
**2009**, 44, 1640–1647. [Google Scholar] [CrossRef] - Wang, Y. A direct numerical solution to forward kinematics of general Stewart—Gough platforms. Robotica
**2007**, 25, 121–128. [Google Scholar] [CrossRef] - Baron, L.; Angeles, J. The direct kinematics of parallel manipulators under joint-sensor redundancy. IEEE Trans. Robot. Autom.
**2000**, 16, 12–19. [Google Scholar] [CrossRef] - Williams Ii, R.L.; Gallina, P. Translational planar cable-direct-driven robots. J. Intell. Robot. Syst.
**2003**, 37, 69–96. [Google Scholar] [CrossRef] - Bosscher, P.; Williams, R.L., II; Bryson, L.S.; Castro-Lacouture, D. Cable-suspended robotic contour crafting system. Autom. Constr.
**2007**, 17, 45–55. [Google Scholar] [CrossRef] - El-Sherbiny, A.; Elhosseini, M.A.; Haikal, A.Y. A comparative study of soft computing methods to solve inverse kinematics problem. Ain Shams Eng. J.
**2018**, 9, 2535–2548. [Google Scholar] [CrossRef] - Boudreau, R.; Levesque, G.; Darenfed, S. Parallel manipulator kinematics learning using holographic neural network models. Robot. Comput.-Integr. Manuf.
**1998**, 14, 37–44. [Google Scholar] [CrossRef] - Dehghani, M.; Ahmadi, M.; Khayatian, A.; Eghtesad, M.; Farid, M. Neural network solution for forward kinematics problem of HEXA parallel robot. In Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11–13 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 4214–4219. [Google Scholar]
- Kang, R.; Chanal, H.; Bonnemains, T.; Pateloup, S.; Branson, D.T.; Ray, P. Learning the forward kinematics behavior of a hybrid robot employing artificial neural networks. Robotica
**2012**, 30, 847–855. [Google Scholar] [CrossRef] - Morell, A.; Acosta, L.; Toledo, J. An artificial intelligence approach to forward kinematics of Stewart platforms. In Proceedings of the 2012 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain, 3–6 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 433–438. [Google Scholar]
- Ligutan, D.D.; Abad, A.C.; Dadios, E.P. Adaptive robotic arm control using artificial neural network. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Faraji, H.; Rezvani, K.; Hajimirzaalian, H.; Sabour, M.H. Solving the Forward Kinematics Problem in Parallel Manipulators Using Neural Network. In Proceedings of the 2017 the 5th International Conference on Control, Mechatronics and Automation, Edmonton, AB, Canada, 11–13 October 2017; pp. 23–29. [Google Scholar]
- Ghasemi, A.; Eghtesad, M.; Farid, M. Neural network solution for forward kinematics problem of cable robots. J. Intell. Robot. Syst.
**2010**, 60, 201–215. [Google Scholar] [CrossRef] - Morell, A.; Tarokh, M.; Acosta, L. Solving the forward kinematics problem in parallel robots using Support Vector Regression. Eng. Appl. Artif. Intell.
**2013**, 26, 1698–1706. [Google Scholar] [CrossRef] - Morell, A.; Tarokh, M.; Acosta, L. Inverse kinematics solutions for serial robots using support vector regression. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 4203–4208. [Google Scholar]
- Hernandez-Mendez, S.; Maldonado-Mendez, C.; Marin-Hernandez, A.; Rios-Figueroa, H.V.; Vazquez-Leal, H.; Palacios-Hernandez, E.R. Design and implementation of a robotic arm using ROS and MoveIt! In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Zihuatanejo, Mexico, 4–6 November 2015; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Broomhead, D.S.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks. Technical Report. Royal Signals and Radar Establishment Malvern (United Kingdom). 1988. Available online: https://apps.dtic.mil/sti/citations/ADA196234 (accessed on 27 March 2022).
- Zadeh, M.R.; Amin, S.; Khalili, D.; Singh, V.P. Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour. Manag.
**2010**, 24, 2673–2688. [Google Scholar] [CrossRef] - Feng, Z.K.; Niu, W.J.; Liu, S. Cooperation search algorithm: A novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems. Appl. Soft Comput.
**2021**, 98, 106734. [Google Scholar] [CrossRef]

**Figure 1.**Types of joints: (

**a**) articulated manipulator, (

**b**) spherical manipulator, (

**c**) SCARA manipulator, (

**d**) cylindrical manipulator.

**Figure 2.**Frame transformation: frame A is translated along A

_{P}and rotated along one of the axes to produce frame B.

**Figure 4.**Kinematic model of the 3-DOF manipulator designed in ROS-RVIZ. JA represents the the joint angles while RA represents the arm length.

**Figure 6.**(

**a**) Sketch map of an enterprise hierarchy. (

**b**) Working mechanism of CSOA to converge towards global optimum solution.

**Figure 8.**RBFNN model for training and testing. Joint angle JA is used as the input and the Cartesian coordinates of the end-effector is the output.

**Figure 9.**Comparison of actual x-axis position and predicted position from the meta-heuristic RBFNN models.

**Figure 11.**Comparison of actual y-axis position and predicted position from the meta-heuristic RBFNN models.

**Figure 13.**Comparison of actual z-axis position and predicted position from the meta-heuristic RBFNN models.

JA-1 | JA-2 | JA-3 | x-axis | y-axis | z-axis |
---|---|---|---|---|---|

1.675 | 0.558 | 0 | 0.989 | −1.4 | 1.844 |

6.2831 | 6.143 | 4.468 | −0.978 | −0.5 | 4.049 |

1.851 | 0.558 | 0.698 | 0.74 | −0.893 | 1.375 |

1.675 | 5.724 | 0.139 | 1.176 | −1.505 | 3.628 |

1.256 | 5.585 | 5.724 | 0.607 | −0.91 | 4.63 |

1.117 | 6.143 | 0.698 | 1.161 | −1.528 | 3.077 |

Function Name | Mathematical Form |
---|---|

Thin-plate spline | $G\left(x\right)={(x-\mu )}^{2}log(x-\mu )$ |

Multi-quadratic | $G\left(x\right)=\sqrt{{(x-\mu )}^{2}+{\sigma}^{2}}$ |

Inverse multi-quadratic | $G\left(x\right)=\frac{1}{\sqrt{{(x-\mu )}^{2}+{\sigma}^{2}}}$ |

Gaussian | $G\left(x\right)=exp{}^{(-\frac{{(x-\mu )}^{2}}{{\sigma}^{2}})}$ |

Technique | Parameters | Value |
---|---|---|

CSOA | $\alpha $ | 0.1 |

$\beta $ | 0.15 | |

PSO | C1 | 1.5 |

C2 | 1.5 | |

GWO | a | 2.0 |

Technique | Optimal Spread Value | Best Cost | Runtime (s) |
---|---|---|---|

CSOA-RBFNN | 2.200 | 0.0048 | 12.54 |

GWO-RBFNN | 2.700 | 0.0412 | 13.19 |

PSO-RBFNN | 2.900 | 0.2230 | 13.43 |

Technique | Mean RE | NMSE | MAE |
---|---|---|---|

CSOA-RBFNN | 0.0098 | 0.0051 | 0.0334 |

GWO-RBFNN | 0.3015 | 0.0486 | 0.0571 |

PSO-RBFNN | 0.856 | 0.1421 | 0.0591 |

Technique | Optimal Spread Value | Best Cost | Runtime (s) |
---|---|---|---|

CSOA-RBFNN | 1.900 | 0.0083 | 16.05 |

GWO-RBFNN | 2.100 | 0.0225 | 17.23 |

PSO-RBFNN | 2.500 | 0.0861 | 16.78 |

Technique | Mean RE | NMSE | MAE |
---|---|---|---|

CSOA-RBFNN | 0.0355 | 0.0081 | 0.0064 |

GWO-RBFNN | 0.0860 | 0.0141 | 0.0072 |

PSO-RBFNN | 0.3616 | 0.0782 | 0.0331 |

Technique | Optimal Spread Value | Best Cost | Runtime (s) |
---|---|---|---|

CSOA-RBFNN | 1.400 | 0.0321 | 11.54 |

GWO-RBFNN | 2.100 | 0.1426 | 13.22 |

PSO-RBFNN | 7.200 | 0.4307 | 12.43 |

Technique | Mean RE | NMSE | MAE |
---|---|---|---|

CSOA-RBFNN | 0.0121 | 0.0329 | 0.0468 |

GWO-RBFNN | 0.0287 | 0.1426 | 0.0861 |

PSO-RBFNN | 0.0671 | 0.7281 | 0.1122 |

Axis | Technique | Mean RE | NMSE | MAE |
---|---|---|---|---|

x-axis | RBFNN-CSOA | 0.0355 | 0.0081 | 0.0064 |

ANN | 0.103 | 0.092 | 0.044 | |

SVR | 0.068 | 0.015 | 0.0093 | |

y-axis | RBFNN-CSOA | 0.0098 | 0.0051 | 0.0334 |

ANN | 0.031 | 0.104 | 0.024 | |

SVR | 0.0120 | 0.095 | 0.089 | |

z-axis | RBFNN-CSOA | 0.0355 | 0.0081 | 0.0064 |

ANN | 0.095 | 0.0605 | 0.0112 | |

SVR | 0.076 | 0.0299 | 0.0092 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Moosavi, S.K.R.; Zafar, M.H.; Sanfilippo, F.
Forward Kinematic Modelling with Radial Basis Function Neural Network Tuned with a Novel Meta-Heuristic Algorithm for Robotic Manipulators. *Robotics* **2022**, *11*, 43.
https://doi.org/10.3390/robotics11020043

**AMA Style**

Moosavi SKR, Zafar MH, Sanfilippo F.
Forward Kinematic Modelling with Radial Basis Function Neural Network Tuned with a Novel Meta-Heuristic Algorithm for Robotic Manipulators. *Robotics*. 2022; 11(2):43.
https://doi.org/10.3390/robotics11020043

**Chicago/Turabian Style**

Moosavi, Syed Kumayl Raza, Muhammad Hamza Zafar, and Filippo Sanfilippo.
2022. "Forward Kinematic Modelling with Radial Basis Function Neural Network Tuned with a Novel Meta-Heuristic Algorithm for Robotic Manipulators" *Robotics* 11, no. 2: 43.
https://doi.org/10.3390/robotics11020043