The Role of Preconception Parental Health on Embryo Quality—Preliminary Results of a Prospective Study Using Non-Invasive Preimplantation Genetic Testing for Aneuploidy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Embryo Culture and Collection of Samples
2.3. Result Analysis
2.4. Statistical Analysis
2.5. Female Age Groups
3. Results
3.1. Correlation of Results Based on Female Age Groups
3.2. Results Using the Spearman’s Rank Correlation Coefficient, Including Non-Informative and Unassigned Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DNA | Deoxyribonucleic Acid |
PGT-A | preimplantation genetic testing for aneuploidy |
TE | trophectoderm biopsy |
cfDNA | cell-free deoxyribonucleic acid |
SECM | spent embryo culture medium |
niPGT-A | non-invasive preimplantation genetic testing for aneuploidy |
UMC | University Medical Centre |
ICSI | Intracytoplasmic Sperm Injection |
ART | assisted reproductive technology |
IVF | in-vitro fertilization |
WGA | Whole Genome Amplification |
NGS | Next Generation Sequencing |
Mbp | million base pairs |
Q1 | lower-quartile values |
Q3 | upper-quartile values |
AMH | anti-Müllerian hormone |
FSH | follicle-stimulating hormone |
LH | luteinizing hormone |
PRL | prolactin |
TSH | thyroid stimulating hormone |
BMI | body mass index |
ET | Embryo transfer |
References
- Mikwar, M.; MacFarlane, A.J.; Marchetti, F. Mechanisms of Oocyte Aneuploidy Associated with Advanced Maternal Age. Mutat. Res. Rev. Mutat. Res. 2020, 785, 108320. [Google Scholar] [CrossRef]
- Vitagliano, A.; Paffoni, A.; Viganò, P. Does Maternal Age Affect Assisted Reproduction Technology Success Rates after Euploid Embryo Transfer? A Systematic Review and Meta-Analysis. Fertil. Steril. 2023, 120, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhu, Y.; Gao, H.; Zhou, B.; Zhang, R.; Wang, T.; Ding, G.; Qu, F.; Huang, H.; Lu, X. Overweight and Obesity Negatively Affect the Outcomes of Ovarian Stimulation and in Vitro Fertilisation: A Cohort Study of 2628 Chinese Women. Gynecol. Endocrinol. 2010, 26, 325–332. [Google Scholar] [CrossRef]
- Metwally, M.; Cutting, R.; Tipton, A.; Skull, J.; Ledger, W.L.; Li, T.C. Effect of Increased Body Mass Index on Oocyte and Embryo Quality in IVF Patients. Reprod. Biomed. Online 2007, 15, 532–538. [Google Scholar] [CrossRef]
- Pandruvada, S.; Royfman, R.; Shah, T.A.; Sindhwani, P.; Dupree, J.M.; Schon, S.; Avidor-Reiss, T. Lack of Trusted Diagnostic Tools for Undetermined Male Infertility. J. Assist. Reprod. Genet. 2021, 38, 265–276. [Google Scholar] [CrossRef]
- Turner, K.A.; Rambhatla, A.; Schon, S.; Agarwal, A.; Krawetz, S.A.; Dupree, J.M.; Avidor-Reiss, T. Male Infertility Is a Women’s Health Issue—Research and Clinical Evaluation of Male Infertility Is Needed. Cells 2020, 9, 990. [Google Scholar] [CrossRef]
- Ramasamy, R.; Scovell, J.M.; Kovac, J.R.; Cook, P.J.; Lamb, D.J.; Lipshultz, L.I. Fluorescence In-Situ Hybridization Detects Increased Sperm Aneuploidy in Men with Recurrent Pregnancy Loss. Fertil. Steril. 2015, 103, 906–909.e1. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.; Liang, Z.; Wu, J.; Li, L.; Chen, C.; Jin, F.; Tian, Y. Sperm DNA Fragmentation and Male Fertility: A Retrospective Study of 5114 Men Attending a Reproductive Center. J. Assist. Reprod. Genet. 2021, 38, 1133–1141. [Google Scholar] [CrossRef]
- Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Wright, D.L.; Toth, T.L.; Tanrikut, C.; Hauser, R.; Chavarro, J.E. Men’s Body Mass Index in Relation to Embryo Quality and Clinical Outcomes in Couples Undergoing in Vitro Fertilization. Fertil. Steril. 2012, 98, 1193–1199.e1. [Google Scholar] [CrossRef] [PubMed]
- Venigalla, G.; Ila, V.; Dornbush, J.; Bernstein, A.; Loloi, J.; Pozzi, E.; Miller, D.; Ramasamy, R. Male Obesity: Associated Effects on Fertility and the Outcomes of Offspring. Andrology 2025, 13, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, D.; Fatemi, H.M.M.; Barbara, L.; Patel, R.; Abdala, A.; Elkhatib, I.; Marqueta, L.; Bayram, A.; Melado, L. FFactors Influencing the Prevalence of Embryo Ploidy in IVF Cycles. Fertil. Steril. 2022, 118, e284. [Google Scholar] [CrossRef]
- Fouks, Y.; Vaughan, D.; Sripada, V.; Penzias, A.S.; Bortoletto, P.; Sakkas, D. Do Sperm Factors Influence Embryonic Aneuploidy? Long Live the Oocyte. Hum. Reprod. 2024, 39, 2442–2452. [Google Scholar] [CrossRef]
- L’Heveder, A.; Jones, B.P.; Naja, R.; Serhal, P.; Nagi, J.B. Preimplantation Genetic Testing for Aneuploidy: Current Perspectives. Semin. Reprod. Med. 2021, 39, 1–12. [Google Scholar] [CrossRef]
- Hawke, D.C.; Watson, A.J.; Betts, D.H. Extracellular Vesicles, MicroRNA and the Preimplantation Embryo: Non-Invasive Clues of Embryo Well-Being. Reprod. Biomed. Online 2021, 42, 39–54. [Google Scholar] [CrossRef]
- Bellver, J.; Bosch, E.; Espinós, J.J.; Fabregues, F.; Fontes, J.; García-Velasco, J.; Llácer, J.; Requena, A.; Checa, M.A.; Spanish Infertility SWOT Group (SISG). Second-Generation Preimplantation Genetic Testing for Aneuploidy in Assisted Reproduction: A SWOT Analysis. Reprod. Biomed. Online 2019, 39, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Stigliani, S.; Anserini, P.; Venturini, P.L.; Scaruffi, P. Mitochondrial DNA Content in Embryo Culture Medium Is Significantly Associated with Human Embryo Fragmentation. Hum. Reprod. 2013, 28, 2652–2660. [Google Scholar] [CrossRef]
- Palini, S.; Galluzzi, L.; De Stefani, S.; Bianchi, M.; Wells, D.; Magnani, M.; Bulletti, C. Genomic DNA in Human Blastocoele Fluid. Reprod. Biomed. Online 2013, 26, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.; Navarro-Sánchez, L.; García-Pascual, C.M.; Ocali, O.; Cimadomo, D.; Venier, W.; Barroso, G.; Kopcow, L.; Bahçeci, M.; Kulmann, M.I.R.; et al. Multicenter Prospective Study of Concordance between Embryonic Cell-Free DNA and Trophectoderm Biopsies from 1301 Human Blastocysts. Am. J. Obstet. Gynecol. 2020, 223, 751.e1–751.e13. [Google Scholar] [CrossRef]
- Vera-Rodriguez, M.; Diez-Juan, A.; Jimenez-Almazan, J.; Martinez, S.; Navarro, R.; Peinado, V.; Mercader, A.; Meseguer, M.; Blesa, D.; Moreno, I.; et al. Origin and Composition of Cell-Free DNA in Spent Medium from Human Embryo Culture during Preimplantation Development. Hum. Reprod. 2018, 33, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Kuznyetsov, V.; Madjunkova, S.; Abramov, R.; Antes, R.; Ibarrientos, Z.; Motamedi, G.; Zaman, A.; Kuznyetsova, I.; Librach, C.L. Minimally Invasive Cell-Free Human Embryo Aneuploidy Testing (MiPGT-A) Utilizing Combined Spent Embryo Culture Medium and Blastocoel Fluid -Towards Development of a Clinical Assay. Sci. Rep. 2020, 10, 7244. [Google Scholar] [CrossRef]
- Capalbo, A.; Romanelli, V.; Patassini, C.; Poli, M.; Girardi, L.; Giancani, A.; Stoppa, M.; Cimadomo, D.; Ubaldi, F.M.; Rienzi, L. Diagnostic Efficacy of Blastocoel Fluid and Spent Media as Sources of DNA for Preimplantation Genetic Testing in Standard Clinical Conditions. Fertil. Steril. 2018, 110, 870–879.e5. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Bogale, B.; Tang, Y.; Lu, S.; Xie, X.S.; Racowsky, C. Noninvasive Preimplantation Genetic Testing for Aneuploidy in Spent Medium May Be More Reliable than Trophectoderm Biopsy. Proc. Natl. Acad. Sci. USA 2019, 116, 14105–14112. [Google Scholar] [CrossRef] [PubMed]
- Gleicher, N.; Barad, D.H. Not Even Noninvasive Cell-Free DNA Can Rescue Preimplantation Genetic Testing. Proc. Natl. Acad. Sci. USA 2019, 116, 21976–21977. [Google Scholar] [CrossRef]
- Handayani, N.; Aubry, D.; Boediono, A.; Wiweko, B.; Sirait, B.; Sini, I.; Polim, A.A.; Dwiranti, A.; Bowolaksono, A. The Origin and Possible Mechanism of Embryonic Cell-Free DNA Release in Spent Embryo Culture Media: A Review. J. Assist. Reprod. Genet. 2023, 40, 1231–1242. [Google Scholar] [CrossRef]
- Shitara, A.; Takahashi, K.; Goto, M.; Takahashi, H.; Iwasawa, T.; Onodera, Y.; Makino, K.; Miura, H.; Shirasawa, H.; Sato, W.; et al. Cell-Free DNA in Spent Culture Medium Effectively Reflects the Chromosomal Status of Embryos Following Culturing beyond Implantation Compared to Trophectoderm Biopsy. PLoS ONE 2021, 16, e0246438. [Google Scholar] [CrossRef]
- Tšuiko, O.; Zhigalina, D.I.; Jatsenko, T.; Skryabin, N.A.; Kanbekova, O.R.; Artyukhova, V.G.; Svetlakov, A.V.; Teearu, K.; Trošin, A.; Salumets, A.; et al. Karyotype of the Blastocoel Fluid Demonstrates Low Concordance with Both Trophectoderm and Inner Cell Mass. Fertil. Steril. 2018, 109, 1127–1134.e1. [Google Scholar] [CrossRef]
- Rule, K.N.; Chosed, R.J.; Chang, T.A.; Robinson, R.D.; Wininger, J.D.; Roudebush, W. Blastocoel Cell-Free DNA, a Marker of Embryonic Quality. Fertil. Steril. 2017, 108, e106. [Google Scholar] [CrossRef]
- Li, X.; Hao, Y.; Chen, D.; Ji, D.; Zhu, W.; Zhu, X.; Wei, Z.; Cao, Y.; Zhang, Z.; Zhou, P. Non-Invasive Preimplantation Genetic Testing for Putative Mosaic Blastocysts: A Pilot Study. Hum. Reprod. 2021, 36, 2020–2034. [Google Scholar] [CrossRef]
- Hanson, B.M.; Tao, X.; Hong, K.H.; Comito, C.E.; Pangasnan, R.; Seli, E.; Jalas, C.; Scott, R.T. Noninvasive Preimplantation Genetic Testing for Aneuploidy Exhibits High Rates of Deoxyribonucleic Acid Amplification Failure and Poor Correlation with Results Obtained Using Trophectoderm Biopsy. Fertil. Steril. 2021, 115, 1461–1470. [Google Scholar] [CrossRef]
- Stimpfel, M.; Vrtacnik-Bokal, E. Minor DNA Methylation Changes Are Observed in Spermatozoa Prepared Using Different Protocols. Andrology 2020, 8, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
- Stimpfel, M.; Jancar, N.; Vrtacnik-Bokal, E. Collecting Semen Samples at Home for IVF/ICSI Does Not Negatively Affect the Outcome of the Fresh Cycle. Reprod. Biomed. Online 2021, 42, 391–399. [Google Scholar] [CrossRef]
- Stimpfel, M.; Verdenik, I.; Zorn, B.; Virant-Klun, I. Magnetic-Activated Cell Sorting of Non-Apoptotic Spermatozoa Improves the Quality of Embryos According to Female Age: A Prospective Sibling Oocyte Study. J. Assist. Reprod. Genet. 2018, 35, 1665–1674. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Barzanouni, S.; Moramezi, F.; Zargar, M.; Galehdari, H.; Hemadi, M. A Prospective Study to Evaluate the Gender Prediction of Blastocysts by Using Cell-Free DNA within a Culture Medium. Int. J. Reprod. Biomed. 2022, 20, 561–568. [Google Scholar] [CrossRef]
- Feichtinger, M.; Vaccari, E.; Carli, L.; Wallner, E.; Mädel, U.; Figl, K.; Palini, S.; Feichtinger, W. Non-Invasive Preimplantation Genetic Screening Using Array Comparative Genomic Hybridization on Spent Culture Media: A Proof-of-Concept Pilot Study. Reprod. Biomed. Online 2017, 34, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, Y.; Jia, J.; Chang, L.; Liu, P.; Qiao, J.; Tang, F.; Wen, L.; Huang, J. DNA Methylome Reveals Cellular Origin of Cell-Free DNA in Spent Medium of Human Preimplantation Embryos. J. Clin. Investig. 2021, 131, e146051. [Google Scholar] [CrossRef] [PubMed]
- Hammond, E.R.; Shelling, A.N.; Cree, L.M. Nuclear and Mitochondrial DNA in Blastocoele Fluid and Embryo Culture Medium: Evidence and Potential Clinical Use. Hum. Reprod. 2016, 31, 1653–1661. [Google Scholar] [CrossRef]
- The American College of Obstetricians and Gynecologists Committee on Gynecologic Practice and The Practice Committee of the American Society for Reproductive Medicine. Female Age-Related Fertility Decline. Fertil. Steril. 2014, 101, 633–634. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Aging and Infertility in Women: A Committee Opinion1. Fertil. Steril. 2002, 78, 215–219. [Google Scholar] [CrossRef]
- Rodrigo, L.; Clemente-Císcar, M.; Campos-Galindo, I.; Peinado, V.; Simón, C.; Rubio, C. Characteristics of the IVF Cycle That Contribute to the Incidence of Mosaicism. Genes 2020, 11, 1151. [Google Scholar] [CrossRef]
- Franasiak, J.M.; Forman, E.J.; Hong, K.H.; Werner, M.D.; Upham, K.M.; Treff, N.R.; Scott, R.T. The Nature of Aneuploidy with Increasing Age of the Female Partner: A Review of 15,169 Consecutive Trophectoderm Biopsies Evaluated with Comprehensive Chromosomal Screening. Fertil. Steril. 2014, 101, 656–663.e1. [Google Scholar] [CrossRef]
- Armstrong, A.; Kroener, L.; Miller, J.; Nguyen, A.; Kwan, L.; Quinn, M. The Nature of Embryonic Mosaicism across Female Age Spectrum: An Analysis of 21,345 Preimplantation Genetic Testing for Aneuploidy Cycles. F&S Rep. 2023, 4, 256–261. [Google Scholar] [CrossRef]
- Reich, J.; Blakemore, J.K.; Besser, A.G.; Hodes-Wertz, B.; Grifo, J.A. The Effect of Maternal Age on Chromosomal Mosaicism: An Analysis by Chromosome Type and Mosaic Result. Fertil. Steril. 2020, 114, e419–e420. [Google Scholar] [CrossRef]
- Grande, M.; Borrell, A.; Garcia-Posada, R.; Borobio, V.; Muñoz, M.; Creus, M.; Soler, A.; Sanchez, A.; Balasch, J. The Effect of Maternal Age on Chromosomal Anomaly Rate and Spectrum in Recurrent Miscarriage. Hum. Reprod. 2012, 27, 3109–3117. [Google Scholar] [CrossRef] [PubMed]
- Orvieto, R.; Shimon, C.; Rienstein, S.; Jonish-Grossman, A.; Shani, H.; Aizer, A. Do Human Embryos Have the Ability of Self-Correction? Reprod. Biol. Endocrinol. 2020, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Gleicher, N.; Barad, D.H.; Ben-Rafael, Z.; Glujovsky, D.; Mochizuki, L.; Modi, D.; Murtinger, M.; Patrizio, P.; Orvieto, R.; Takahashi, S.; et al. Commentary on Two Recently Published Formal Guidelines on Management of “Mosaic” Embryos after Preimplantation Genetic Testing for Aneuploidy (PGT-A). Reprod. Biol. Endocrinol. 2021, 19, 23. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Yao, Z.; Xia, Q.; Chang, T.; Zeng, J.; Liu, J.; Li, Y.; Zhu, H. Arrested Cells/Cellular Debris Expelled from Blastocysts Is Self-Correction Phenomenon During Early Embryonic Development. Reprod. Sci. 2023, 30, 2177–2187. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Xu, J.; Yang, Q.; Niu, W.; Dai, S.; Hu, L.; Guo, Y. Paternal Age, Body Mass Index, and Semen Volume Are Associated with Chromosomal Aberrations-Related Miscarriages in Couples That Underwent Treatment by Assisted Reproductive Technology. Aging 2020, 12, 8459–8472. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Niu, W.; Yang, Z.; Wang, Y.; Jin, H.; Li, G. Correlation Study of Male Semen Parameters and Embryo Aneuploidy in Preimplantation Genetic Testing for Aneuploidy. Front. Endocrinol. 2023, 13, 1072176. [Google Scholar] [CrossRef]
- Santos, M.A.; Teklenburg, G.; Macklon, N.S.; Van Opstal, D.; Schuring-Blom, G.H.; Krijtenburg, P.-J.; de Vreeden-Elbertse, J.; Fauser, B.C.; Baart, E.B. The Fate of the Mosaic Embryo: Chromosomal Constitution and Development of Day 4, 5 and 8 Human Embryos. Hum. Reprod. 2010, 25, 1916–1926. [Google Scholar] [CrossRef] [PubMed]
- Singla, S.; Iwamoto-Stohl, L.K.; Zhu, M.; Zernicka-Goetz, M. Autophagy-Mediated Apoptosis Eliminates Aneuploid Cells in a Mouse Model of Chromosome Mosaicism. Nat. Commun. 2020, 11, 2958. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.-Y.; Huang, Y.; Du, Q.-Y.; Yao, G.-D.; Sun, Y.-P. Body Mass Index Effects Sperm Quality: A Retrospective Study in Northern China. Asian J. Androl. 2017, 19, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Dupont, C.; Faure, C.; Sermondade, N.; Boubaya, M.; Eustache, F.; Clément, P.; Briot, P.; Berthaut, I.; Levy, V.; Cedrin-Durnerin, I.; et al. Obesity Leads to Higher Risk of Sperm DNA Damage in Infertile Patients. Asian J. Androl. 2013, 15, 622–625. [Google Scholar] [CrossRef]
- Bibi, R.; Jahan, S.; Afsar, T.; Almajwal, A.; Hammadeh, M.E.; Alruwaili, N.W.; Razak, S.; Amor, H. The Influence of Paternal Overweight on Sperm Chromatin Integrity, Fertilization Rate and Pregnancy Outcome among Males Attending Fertility Clinic for IVF/ICSI Treatment. BMC Pregnancy Childbirth 2022, 22, 620. [Google Scholar] [CrossRef]
- Nunzio, A.D.; Giarra, A.; Toscanesi, M.; Amoresano, A.; Piscopo, M.; Ceretti, E.; Zani, C.; Lorenzetti, S.; Trifuoggi, M.; Montano, L. Comparison between Macro and Trace Element Concentrations in Human Semen and Blood Serum in Highly Polluted Areas in Italy. Int. J. Environ. Res. Public Health 2022, 19, 11635. [Google Scholar] [CrossRef]
- Carrasquillo, R.J.; Kohn, T.P.; Cinnioglu, C.; Rubio, C.; Simon, C.; Ramasamy, R.; Al-Asmar, N. Advanced Paternal Age Does Not Affect Embryo Aneuploidy Following Blastocyst Biopsy in Egg Donor Cycles. J. Assist. Reprod. Genet. 2019, 36, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Samarasekera, T.; Willats, E.; Green, M.P.; Hardy, T.; Rombauts, L.; Zander-Fox, D. Impact of Male Age on Paternal Aneuploidy: Single-Nucleotide Polymorphism Microarray Outcomes Following Blastocyst Biopsy. Reprod. Biomed. Online 2023, 47, 103245. [Google Scholar] [CrossRef]
- Dviri, M.; Madjunkova, S.; Koziarz, A.; Antes, R.; Abramov, R.; Mashiach, J.; Moskovtsev, S.; Kuznyetsova, I.; Librach, C. Is There a Correlation between Paternal Age and Aneuploidy Rate? An Analysis of 3,118 Embryos Derived from Young Egg Donors. Fertil. Steril. 2020, 114, 293–300. [Google Scholar] [CrossRef]
Group Categories | |||||
---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | p-Value | |
Number of couples | 29 | 38 | 33 | 31 | |
Female age (years) | 27.0 (26.0–28.5) | 32.6 (31.4–33.6) | 37.4 (36.1–38.9) | 41.5 (40.9–42.4) | <0.001 (1 vs. 2 p = 0.002, 3 vs. 4 p = 0.001, all other comparisons p < 0.001) |
Male age (years) | 31.0 (28.1–33.1) | 34.0 (32.0–38.7) | 39.7 (36.9–44.0) | 43.9 (40.7–47.4) | <0.001 (1 vs. 2 p = 0.210, 1 vs. 3 p < 0.001, 1 vs. 4 <0.001, 2 vs. 3 p = 0.002, 2 vs. 4 p < 0.001, 3 vs. 4 p = 0.174) |
Female FSH [IU/L] | 7.6 (6.0–8.7) | 7.4 (6.1–10.1) | 7.2 (6.2–8.9) | 7.7 (6.9–10.2) | 0.720 |
Female LH [IU/L] | 4.6 (3.4–5.8) | 5.1 (3.5–7.8) | 4.6 (3.8–6.5) | 5.2 (3.4–6.9) | 0.806 |
Female AMH [µg/L] | 2.8 (2.2–4.8) | 2.8 (1.2–5.6) | 2.9 (1.0–3.8) | 1.4 (0.8–2.6) | 0.031 (1 vs. 4 p = 0.034, 2 vs. 4 p = 0.174, 3 vs. 4 p = 0.323, all other comparisons p = 1) |
Female PRL [µg/L] | 10.0 (6.7–15.5) | 8.7 (5.8–12.0) | 9.9 (6.8–14.5) | 9.0 (6.9–12.1) | 0.433 |
Female TSH [mIU/L] | 1.9 (1.2–2.5) | 1.9 (1.2–2.3) | 2.1 (1.3–2.7) | 2.1 (1.5–2.9) | 0.252 |
Female BMI [kg/m2] | 24.2 (21.8–30.3) | 23.5 (21.2–25.8) | 23.9 (20.9–27.4) | 26.0 (21.9–28.4) | 0.372 |
Male BMI [kg/m2] | 26.5 (24.6–30.9) | 26.4 (24.0–29.6) | 26.0 (24.0–28.6) | 26.3 (24.7–29.8) | 0.836 |
Total dose of used Gonadotrophins in IE | 1525 (1350–2193.8) | 2025 (1500–2475) | 2250 (1800–3037.5) | 2475 (2025–2925) | p < 0.001 (1 vs. 2 p = 0.251, 1 vs. 3 p = 0.004, 1 vs. 4 p < 0.001, 2 vs. 4 p = 0.152, 2 vs. 3 p = 0.705, 3 vs. 4 p = 1) |
Age Group Categories | |||||
---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | p-Value | |
Number of retrieved oocytes; n (per cycle) | 258 (8 (4.5–11.5)) | 396 (9.0 (5.0–12.3)) | 280 (8.0 (4.5–11.0) | 243 (8.0 (4.0–11.0)) | 0.591 |
Number of normally fertilized oocytes per number of oocytes injected | 116 (59.2%) | 192 (64.2%) | 132 (62.3%) | 119 (63.0%) | 0.727 |
Immature oocytes; n (rate (%)) | 47 (18.6) | 74 (18.7%) | 46 (16.4%) | 41 (16.9%) | 0.864 |
Degenerated oocytes per number of retrieved oocytes; n (rate (%)) | 36 (14.0%) | 47 (11.9%) | 34 (12.1%) | 32 (13.2%) | 0.864 |
Polyploidies per number of retrieved oocytes; n (rate (%)) | 5 (1.9%) | 8 (2.0%) | 6 (2.1%) | 5 (2.1%) | 0.999 |
Cleaved embryos; n (% per zygotes) | 114 (98.3%) | 192 (100%) | 128 (97.7%) | 119 (100%) | |
Number of embryos per cycle | 3.0 (2.0–5.5) | 4.5 (2.0–6.0) | 3.0 (2.0–5.5) | 3.0 (2.0–6.0) | 0.357 |
Number of blastocysts per cycle | 2.0 (1.0–3.5) | 2.0 (1.0–3.0) | 1.0 (1.0–3.0) | 1.0 (0.0–2.0) | 0.138 |
Blastocysts per embryos cultured until day 5/6; n (rate (%)) | 79 (69.3%) | 103 (53.6%) | 70 (51.6%) | 55 (46.2%) | 0.004 (1 vs. 2 p = 0.007, 1 vs. 3 p = 0.020, 1 vs. 4 p < 0.001, 2 vs. 3 p = 0.857, 2 vs. 4 p = 0.204, 3 vs. 4 p = 0.184) |
Good quality blastocyst per total number of blastocysts (rate (%)) | 52 (65.8%) | 67 (65.0%) | 48 (68.6%) | 36 (65.5%) | 0.968 |
Fair quality blastocyst per total number of blastocysts (rate (%)) | 18 (22.8%) | 18 (17.5%) | 14 (20.0%) | 11 (20.0%) | 0.851 |
Poor quality blastocyst per total number of blastocysts (rate (%)) | 9 (11.4%) | 18 (17.5%) | 8 (11.4%) | 8 (14.5%) | 0.598 |
Age Group Categories | |||||
---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | p-Value | |
Embryo utilization (transferred + frozen embryos); n (rate (%)) | 77 (67.5%) | 100 (52.1%) | 77 (60.2%) | 63 (52.9%) | 0.039 (1 vs. 2 p = 0.008, 1 vs. 3 p = 0.234, 1 vs. 4 p = 0.023, 2 vs. 3 p = 0.156, 2 vs. 4 p = 0.880, 3 vs. 4 p = 0.254) |
Cryopreserved blastocysts; n (rate (% of all embryos)) | 52 (45.6%) | 74 (38.5%) | 47 (36.7%) | 31 (26.1%) | 0.019 (1 vs. 2 p = 0.222, 1 vs. 3 p = 0.162, 1 vs. 4 p = 0.002, 2 vs. 3 p = 0.741, 2 vs. 4 p = 0.024, 3 vs. 4 p = 0.072) |
Cycles with at least one blastocyst on day 5; n (%) | 26 (89.7%) | 34 (89.5%) | 28 (84.8%) | 22 (71.0%) | 0.141 |
Cycles with embryo cryopreservation; n (%) | 15 (51.7%) | 22 (57.9%) | 19 (57.6%) | 11 (35.5%) | 0.232 |
Cycles with freezing without ET; n (%) | 4 (13.8%) | 7 (18.4%) | 4 (12.1%) | 2 (6.5%) | 0.531 |
Cycles without freezing/without ET; n (%) | 0 | 0 | 0 | 0 | |
Total number of fresh ETs | 25 | 31 | 29 | 29 | |
Pregnancies; n (% per fresh ET) | 14 (56.0%) | 13 (41.9%) | 11 (37.9%) | 10 (34.5%) | 0.411 |
Pregnancies; n (% per frozen ET) | 7 (35.0%) | 12 (35.3%) | 3 (12.0%) | 2 (18.2%) | 0.160 |
Cumulative pregnancy rate; n (% per number of all couples) | 21 (72.4%) | 23 (60.5%) | 14 (42.4%) | 11 (35.5%) | 0.015 (1 vs. 2 p = 0.308, 1 vs. 3 p = 0.017, 1 vs. 4 p = 0.004, 2 vs. 3 p = 0.129, 2 vs. 4 p = 0.038, 3 vs. 4 p = 0.569) |
Cumulative delivery rate; n (% per number of all couples) | 13 (44.8%) | 18 (47.4%) | 8 (+1 ongoing) (27.3%) | 5 (16.1%) | 0.023 (1 vs. 2 p = 0.834, 1 vs. 3 p = 0.087, 1 vs. 4 p = 0.016, 2 vs. 3 p = 0.043, 2 vs. 4 p = 0.006, 3 vs. 4 p = 0.418) |
Couples that didn’t get pregnant/deliver, but still have frozen embryos | 0/3 | 2/3 | 4/5 | 0/2 |
Age Group Categories | |||||
---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | p-Value | |
Spent medium samples collected on day 5 | 72 (93.5%) | 86 (86.0%) | 68 (88.3%) | 54 (85.7%) | 0.400 |
Spent medium samples collected on day 6 | 5 (6.5%) | 14 (14.0%) | 9 (11.7%) | 9 (14.3%) | 0.400 |
DNA collected (Library Quantification [ng/µL]) day 5 | 9.82 (4.86–21.98) | 14.0 (6.39–24.2) | 14.45 (9.02–22.08) | 11.95 (6.84–19.3) | 0.166 |
DNA collected (Library Quantification [ng/µL]) day 6 | 13.2 (10.72–28.4) | 18.6 (11.85–38.25) | 23.6 (10.77–36.9) | 11.7 (9.72–22.75) | 0.339 |
DNA collected (Library Quantification [ng/µL]) all samples | 10.04 (4.95–22.53) | 15.7 (7.08–28.05) | 14.7 (9.03–23.05) | 11.8 (7.46–19.3) | 0.055 |
p-value (comparison for amount of DNA collected between day 5 and 6) | 0.203 | 0.088 | 0.191 | 0.691 | |
Euploid embryo rate (%) | 66 (85.7%) | 79 (79.0%) | 63 (81.8%) | 42 (66.7%) | 0.042 (1 vs. 2 p = 0.250, 1 vs. 3 p = 0.509, 1 vs. 4 p = 0.008, 2 vs. 3 p = 0.638, 2 vs. 4 p = 0.080, 3 vs. 4 p = 0.039) |
Male euploid embryo rate | 6 (9.1%) | 4 (5.1%) | 3 (4.8%) | 4 (9.5%) | 0.609 |
Female euploid embryo rate | 60 (90.9.%) | 75 (94.9%) | 60 (95.2%) | 38 (90.5%) | 0.609 |
Mosaic embryo rate (%) | 2 (2.6%) | 0 | 3 (3.9%) | 6 (9.5%) | 0.043 (1 vs. 2 p = 0.105, 1 vs. 3 p = 0.653, 1 vs. 4 p = 0.078, 2 vs. 3 p = 0.047, 2 vs. 4 p = 0.002, 3 vs. 4 p = 0.177) |
Aneuploid embryo rate (%) | 6 (7.8%) | 9 (9.0%) | 7 (9.1%) | 10 (15.9%) | 0.407 |
Unassigned data, Non-informative, without diagnosis | 3 (3.9%) | 12 (12.0%) | 4 (5.2%) | 5 (7.9%) | 0.178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomic, M.; Bokal-Vrtacnik, E.; Stimpfel, M. The Role of Preconception Parental Health on Embryo Quality—Preliminary Results of a Prospective Study Using Non-Invasive Preimplantation Genetic Testing for Aneuploidy. Biomolecules 2025, 15, 1215. https://doi.org/10.3390/biom15091215
Tomic M, Bokal-Vrtacnik E, Stimpfel M. The Role of Preconception Parental Health on Embryo Quality—Preliminary Results of a Prospective Study Using Non-Invasive Preimplantation Genetic Testing for Aneuploidy. Biomolecules. 2025; 15(9):1215. https://doi.org/10.3390/biom15091215
Chicago/Turabian StyleTomic, Maja, Eda Bokal-Vrtacnik, and Martin Stimpfel. 2025. "The Role of Preconception Parental Health on Embryo Quality—Preliminary Results of a Prospective Study Using Non-Invasive Preimplantation Genetic Testing for Aneuploidy" Biomolecules 15, no. 9: 1215. https://doi.org/10.3390/biom15091215
APA StyleTomic, M., Bokal-Vrtacnik, E., & Stimpfel, M. (2025). The Role of Preconception Parental Health on Embryo Quality—Preliminary Results of a Prospective Study Using Non-Invasive Preimplantation Genetic Testing for Aneuploidy. Biomolecules, 15(9), 1215. https://doi.org/10.3390/biom15091215