Evolving Cystic Fibrosis Care: Lung Immunology and Emerging Health Challenges in the Era of CFTR Modulators
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of CFTR Modulators on Pulmonary Immune Response
3.1.1. Modulation of Inflammatory Mediators
3.1.2. Changes in Immune Cell Profiles
3.1.3. Impact on Infection Susceptibility
3.2. Systemic Effects and Emerging Complications
3.2.1. Increased Cancer Risk
3.2.2. Other Systemic Manifestations
3.2.3. Long-Term Safety and Unknowns
3.3. Microbiome and Lung Environment
3.3.1. Microbiome Composition Changes
3.3.2. Correlation with Inflammatory Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Cystic Fibrosis |
CFTR | Cystic Fibrosis Transmembrane Conductance Regulator |
FEV1 | Forced Expiratory Volume in 1 s |
IL | Interleukin |
CFRD | Cystic Fibrosis-Related Diabetes |
References
- Grasemann, H.; Ratjen, F. Cystic Fibrosis. N. Engl. J. Med. 2023, 389, 1693–1707. [Google Scholar] [CrossRef]
- Wang, X.; Tse, C.; Singh, A. Discovery and Development of CFTR Modulators for the Treatment of Cystic Fibrosis. J. Med. Chem. 2025, 68, 2255–2300. [Google Scholar] [CrossRef]
- Taylor-Cousar, J.L.; Robinson, P.D.; Shteinberg, M.; Downey, D.G. CFTR modulator therapy: Transforming the landscape of clinical care in cystic fibrosis. Lancet 2023, 402, 1171–1184. [Google Scholar] [CrossRef] [PubMed]
- O’DOnnell, J.E.M.; Hastings, L.A.; Briody, J.N.; Chan, C.L.; Colombo, C.; Douglas, T.A.; Freedman, S.D.; Gonska, T.; Greenfield, J.R.; Leung, D.H.; et al. SHIFTing goals in cystic fibrosis-managing extrapulmonary disease in the era of CFTR modulator therapy; Proceedings of the International Shaping Initiatives and Future Trends (SHIFT) Symposium. Pediatr. Pulmonol. 2024, 59, 1661–1676. [Google Scholar] [CrossRef]
- Parisi, G.F.; Terlizzi, V.; Manti, S.; Papale, M.; Pecora, G.; Presti, S.; Tosto, M.; Leonardi, S. Cutting-Edge Advances in Cystic Fibrosis: From Gene Therapy to Personalized Medicine and Holistic Management. Genes 2025, 16, 402. [Google Scholar] [CrossRef] [PubMed]
- McBennett, K.A.; Davis, P.B.; Konstan, M.W. Increasing life expectancy in cystic fibrosis: Advances and challenges. Pediatr. Pulmonol. 2022, 57 (Suppl. 1), S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Parisi, G.F.; Papale, M.; Pecora, G.; Rotolo, N.; Manti, S.; Russo, G.; Leonardi, S. Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility. Cancers 2023, 15, 4244. [Google Scholar] [CrossRef]
- Frost, F.J.; Peckham, D.G.; Felton, I.C.; Snowball, J.E.; Gray, R.D.; Jones, A.M.; Simmonds, N.J.; Lord, R.W.; Lip, G.Y.; Chandler, H.; et al. Managing an ageing cystic fibrosis population: Challenges and priorities. Eur. Respir. Rev. 2025, 34, 240261. [Google Scholar] [CrossRef]
- Felipe Montiel, A.; Álvarez Fernández, A.; Traversi, L.; Polverino, E. The ageing of Cystic Fibrosis patients with new modulators: Current gaps and challenges. Expert. Rev. Respir. Med. 2023, 17, 1091–1094. [Google Scholar] [CrossRef]
- Blankenship, S.; Landis, A.R.; Williams, E.H.; Lever, J.E.P.; Garcia, B.; Solomon, G.; Krick, S. What the future holds: Cystic fibrosis and aging. Front. Med. 2024, 10, 1340388. [Google Scholar] [CrossRef]
- Giacalone, V.D.; Dobosh, B.S.; Gaggar, A.; Tirouvanziam, R.; Margaroli, C. Immunomodulation in Cystic Fibrosis: Why and How? Int. J. Mol. Sci. 2020, 21, 3331. [Google Scholar] [CrossRef]
- Keown, K.; Brown, R.; Doherty, D.F.; Houston, C.; McKelvey, M.C.; Creane, S.; Linden, D.; McAuley, D.F.; Kidney, J.C.; Weldon, S.; et al. Airway Inflammation and Host Responses in the Era of CFTR Modulators. Int. J. Mol. Sci. 2020, 21, 6379. [Google Scholar] [CrossRef] [PubMed]
- Casey, M.; Gabillard-Lefort, C.; McElvaney, O.F.; McElvaney, O.J.; Carroll, T.; Heeney, R.C.; Gunaratnam, C.; Reeves, E.P.; Murphy, M.P.; McElvaney, N.G. Effect of elexacaftor/tezacaftor/ivacaftor on airway and systemic inflammation in cystic fibrosis. Thorax 2023, 78, 835–839. [Google Scholar] [CrossRef]
- Rehman, T.; Welsh, M.J. Inflammation as a Regulator of the Airway Surface Liquid pH in Cystic Fibrosis. Cells 2023, 12, 1104. [Google Scholar] [CrossRef] [PubMed]
- Ludovico, A.; Moran, O.; Baroni, D. Modulator Combination Improves In Vitro the Microrheological Properties of the Airway Surface Liquid of Cystic Fibrosis Airway Epithelia. Int. J. Mol. Sci. 2022, 23, 11396. [Google Scholar] [CrossRef]
- Perrem, L.; Ratjen, F. Anti-inflammatories and mucociliary clearance therapies in the age of CFTR modulators. Pediatr. Pulmonol. 2019, 54 (Suppl. 3), S46–S55. [Google Scholar] [CrossRef] [PubMed]
- Halle, O.; Graeber, S.Y.; Kontsendorn, J.; Kessemeier, C.; Falke, J.-N.; Schwabe, J.; Schütz, K.; Pallenberg, S.T.; Dalferth, R.; Grychtol, R.; et al. Reduction of systemic inflammation by elexacaftor/tezacaftor/ivacaftor correlates with lung function improvement in cystic fibrosis. Eur. Respir. J. 2025, 2500150. [Google Scholar] [CrossRef]
- Shaughnessy, C.A.; Zeitlin, P.L.; Bratcher, P.E. Elexacaftor is a CFTR potentiator and acts synergistically with ivacaftor during acute and chronic treatment. Sci. Rep. 2021, 11, 19810. [Google Scholar] [CrossRef]
- García; Solís, M.; Madrid-Carbajal, C.J.; Peláez, A.; Adrián; Moreno, R.M.G.; Alonso, E.F.; Prieto, B.; Punter, R.M.G.; Ancochea, J.; et al. The Role of Triple CFTR Modulator Therapy in Reducing Systemic Inflammation in Cystic Fibrosis. Lung 2025, 203, 55. [Google Scholar] [CrossRef]
- Wang, G.; Nauseef, W.M. Neutrophil dysfunction in the pathogenesis of cystic fibrosis. Blood 2022, 139, 2622–2631. [Google Scholar] [CrossRef]
- Sandri, A.; Boschi, F. Exploring Proteases as Alternative Molecular Targets to Tackle Inflammation in Cystic Fibrosis Respiratory Infections. Int. J. Mol. Sci. 2025, 26, 1871. [Google Scholar] [CrossRef]
- Allen, L.; Allen, L.; Carr, S.B.; Davies, G.; Downey, D.; Egan, M.; Forton, J.T.; Gray, R.; Haworth, C.; Horsley, A.; et al. Future therapies for cystic fibrosis. Nat. Commun. 2023, 14, 693. [Google Scholar] [CrossRef]
- Graeber, S.Y.; Mall, M.A. The future of cystic fibrosis treatment: From disease mechanisms to novel therapeutic approaches. Lancet 2023, 402, 1185–1198. [Google Scholar] [CrossRef]
- Hynes, J.; Taggart, C.C.; Tirouvanziam, R.; Coppinger, J.A. Innate Immunity in Cystic Fibrosis: Varied Effects of CFTR Modulator Therapy on Cell-to-Cell Communication. Int. J. Mol. Sci. 2025, 26, 2636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shrestha, C.L.; Robledo-Avila, F.; Jaganathan, D.; Wisniewski, B.L.; Brown, N.; Pham, H.; Carey, K.; Amer, A.O.; Hall-Stoodley, L.; et al. Cystic fibrosis macrophage function and clinical outcomes after elexacaftor/tezacaftor/ivacaftor. Eur. Respir. J. 2023, 61, 2102861. [Google Scholar] [CrossRef] [PubMed]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Bruscia, E.M.; Bonfield, T.L. Cystic Fibrosis Lung Immunity: The Role of the Macrophage. J. Innate Immun. 2016, 8, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Gifford, A.M.; Chalmers, J.D. The role of neutrophils in cystic fibrosis. Curr. Opin. Hematol. 2014, 21, 16–22. [Google Scholar] [CrossRef]
- Bruscia, E.M.; Bonfield, T.L. Innate and Adaptive Immunity in Cystic Fibrosis. Clin. Chest Med. 2016, 37, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Ideozu, J.E.; Zhang, X.; McColley, S.; Levy, H. Transcriptome Profiling and Molecular Therapeutic Advances in Cystic Fibrosis: Recent Insights. Genes 2019, 10, 180. [Google Scholar] [CrossRef] [PubMed]
- Petrocheilou, A.; Moudaki, A.; Kaditis, A.G. Inflammation and Infection in Cystic Fibrosis: Update for the Clinician. Children 2022, 9, 1898. [Google Scholar] [CrossRef] [PubMed]
- Dwight, M.; Marshall, B. CFTR modulators: Transformative therapies for cystic fibrosis. J. Manag. Care Spec. Pharm. 2021, 27, 281–284. [Google Scholar] [CrossRef]
- Pastor-Vivero, M.D.; i Colomer, J.C.; de Vicente, C.M.; Vicente-Santamaria, S.; Romero, R.G.; Jiménez, D.G.; Paredes, C.L. Advances in the treatment of cystic fibrosis: CFTR modulators. An. De Pediatr. 2025, 102, 503857. [Google Scholar] [CrossRef]
- Milczewska, J.; Syunyaeva, Z.; Żabińska-Jaroń, A.; Sands, D.; Thee, S. Changing profile of bacterial infection and microbiome in cystic fibrosis: When to use antibiotics in the era of CFTR-modulator therapy. Eur. Respir. Rev. 2024, 33, 240068. [Google Scholar] [CrossRef]
- Harwood, K.H.; McQuade, R.M.; Jarnicki, A.; Schneider-Futschik, E.K. Anti-Inflammatory Influences of Cystic Fibrosis Transmembrane Conductance Regulator Drugs on Lung Inflammation in Cystic Fibrosis. Int. J. Mol. Sci. 2021, 22, 7606. [Google Scholar] [CrossRef]
- Artusi, I.; Rubin, M.; Cozza, G. Redox Imbalance in Cystic Fibrosis: The Multifaceted Role of Oxidative Stress. Pharmaceuticals 2025, 18, 784. [Google Scholar] [CrossRef]
- Harvey, C.; Weldon, S.; Elborn, S.; Downey, D.G.; Taggart, C. The Effect of CFTR Modulators on Airway Infection in Cystic Fibrosis. Int. J. Mol. Sci. 2022, 23, 3513. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, S.; Parisi, G.F.; Capizzi, A.; Manti, S.; Cuppari, C.; Scuderi, M.G.; Rotolo, N.; Lanzafame, A.; Musumeci, M.; Salpietro, C. YKL-40 as marker of severe lung disease in cystic fibrosis patients. J. Cyst. Fibros. 2016, 15, 583–586. [Google Scholar] [CrossRef]
- Pulvirenti, G.; Parisi, G.F.; Giallongo, A.; Papale, M.; Manti, S.; Savasta, S.; Licari, A.; Marseglia, G.L.; Leonardi, S. Lower Airway Microbiota. Front. Pediatr. 2019, 7, 393. [Google Scholar] [CrossRef]
- DEL Giudice, M.M.; Parisi, G.F.; Indolfi, C.; Manti, S.; Leonardi, S.; Decimo, F.; Ciprandi, G. Nasal microbiome in chronic rhinosinusitis. Minerva Pediatr. 2022, 74, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Burgel, P.R.; Burnet, E.; Regard, L.; Martin, C. The Changing Epidemiology of Cystic Fibrosis: The Implications for Adult Care. Chest 2023, 163, 89–99. [Google Scholar] [CrossRef]
- Roesch, E.A.; Nichols, D.P.; Chmiel, J.F. Inflammation in cystic fibrosis: An update. Pediatr. Pulmonol. 2018, 53, S30–S50. [Google Scholar] [CrossRef]
- Bongiovanni, A.; Manti, S.; Parisi, G.F.; Papale, M.; Mulè, E.; Rotolo, N.; Leonardi, S. Focus on gastroesophageal reflux disease in patients with cystic fibrosis. World J. Gastroenterol. 2020, 26, 6322–6334. [Google Scholar] [CrossRef]
- Pagliaro, R.; Scialò, F.; Schiattarella, A.; Cianci, R.; Campbell, S.F.M.; Perrotta, F.; Bianco, A.; Castaldo, G. Mechanisms of Lung Cancer Development in Cystic Fibrosis Patients: The Role of Inflammation, Oxidative Stress, and Lung Microbiome Dysbiosis. Biomolecules 2025, 15, 828. [Google Scholar] [CrossRef] [PubMed]
- Indra, R.; Černá, V. The relationship between cancer risk and cystic fibrosis: The role of CFTR in cell growth and cancer development. RSC Med Chem. 2025, 16, 3416–3428. [Google Scholar] [CrossRef] [PubMed]
- Perikleous, E.P.; Gkentzi, D.; Bertzouanis, A.; Paraskakis, E.; Sovtic, A.; Fouzas, S. Antibiotic Resistance in Patients with Cystic Fibrosis: Past, Present, and Future. Antibiotics 2023, 12, 217. [Google Scholar] [CrossRef] [PubMed]
- Maisonneuve, P.; Lowenfels, A.B. Cancer in Cystic Fibrosis: A Narrative Review of Prevalence, Risk Factors, Screening, and Treatment Challenges: Adult Cystic Fibrosis Series. Chest 2022, 161, 356–364. [Google Scholar] [CrossRef]
- Giordano, P.; Leonetti, G.; Granberg, V.; Casolino, R.M.P.; Lassandro, G.; Delvecchio, M.; Linguiti, G. Effect of CFTR modulators on glucose homeostasis in children and young adults with cystic fibrosis-related diabetes: A systematic review. Front. Endocrinol. 2025, 16, 1623654. [Google Scholar] [CrossRef]
- McDonald, C.M.; Reid, E.K.; Pohl, J.F.; Yuzyuk, T.K.; Padula, L.M.; Vavrina, K.; Altman, K. Cystic fibrosis and fat malabsorption: Pathophysiology of the cystic fibrosis gastrointestinal tract and the impact of highly effective CFTR modulator therapy. Nutr. Clin. Pract. 2024, 39 (Suppl. 1), S57–S77. [Google Scholar] [CrossRef] [PubMed]
- Parisi, G.F.; Di Dio, G.; Franzonello, C.; Gennaro, A.; Rotolo, N.; Lionetti, E.; Leonardi, S. Liver disease in cystic fibrosis: An update. Hepat. Mon. 2013, 13, e11215. [Google Scholar] [CrossRef]
- Cobb, C.; Wu, M.; Tangpricha, V. Cystic fibrosis-related bone disease: An update on screening, diagnosis, and treatment. Ther. Adv. Endocrinol. Metab. 2025, 16, 20420188251328210. [Google Scholar] [CrossRef]
- Shah, P.H.; Lee, J.H.; Salvi, D.J.; Rabbani, R.; Gavini, D.R.; Hamid, P. Cardiovascular System Involvement in Cystic Fibrosis. Cureus 2021, 13, e16723. [Google Scholar] [CrossRef]
- Yıldız, C.A.; Gökdemir, Y.; Erdem Eralp, E.; Ergenekon, P.; Karakoç, F.; Karadağ, B. Cystic Fibrosis Treatment Landscape: Progress, Challenges, and Future Directions. Turk. Arch. Pediatr. 2025, 60, 117–125. [Google Scholar] [CrossRef]
- Terlizzi, V.; Fevola, C.; Presti, S.; Castaldo, A.; Daccò, V.; Claut, L.; Sepe, A.; Majo, F.; Casciaro, R.; Esposito, I.; et al. Reported Adverse Events in a Multicenter Cohort of Patients Ages 6-18 Years with Cystic Fibrosis and at Least One F508del Allele Receiving Elexacaftor/Tezacaftor/Ivacaftor. J. Pediatr. 2024, 274, 114176. [Google Scholar] [CrossRef]
- Cuthbertson, L.; Walker, A.W.; Oliver, A.E.; Rogers, G.B.; Rivett, D.W.; Hampton, T.H.; Ashare, A.; Elborn, J.S.; De Soyza, A.; Carroll, M.P.; et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome 2020, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Dalpke, A.H.; Boutin, S. Changes in the Cystic Fibrosis Airway Microbiome in Response to CFTR Modulator Therapy. Front. Cell Infect. Microbiol. 2021, 11, 548613. [Google Scholar] [CrossRef]
- Hisert, K.B.; Saavedra, M.T. The changing face of inflammation following CFTR modulation: Identifying new phenotypes of innate immunity. Thorax 2025, 80, 580–581. [Google Scholar] [CrossRef]
- Blanchard, A.C.; Waters, V.J. Microbiology of Cystic Fibrosis Airway Disease. Semin. Respir. Crit. Care Med. 2019, 40, 727–736. [Google Scholar] [CrossRef]
- Van den Bossche, S.; De Broe, E.; Coenye, T.; Van Braeckel, E.; Crabbé, A. The cystic fibrosis lung microenvironment alters antibiotic activity: Causes and effects. Eur. Respir. Rev. 2021, 30, 210055. [Google Scholar] [CrossRef]
- Françoise, A.; Héry-Arnaud, G. The Microbiome in Cystic Fibrosis Pulmonary Disease. Genes 2020, 11, 536. [Google Scholar] [CrossRef]
- Cauwenberghs, E.; De Boeck, I.; Spacova, I.; Van Tente, I.; Bastiaenssen, J.; Lammertyn, E.; Verhulst, S.; Van Hoorenbeeck, K.; Lebeer, S. Positioning the preventive potential of microbiome treatments for cystic fibrosis in the context of current therapies. Cell Rep. Med. 2024, 5, 101371. [Google Scholar] [CrossRef]
- Koldaş, S.S.; Sezerman, O.U.; Timuçin, E. Exploring the role of microbiome in cystic fibrosis clinical outcomes through a mediation analysis. mSystems 2025, 10, e0019625. [Google Scholar] [CrossRef] [PubMed]
- Parisi, G.F.; Portale, A.; Papale, M.; Tardino, L.; Rotolo, N.; Licari, A.; Leonardi, S. Successful treatment with omalizumab of allergic bronchopulmonary aspergillosis in patients with cystic fibrosis: Case reports and literature review. J. Allergy Clin. Immunol. Pract. 2019, 7, 1636–1638. [Google Scholar] [CrossRef]
- Ronan, N.; Einarsson, G.; Deane, J.; Fouhy, F.; Rea, M.; Hill, C.; Shanahan, F.; Elborn, J.; Ross, R.; McCarthy, M.; et al. Modulation, microbiota and inflammation in the adult CF gut: A prospective study. J. Cyst. Fibros. 2022, 21, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Saluzzo, F.; Riberi, L.; Messore, B.; Loré, N.I.; Esposito, I.; Bignamini, E.; De Rose, V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022, 11, 1243. [Google Scholar] [CrossRef] [PubMed]
- Mulrennan, S.; Sapru, K.; Tewkesbury, D.; Jones, A.M. Beyond the Lungs-Emerging Challenges in Adult Cystic Fibrosis Care. Semin. Respir. Crit. Care Med. 2023, 44, 307–314. [Google Scholar] [CrossRef]
- Terlizzi, V.; Lopes-Pacheco, M. Cystic fibrosis: New challenges and perspectives beyond elexacaftor/tezacaftor/ivacaftor. Ther. Adv. Respir. Dis. 2025, 19, 17534666251323194. [Google Scholar] [CrossRef]
Aspect | Core Findings/Themes | Implications for CF Care |
---|---|---|
Impact of CFTR Modulators on Lung Inflammation | Significant reduction in inflammatory mediators, neutrophil activity, and immune cell dysregulation | Shift from symptomatic to targeted therapy, emphasizing personalized immune modulation |
Microbiome Dynamics in the Era of Modulators | Increased microbial diversity, decreased dominance of pathogenic bacteria, potential for microbiota-based therapies | Promoting microbiome resilience as part of holistic CF management |
Systemic Complications Arising from Long-Term Therapy | Rising risks of cancers, metabolic, hepatic, and bone disease | Necessity for integrated, multidisciplinary monitoring aligned with evolving systemic health profiles |
Theme | Key Challenges | Innovative Solutions & Research Priorities |
---|---|---|
Long-Term Safety & Systemic Risks | Unknown long-term effects on immune surveillance, cancer risk | Establish global CF registries, conduct longitudinal, systems-level studies |
Residual Inflammation & Microbiome Stability | Persistent immune activation, microbiome fluctuations | Develop adjunct immunotherapies, microbiota-targeted interventions |
Personalized & Integrated Care Approaches | Tailoring management to evolve systemic and pulmonary profiles | Advances in biomarkers, multi-omics, personalized medicine strategies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, G.F.; Papale, M.; Pecora, G.; Presti, S.; Tosto, M.; Mulé, E.; Ornato, V.; Aloisio, D.; Leonardi, S. Evolving Cystic Fibrosis Care: Lung Immunology and Emerging Health Challenges in the Era of CFTR Modulators. Biomolecules 2025, 15, 1460. https://doi.org/10.3390/biom15101460
Parisi GF, Papale M, Pecora G, Presti S, Tosto M, Mulé E, Ornato V, Aloisio D, Leonardi S. Evolving Cystic Fibrosis Care: Lung Immunology and Emerging Health Challenges in the Era of CFTR Modulators. Biomolecules. 2025; 15(10):1460. https://doi.org/10.3390/biom15101460
Chicago/Turabian StyleParisi, Giuseppe Fabio, Maria Papale, Giulia Pecora, Santiago Presti, Monica Tosto, Enza Mulé, Vittorio Ornato, Donatella Aloisio, and Salvatore Leonardi. 2025. "Evolving Cystic Fibrosis Care: Lung Immunology and Emerging Health Challenges in the Era of CFTR Modulators" Biomolecules 15, no. 10: 1460. https://doi.org/10.3390/biom15101460
APA StyleParisi, G. F., Papale, M., Pecora, G., Presti, S., Tosto, M., Mulé, E., Ornato, V., Aloisio, D., & Leonardi, S. (2025). Evolving Cystic Fibrosis Care: Lung Immunology and Emerging Health Challenges in the Era of CFTR Modulators. Biomolecules, 15(10), 1460. https://doi.org/10.3390/biom15101460