Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges
Abstract
1. Introduction
2. Source Cells for RGC Replacement
3. Stem Cell Strategies in RGC Regeneration and Protection
3.1. Stem Cell Transplantation and Replacement
3.2. Stem Cell-Mediated Neuroprotection
3.3. Endogenous Transdifferentiation and Nerve Repair
3.4. Cellular Materialtransfer
4. Challenges Ahead and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef]
- Kaminska, A.; Romano, G.L.; Rejdak, R.; Zweifel, S.; Fiedorowicz, M.; Rejdak, M.; Bajka, A.; Amato, R.; Bucolo, C.; Avitabile, T.; et al. In-fluence of Trace Elements on Neurodegenerative Diseases of The Eye-The Glaucoma Model. Int. J. Mol. Sci. 2021, 22, 4323. [Google Scholar] [CrossRef]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Toro, M.D.; Brézin, A.P.; Burdon, M.; Cummings, A.B.; Kemer, O.E.; Malyugin, B.E.; Prieto, I.; Teus, M.A.; Tognetto, D.; Törnblom, R.; et al. Early impact of COVID-19 outbreak on eye care: Insights from EUROCOVCAT group. Eur. J. Ophthalmol. 2021, 31, 5–9. [Google Scholar] [CrossRef]
- Posarelli, C.; Ortenzio, P.; Ferreras, A.; Toro, M.D.; Passani, A.; Loiudice, P.; Oddone, F.; Casini, G.; Figus, M. Twenty-Four-Hour Contact Lens Sensor Monitoring of Aqueous Humor Dynamics in Surgically or Medically Treated Glaucoma Patients. J. Ophthalmol. 2019, 2019, 9890831. [Google Scholar] [CrossRef] [PubMed]
- Posarelli, C.; Toro, M.D.; Rejdak, R.; Żarnowski, T.; Pożarowska, D.; Longo, A.; Miccoli, M.; Nardi, M.; Figus, M. Safety and Efficacy of Second Ahmed Valve Implant in Refractory Glaucoma. J. Clin. Med. 2020, 9, 2039. [Google Scholar] [CrossRef] [PubMed]
- Cockburn, D.M. Does Reduction of Intraocular Pressure (IOP) Prevent Visual Field Loss in Glaucoma? Am. J. Optom. Physiol. Opt. 1983, 60, 705–711. [Google Scholar] [CrossRef]
- The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am. J. Ophthalmol. 2000, 130, 429–440. [Google Scholar] [CrossRef]
- Stern, J.H.; Tian, Y.; Funderburgh, J.; Pellegrini, G.; Zhang, K.; Goldberg, J.L.; Ali, R.; Young, M.; Xie, Y.; Temple, S. Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell 2018, 22, 834–849. [Google Scholar] [CrossRef]
- Hua, Z.-Q.; Liu, H.; Wang, N.; Jin, Z.-B. Towards Stem Cell-Based Neuronal Regeneration for Glaucoma; Elsevier: Amsterdam, The Netherlands, 2020; Volume 257, pp. 99–118. [Google Scholar]
- Jin, Z.-B.; Takahashi, M. Generation of retinal cells from pluripotent stem cells. Prog. Brain Res. 2012, 201, 171–181. [Google Scholar] [CrossRef]
- Teotia, P.; Chopra, D.A.; Dravid, S.M.; Van Hook, M.J.; Qiu, F.; Morrison, J.; Rizzino, A.; Ahmad, I. Generation of Functional Human Retinal Ganglion Cells with Target Specificity from Pluripotent Stem Cells by Chemically Defined Recapitulation of Devel-opmental Mechanism. Stem Cells 2017, 35, 572–585. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Ando, S.; Takata, N.; Kawada, M.; Muguruma, K.; Sekiguchi, K.; Saito, K.; Yonemura, S.; Eiraku, M.; Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012, 10, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011, 472, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Eiraku, M.; Sasai, Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat. Protoc. 2011, 7, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.-H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.; et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 2014, 5, 4047. [Google Scholar] [CrossRef]
- Pan, D.; Xia, X.X.; Zhou, H.; Jin, S.Q.; Lu, Y.Y.; Liu, H.; Gao, M.L.; Jin, Z.B. COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Res. Ther. 2020, 11, 366. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, Z.-B. Directed Induction of Retinal Organoids from Human Pluripotent Stem Cells. J. Vis. Exp. 2021, 2021, e62298. [Google Scholar] [CrossRef]
- Li, Y.-P.; Deng, W.-L.; Jin, Z.-B. Modeling retinitis pigmentosa through patient-derived retinal organoids. STAR Protoc. 2021, 2, 100438. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Y.; Zhang, Y.-Y.; Li, Y.-P.; Hua, Z.-Q.; Zhang, C.-J.; Wu, K.-C.; Yu, F.; Zhang, Y.; Su, J.; et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proc. Natl. Acad. Sci. USA 2020, 117, 33628–33638. [Google Scholar] [CrossRef]
- Miltner, A.M.; La Torre, A. Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Dev. Dyn. 2019, 248, 118–128. [Google Scholar] [CrossRef]
- Hertz, J.; Qu, B.; Hu, Y.; Patel, R.D.; Valenzuela, D.A.; Goldberg, J.L. Survival and Integration of Developing and Progenitor-Derived Retinal Ganglion Cells following Transplantation. Cell Transplant. 2014, 23, 855–872. [Google Scholar] [CrossRef]
- Venugopalan, P.; Wang, Y.; Nguyen, T.; Huang, A.; Muller, K.J.; Goldberg, J.L. Transplanted neurons integrate into adult retinas and respond to light. Nat. Commun. 2016, 7, 10472. [Google Scholar] [CrossRef]
- Gill, K.P.; Hung, S.S.; Sharov, A.; Lo, C.Y.; Needham, K.; Lidgerwood, G.E.; Jackson, S.; Crombie, D.E.; Nayagam, B.A.; Cook, A.L.; et al. En-riched retinal ganglion cells derived from human embryonic stem cells. Sci. Rep. 2016, 6, 30552. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, J.G.; Hopp, H.; Choi, A.; Mandayam Comar, J.; Liao, V.C.; Harutyunyan, N.; Lee, T.C. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell de-rived retina. Exp. Eye Res. 2017, 154, 177–189. [Google Scholar] [CrossRef]
- Pearson, R.A.; Barber, A.C.; Rizzi, M.; Hippert, C.; Xue, T.; West, E.; Duran, Y.; Smith, A.J.; Chuang, J.Z.; Azam, S.A.; et al. Restoration of vision after transplantation of photoreceptors. Nat. Cell Biol. 2012, 485, 99–103. [Google Scholar] [CrossRef]
- Ringuette, R.; Wang, Y.; Atkins, M.; Mears, A.J.; Yan, K.; Wallace, V.A. Combinatorial Hedgehog and Mitogen Signaling Promotes the In Vitro Expansion but Not Retinal Differentiation Potential of Retinal Progenitor Cells. Investig. Opthalmol. Vis. Sci. 2014, 55, 43–54. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Czekaj, M.; Haas, J.; Gebhardt, M.; Müller-Reichert, T.; Humphries, P.; Farrar, J.; Bartsch, U.; Ader, M. In Vitro Expanded Stem Cells from the Developing Retina Fail to Generate Photoreceptors but Differentiate into Myelinating Oligodendrocytes. PLoS ONE 2012, 7, e41798. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gualdoni, S.; Baron, M.; Lakowski, J.; Decembrini, S.; Smith, A.J.; Pearson, R.A.; Ali, R.R.; Sowden, J.C. Adult ciliary epithelial cells, pre-viously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells 2010, 28, 1048–1059. [Google Scholar] [CrossRef]
- Duan, X.; Qiao, M.; Bei, F.; Kim, I.-J.; He, Z.; Sanes, J.R. Subtype-Specific Regeneration of Retinal Ganglion Cells following Axotomy: Effects of Osteopontin and mTOR Signaling. Neuron 2015, 85, 1244–1256. [Google Scholar] [CrossRef]
- Tran, N.M.; Shekhar, K.; Whitney, I.E.; Jacobi, A.; Benhar, I.; Hong, G.; Yan, W.; Adiconis, X.; Arnold, M.E.; Lee, J.M.; et al. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron 2019, 104, 1039–1055.e1012. [Google Scholar] [CrossRef]
- Collin, J.; Queen, R.; Zerti, D.; Dorgau, B.; Hussain, R.; Coxhead, J.; Cockell, S.; Lako, M. Deconstructing Retinal Organoids: Single Cell RNA-Seq Reveals the Cellular Components of Human Pluripotent Stem Cell-Derived Retina. Stem Cells 2019, 37, 593–598. [Google Scholar] [CrossRef]
- Zerti, D.; Collin, J.; Queen, R.; Cockell, S.J.; Lako, M. Understanding the complexity of retina and pluripotent stem cell derived retinal organoids with single cell RNA sequencing: Current progress, remaining challenges and future prospective. Curr. Eye Res. 2020, 45, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Langer, K.B.; Ohlemacher, S.K.; Phillips, M.J.; Fligor, C.M.; Jiang, P.; Gamm, D.M.; Meyer, J.S. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells. Stem Cell Rep. 2018, 10, 1282–1293. [Google Scholar] [CrossRef]
- Fu, M.; Zhu, B.; Sun, X.; Luo, D. The role of induced pluripotent stem cell (IPs) in the transplantation of glaucoma. Med. Glas. 2014, 11, 289–294. [Google Scholar]
- Divya, M.S.; Rasheed, V.A.; Schmidt, T.; Lalitha, S.; Hattar, S.; James, J. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models. Front. Cell. Neurosci. 2017, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Oswald, J.; Kegeles, E.; Minelli, T.; Volchkov, P.; Baranov, P. Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas. Mol. Ther. Methods Clin. Dev. 2021, 21, 180–198. [Google Scholar] [CrossRef]
- Singhal, S.; Bhatia, B.; Jayaram, H.; Becker, S.; Jones, M.F.; Cottrill, P.B.; Khaw, P.T.; Salt, T.E.; Limb, G.A. Human Muller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo fol-lowing transplantation. Stem Cells Transl. Med. 2012, 1, 188–199. [Google Scholar] [CrossRef]
- Suen, H.C.; Qian, Y.; Liao, J.; Luk, C.S.; Lee, W.T.; Ng, J.K.W.; Chan, T.T.H.; Hou, H.W.; Li, I.; Li, K.; et al. Transplantation of Retinal Ganglion Cells Derived from Male Germline Stem Cell as a Potential Treatment to Glaucoma. Stem Cells Dev. 2019, 28, 1365–1375. [Google Scholar] [CrossRef]
- Eastlake, K.; Wang, W.; Jayaram, H.; Murray-Dunning, C.; Carr, A.J.F.; Ramsden, C.M.; Vugler, A.; Gore, K.; Clemo, N.; Stewart, M.; et al. Phenotypic and Functional Characterization of Muller Glia Isolated from Induced Pluripotent Stem Cell-Derived Retinal Or-ganoids: Improvement of Retinal Ganglion Cell Function upon Transplantation. Stem Cells Transl. Med. 2019, 8, 775–784. [Google Scholar]
- Chao, J.R.; Lamba, D.A.; Klesert, T.R.; Torre, A.; Hoshino, A.; Taylor, R.J.; Jayabalu, A.; Engel, A.L.; Khuu, T.H.; Wang, R.K.; et al. Trans-plantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate. Transl. Vis. Sci. Technol. 2017, 6, 4. [Google Scholar] [CrossRef]
- Song, W.-T.; Zhang, X.-Y.; Xia, X.-B. Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma. Exp. Biol. Med. 2015, 240, 682–690. [Google Scholar] [CrossRef]
- He, Y.; Li, H.-B.; Li, X.; Zhou, Y.; Xia, X.-B.; Song, W.-T. MiR-124 Promotes the Growth of Retinal Ganglion Cells Derived from Müller Cells. Cell. Physiol. Biochem. 2018, 45, 973–983. [Google Scholar] [CrossRef]
- Aoki, H.; Hara, A.; Niwa, M.; Motohashi, T.; Suzuki, T.; Kunisada, T. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 246, 255–265. [Google Scholar] [CrossRef]
- Hambright, D.; Park, K.-Y.; Brooks, M.; McKay, R.; Swaroop, A.; Nasonkin, I.O. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol. Vis. 2012, 18, 920–936. [Google Scholar]
- Zhang, X.; Tenerelli, K.; Wu, S.; Xia, X.; Yokota, S.; Sun, C.; Galvao, J.; Venugopalan, P.; Li, C.; Madaan, A.; et al. Cell transplantation of retinal ganglion cells derived from hESCs. Restor. Neurol. Neurosci. 2020, 38, 131–140. [Google Scholar] [CrossRef]
- Banin, E.; Obolensky, A.; Idelson, M.; Hemo, I.; Reinhardtz, E.; Pikarsky, E.; Reubinoff, B.; Ben-Hur, T. Retinal Incorporation and Differentiation of Neural Precursors Derived from Human Embryonic Stem Cells. Stem Cells 2006, 24, 246–257. [Google Scholar] [CrossRef]
- Yu, S.; Tanabe, T.; Dezawa, M.; Ishikawa, H.; Yoshimura, N. Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem. Biophys. Res. Commun. 2006, 344, 1071–1079. [Google Scholar] [CrossRef]
- Su, W.; Li, Z.; Jia, Y.; Zhu, Y.; Cai, W.; Wan, P.; Zhang, Y.; Zheng, S.G.; Zhuo, Y. microRNA-21a-5p/PDCD4 axis regulates mesenchymal stem cell-induced neuroprotection in acute glaucoma. J. Mol. Cell Biol. 2017, 9, 289–301. [Google Scholar] [CrossRef]
- Mead, B.; Hill, L.; Blanch, R.J.; Ward, K.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Mesenchymal stromal cell–mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy 2016, 18, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Tan, H.B.; Wang, X.M.; Rong, H.; Cui, H.P.; Cui, H. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma. Clin. Interv. Aging 2013, 8, 1467–1470. [Google Scholar] [PubMed]
- Osborne, A.; Sanderson, J.; Martin, K.R. Neuroprotective Effects of Human Mesenchymal Stem Cells and Platelet-Derived Growth Factor on Human Retinal Ganglion Cells. Stem Cells 2018, 36, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Mead, B.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Intravitreally transplanted dental pulp stem cells promote neuro-protection and axon regeneration of retinal ganglion cells after optic nerve injury. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7544–7556. [Google Scholar] [CrossRef]
- Osborne, A.; Khatib, T.Z.; Songra, L.; Barber, A.C.; Hall, K.; Kong, G.Y.X.; Widdowson, P.S.; Martin, K.R. Neuroprotection of retinal gan-glion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic fac-tor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018, 9, 1007. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.M.; Grozdanic, S.D.; Blits, B.; Kuehn, M.H.; Zamzow, D.; Buss, J.; Kardon, R.; Sakaguchi, D.S. Transplantation of BDNF-Secreting Mesenchymal Stem Cells Provides Neuroprotection in Chronically Hypertensive Rat Eyes. Investig. Opthalmol. Vis. Sci. 2011, 52, 4506–4515. [Google Scholar] [CrossRef] [PubMed]
- Levkovitch-Verbin, H.; Sadan, O.; Vander, S.; Rosner, M.; Barhum, Y.; Melamed, E.; Offen, D.; Melamed, S. Intravitreal Injections of Neurotrophic Factors Secreting Mesenchymal Stem Cells Are Neuroprotective in Rat Eyes following Optic Nerve Transection. Investig. Opthalmol. Vis. Sci. 2010, 51, 6394–6400. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, 6478. [Google Scholar] [CrossRef] [PubMed]
- Mead, B.; Tomarev, S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl. Med. 2017, 6, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.; Ravindran, S.; Liu, X.; Torres, L.; Chennakesavalu, M.; Huang, C.C.; Feng, L.; Zelka, R.; Lopez, J.; Sharma, M.; et al. Mesen-chymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials 2019, 197, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Mead, B.; Ahmed, Z.; Tomarev, S. Mesenchymal Stem Cell–Derived Small Extracellular Vesicles Promote Neuroprotection in a Genetic DBA/2J Mouse Model of Glaucoma. Investig. Opthalmol. Vis. Sci. 2018, 59, 5473–5480. [Google Scholar] [CrossRef] [PubMed]
- Jindal, N.; Banik, A.; Prabhakar, S.; Vaiphie, K.; Anand, A. Alteration of Neurotrophic Factors After Transplantation of Bone Marrow Derived Lin-ve Stem Cell in NMDA-Induced Mouse Model of Retinal Degeneration. J. Cell. Biochem. 2017, 118, 1699–1711. [Google Scholar] [CrossRef]
- Ma, J.; Guo, C.; Guo, C.; Sun, Y.; Liao, T.; Beattie, U.; López, F.J.; Chen, D.F.; Lashkari, K. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival. PLoS ONE 2015, 10, e0125695. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, N.; Zeng, M.; Ruan, Y.; Wu, H.; Chen, J.; Fan, Z.; Zhen, H. Protection of retinal ganglion cells against glaucomatous neuropathy by neurotrophin-producing, genetically modified neural progenitor cells in a rat model. Chin. Med. J. 2002, 115, 1394–1400. [Google Scholar] [PubMed]
- Bernardos, R.L.; Barthel, L.K.; Meyers, J.R.; Raymond, P.A. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J. Neurosci. 2007, 27, 7028–7040. [Google Scholar] [CrossRef] [PubMed]
- Song, W.-T.; Zhang, X.-Y.; Xia, X.-B. Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling. Stem Cell Res. Ther. 2013, 4, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Su, J.; Hu, X.; Zhou, C.; Li, H.; Chen, Z.; Xiao, Q.; Wang, B.; Wu, W.; Sun, Y.; et al. Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell 2020, 181, 590–603.e516. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Qiu, S.; Huang, X.; Zhang, R.; Lei, Q.; Huang, W.; Chen, H.; Gou, B.; Tie, X.; Liu, S.; et al. Directed robust generation of functional retinal ganglion cells from M€uller glia. bioRxiv 2019. [Google Scholar] [CrossRef]
- Lu, Y.; Brommer, B.; Tian, X.; Krishnan, A.; Meer, M.; Wang, C.; Vera, D.L.; Zeng, Q.; Yu, D.; Bonkowski, M.S.; et al. Reprogramming to recover youthful epigenetic information and restore vision. Nat. Cell Biol. 2020, 588, 124–129. [Google Scholar] [CrossRef]
- Pearson, R.A.; Gonzalez-Cordero, A.; West, E.L.; Ribeiro, J.R.; Aghaizu, N.; Goh, D.; Sampson, R.D.; Georgiadis, A.; Waldron, P.V.; Duran, Y.; et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat. Commun. 2016, 7, 13029. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Chen, F.-X.; Zhou, H.; Lu, Y.-Y.; Tan, H.; Yu, S.-J.; Yuan, J.; Liu, H.; Meng, W.; Jin, Z.-B. Bioenergetic Crosstalk between Mesenchymal Stem Cells and various Ocular Cells through the intercellular trafficking of Mitochondria. Theranostics 2020, 10, 7260–7272. [Google Scholar] [CrossRef]
- Santos-Ferreira, T.; Llonch, S.; Borsch, O.; Postel, K.; Haas, J.; Ader, M. Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange. Nat. Commun. 2016, 7, 13028. [Google Scholar] [CrossRef]
- Singh, M.S.; Balmer, J.; Barnard, A.R.; Aslam, S.A.; Moralli, D.; Green, C.M.; Barnea-Cramer, A.; Duncan, I.; MacLaren, R. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat. Commun. 2016, 7, 13537. [Google Scholar] [CrossRef]
- Zou, T.; Gao, L.; Zeng, Y.; Li, Q.; Li, Y.; Chen, S.; Hu, X.; Chen, X.; Fu, C.; Xu, H.; et al. Organoid-derived C-Kit+/SSEA4− human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nat. Commun. 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Suzuki, D.; Flahou, C.; Yoshikawa, N.; Stirblyte, I.; Hayashi, Y.; Sawaguchi, A.; Akasaka, M.; Nakamura, S.; Higashi, N.; Xu, H.; et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Rep. 2020, 14, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.L.; Gao, M.L.; Lei, X.L.; Lv, J.N.; Zhao, H.; He, K.W.; Xia, X.X.; Li, L.Y.; Chen, Y.C.; Li, Y.P.; et al. Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients. Stem Cell Rep. 2018, 10, 2005. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.V.; Bull, N.D.; Martin, K.R. Identification of Barriers to Retinal Engraftment of Transplanted Stem Cells. Investig. Opthalmol. Vis. Sci. 2010, 51, 960–970. [Google Scholar] [CrossRef]
- Li, K.; Zhong, X.; Yang, S.; Luo, Z.; Li, K.; Liu, Y.; Cai, S.; Gu, H.; Lu, S.; Zhang, H.; et al. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold. Acta Biomater. 2017, 54, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, L.I.; He, Z.; Goldberg, J.L. Reaching the brain: Advances in optic nerve regeneration. Exp. Neurol. 2017, 287, 365–373. [Google Scholar] [CrossRef]
- Trakhtenberg, E.F.; Li, Y.; Feng, Q.; Tso, J.; Rosenberg, P.A.; Goldberg, J.L.; Benowitz, L.I. Zinc chelation and Klf9 knockdown cooper-atively promote axon regeneration after optic nerve injury. Exp. Neurol. 2018, 300, 22–29. [Google Scholar] [CrossRef]
- Moore, D.; Blackmore, M.G.; Hu, Y.; Kaestner, K.H.; Bixby, J.; Lemmon, V.; Goldberg, J.L. KLF Family Members Regulate Intrinsic Axon Regeneration Ability. Science 2009, 326, 298–301. [Google Scholar] [CrossRef]
- de Lima, S.; Koriyama, Y.; Kurimoto, T.; Oliveira, J.T.; Yin, Y.; Li, Y.; Gilbert, H.Y.; Fagiolini, M.; Martinez, A.M.; Benowitz, L. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc. Natl. Acad. Sci. USA 2012, 109, 9149–9154. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-H.A.; Stafford, B.K.; Nguyen, P.L.; Lien, B.V.; Wang, C.; Zukor, K.; He, Z.; Huberman, A.D. Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nat. Neurosci. 2016, 19, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, X.; Meng, H.; Li, Y.; Dmitriev, P.; Tian, F.; Page, J.C.; Lu, Q.R.; He, Z. Robust Myelination of Regenerated Axons Induced by Combined Manipulations of GPR17 and Microglia. Neuron 2020, 108, 876–886.e874. [Google Scholar] [CrossRef] [PubMed]
Donor Cells | Source of Donor Cells | Animal Model | Position of Transplantation | Does (Cells/Eye) | Layers of Integration | Cell Survival Time (Observation Period) | Survival Numbers/Rates of Transplanted Cell | Immunosuppressant | Functioal Evaluation | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Müller-RSC (Aton7 overexpressed) | rat | Laser induced hypertension rat | vitreous | 50,000 | INL-GCL | 14 days | N/A | N/A | N/A | [42] |
Müller-RSC-RGC | rat | Laser induced hypertension rat | Subretinal | 50,000 | GCL | 14 days | N/A | N/A | N/A | [43] |
Müller-RGC precursor | Human | NMDA induced retina injury Rat | Intravitreal | 40,000 | GCL | 4 weeks | N/A | cyclosporine A/prednisolone/azathioprine | ERG preserved | [38] |
NPCs-RGC | rat | Optic Nerve Axotomy rat | Intravitreal | 50,000 | GCL | 1 week | 1600 (24 h)/600 (1 week) | N/A | N/A | [22] |
iPSC/ESC -RGC | mouse | WT/Microbeads induced hypertension/ NMDA induced retina injury mouse | Intravitreal | 20,000 | GCL | 48 weeks/2 weeks | 1% | N/A | N/A | [37] |
ESC-RPC | mouse | NMDA induced retina injury mouse | Intravitreal | Unknown | GCL | 8 weeks | N/A | N/A | N/A | [44] |
SSC-ESC-RGC | mouse | NMDA induced retina injury mouse | Intravitreal | 10,000 | GCL | 10 days | N/A | N/A | N/A | [39] |
ESC-NPC | mouse | NMDA induced retina injury mouse/DBA2J | Intravitreal | 1,000,000 | GCL | 8 weeks | N/A | N/A | Visual acuity increased; Improve Visual function (Light Avoidance Experiment) /both Negative in DBA2J | [36] |
iPSC-Müller | human | NMDA induced retina injury rat | Intravitreal | 100,000 | GCL | 4 weeks | N/A | Azathioprine/prednisolone/cyclosporin A | ERG preserved | [40] |
ESC-RPC | human | WT mouse | Subretinal and epiretinal | 50,000 | GCL/INL, ONL | 12 weeks | N/A | N/A | N/A | [45] |
ESC-RGC | human | WT rat | Intravitreal | 50,000 | GCL | 7 days | 19–25/mm2 retina wholemount | N/A | N/A | [46] |
ESC-Retinal Neurons | human | Squirrel monkey | submacular space | 1,000,000 | GCL, INL | 12 weeks | N/A | N/A | N/A | [41] |
ESC-NP | human | WT sabra rat | Intravitreal/ Subretinal | 60,000–100,000 | IPL | 4 weeks/ 8–16 weeks | 55,611/197,481 | cyclosporine A | N/A | [47] |
Type of SC | Sources | Animal Model | Position of Transplantation | Does Cells/Eye | Integration | Observation Period (Survival Rates/Numbers of Transplanted Cell) | Functional Factors | Immunosuppressant | Positive Results of Functional Evaluation | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Lineage negative cells from bone marrow | mouse | NMDA induced retina injury mouse | Intravitreal | 100,000 | GCL, INL | 21 days | CNTF, BDNF, GDNF | N/A | N/A | [61] |
IGF1-NPC | human | Microbeads induced hypertension mouse | Intravitreal | 200,000 | N/A | 30 days | IGF1 | N/A | Enhanced RGC survival Enhanced Axon survival | [62] |
BDNF-MSCs | rat | Laser induced hypertension rat | Intravitreal | 200,000 | GCL | 42 days (17.62% survival rate) | BDNF | N/A | ERG preserved Enhanced RGC survival | [55] |
BDNF-NPC | N/A | optic nerve crush rat | Intravitreal | 160,000 | N/A | N/A | BDNF | N/A | Enhanced RGC survival | [63] |
NTF-MSCs | human | optic nerve crush rat | Intravitreal | 400,000 | N/A | 24 days (418 cells/10 slides) | BDNF, GDNF | Cyclosporine A | Enhanced RGC survival | [56] |
MSCs | mouse | Normal saline anterior chamber perfusion mouse | Intravitreal | 50,000 | N/A | N/A | miR-21 / PDCD4 | N/A | Enhanced RGC survival Inflammatory factors decreased Microglia inhibition | [49] |
BMSC | rat | Episcleral vein cautery induced hypertension rat | Intravitreal | 200,000 | GCL | 8 weeks (few transplanted cells) | CNTF, bFGF | N/A | Enhanced RGC survival | [48] |
MSCs | Human | Intracameral injection of TGFβ1 induced hypertension rat | Intravitreal | 150,000 | N/A | N/A | N/A | N/A | RNFL preserved Enhanced RGC survival pSTR preserved | [50] |
BMSC | unknown | Laser induced hypertension rat | Intravitreal | 30,000/100,000 | N/A | N/A | N/A | N/A | Enhanced RGC survival Improve Visual function (Water maze) | [51] |
BMSCs | human | Human Retinal Explant | directly drop | 5000 | N/A | 7 days | PDGF | N/A | Enhanced RGC survival Enhanced NeuN+ cells survival | [52] |
DPSC | rat | optic nerve crush rat | Intravitreal | 150,000 | N/A | 21 days | NGF, BDNF, NT-3 | N/A | Enhanced RGC survival RNFL preserved Axon regeneration | [53] |
Exosomes derived from BMSC | human | optic nerve crush rat | Intravitreal | 3 × 109 | N/A | N/A | miRNA in exosomes | N/A | RNFL preserved pSTR preserved Axon regeneration | [58] |
Exosomes derived from MSCs | human | Ischemia-Reperfusion rat | Intravitreal | 4 × 106 | N/A | N/A | N/A | N/A | pSTR preserved Apoptosis decreased Inflammatory factors decreased | [59] |
Exosomes derived from BMSC | human | DBA/2J mouse | Intravitreal | 1 × 109 | N/A | N/A | N/A | N/A | Enhanced RGC survival pSTR preserved | [60] |
Factors | Method of Transfection | Animal Model | Efficiency | Mechanism | Function | Ref. |
---|---|---|---|---|---|---|
math5, Brn3b/a/c overexpression | AAV9 | optic nerve crush mouse | 92.8% Rbpms+ RGCs of infected Müller 67.9% Brn3a+ RGCs of infected Müller | reprogramming Müller to RGC | Connect to appropriate central targets, Exhibited typical neuronal electrophysiological properties Increase of RGCs Stronger VEP response | [67] |
OCT4, SOX2, KLF4 overexpression | AAV2 | optic nerve crush mouse Microbeads induced hypertension mouse | 40% RGC infected | restores youthful DNA methylation patterns and transcriptomes of aging and injured RGC, | Promote RGC survival promote axon regeneration Restore visual function (optomotor response & PERG) | [68] |
Ptbp1 knockdown | AAV-CasRx-ptbp1 | NMDA Induced Retinal Injury mouse | more than half infected Müller cells in GCL expressed Brn3a and Rbpms | reprogramming Müller to RGC | Connect to appropriate central targets, vision-dependent behavior restored (Light Avoidance Experiment;) | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wu, S.; Jin, Z.-B.; Wang, N. Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules 2021, 11, 987. https://doi.org/10.3390/biom11070987
Zhang J, Wu S, Jin Z-B, Wang N. Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules. 2021; 11(7):987. https://doi.org/10.3390/biom11070987
Chicago/Turabian StyleZhang, Jingxue, Shen Wu, Zi-Bing Jin, and Ningli Wang. 2021. "Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges" Biomolecules 11, no. 7: 987. https://doi.org/10.3390/biom11070987
APA StyleZhang, J., Wu, S., Jin, Z.-B., & Wang, N. (2021). Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules, 11(7), 987. https://doi.org/10.3390/biom11070987