# Yukawa–Casimir Wormholes in f(Q) Gravity

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Symmetric Teleparallel Gravity i.e., $\mathit{f}\left(\mathit{Q}\right)$-Gravity

## 3. Wormhole Geometry and Solution of Field Equations in $\mathit{f}\left(\mathit{Q}\right)$ Gravity

#### The Energy Conditions

## 4. The Yukawa–Casimir Wormhole Model

#### 4.1. Linear Form: $f\left(Q\right)=\alpha Q$

#### 4.2. Power Law Form: $f\left(Q\right)=\alpha {Q}^{2}+\beta $

#### 4.3. Quadratic Form: $f\left(Q\right)=\alpha {Q}^{2}+\beta Q+\gamma $

#### 4.4. Inverse Power Law Form: $f\left(Q\right)=Q+\frac{\alpha}{Q}$

## 5. Discussion and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

#### Appendix A.1. Linear Form: f(Q) = αQ

#### Appendix A.2. Power Law Form: f(Q) = αQ^{2} + β

#### Appendix A.3. Quadratic Form: f(Q) = αQ^{2} + βQ + γ

#### Appendix A.4. Inverse Power Law Form: f(Q) = Q + $\frac{\alpha}{Q}$

## References

- Shaikh, R.; Banerjee, P.; Paul, S.; Sarkar, T. A novel gravitational lensing feature by wormholes. Phys. Lett. B
**2019**, 789, 270–275, Erratum in Phys. Lett. B**2019**, 791, 422–423. [Google Scholar] [CrossRef] - Manna, T.; Rahaman, F.; Chowdhury, T. Strong Lensing in the Exponential Wormhole Spacetimes. Available online: http://doi.org/10.2139/ssrn.4349260 (accessed on 26 February 2023).
- Jusufi, K.; Övgün, A.A.B.; Sakallı, I. Gravitational lensing by wormholes supported by electromagnetic, scalar, and quantum effects. Eur. Phys. J. Plus.
**2019**, 134, 428. [Google Scholar] [CrossRef] [Green Version] - Flamm, L. Comments on Einstein’s theory of gravity. Phys. Z.
**1916**, 17, 448. [Google Scholar] - Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep.
**2011**, 509, 167–321. [Google Scholar] [CrossRef] [Green Version] - Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev.
**1935**, 48, 73–77. [Google Scholar] [CrossRef] - Jusufi, K.; Övgün, A. Gravitational Lensing by Rotating Wormholes. Phys. Rev. D
**2018**, 97, 024042. [Google Scholar] [CrossRef] [Green Version] - Övgün, A.K.J.; Sakallı, I. Exact traversable wormhole solution in bumblebee gravity. Phys. Rev. D
**2019**, 99, 024042. [Google Scholar] [CrossRef] [Green Version] - Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys.
**1988**, 56, 395–412. [Google Scholar] [CrossRef] [Green Version] - Clement, G. The Ellis geometry. Am. J. Phys.
**1989**, 57, 967. [Google Scholar] [CrossRef] - Shinkai, H.A.; Hayward, S.A. Fate of the first traversible wormhole: Black hole collapse or inflationary expansion. Phys. Rev. D
**2002**, 66, 044005. [Google Scholar] [CrossRef] [Green Version] - Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett.
**1988**, 61, 1446–1449. [Google Scholar] [CrossRef] [Green Version] - Kim, S.W.; Thorne, K.S. Do vacuum fluctuations prevent the creation of closed timelike curves? Phys. Rev. D
**1991**, 43, 3929–3947. [Google Scholar] [CrossRef] [Green Version] - Visser, M. Lorentzian Wormholes: From Einstein to Hawking; American Institute of Physics: New York, NY, USA, 1995. [Google Scholar]
- Akiyama, K. et al. [Event Horizon Telescope] First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett.
**2021**, 910, L13. [Google Scholar] - Blackburn, L.; Doeleman, S.; Dexter, J.; Gómez, J.L.; Johnson, M.D.; Palumbo, D.C.; Weintroub, J.; Bouman, K.L.; Chael, A.A.; Farah, J.R.; et al. Studying Black Holes on Horizon Scales with VLBI Ground Arrays. arXiv
**2019**, arXiv:1909.01411. [Google Scholar] - Abuter, R. et al. [GRAVITY] Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys.
**2020**, 636, L5. [Google Scholar] - Gourgoulhon, E.; Le Tiec, A.; Vincent, F.H.; Warburton, N. Gravitational waves from bodies orbiting the Galactic Center black hole and their detectability by LISA. Astron. Astrophys.
**2019**, 627, A92. [Google Scholar] [CrossRef] [Green Version] - Abbott, B.P. et al. [LIGO Scientific and Virgo]. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett.
**2016**, 116, 061102. [Google Scholar] [CrossRef] [Green Version] - Bhattacharya, K.; Majhi, B.R. Fresh look at the scalar-tensor theory of gravity in Jordan and Einstein frames from undiscussed standpoints. Phys. Rev. D
**2017**, 95, 064026. [Google Scholar] [CrossRef] [Green Version] - Faraoni, V.; Belknap-Keet, S.D. New inhomogeneous universes in scalar-tensor and f(R) gravity. Phys. Rev. D
**2017**, 96, 044040. [Google Scholar] [CrossRef] [Green Version] - Raptis, T.E.; Minotti, F.O. Effects on light propagating in an electromagnetized vacuum, as predicted by a particular class of scalar–tensor theory of gravitation. Class. Quant. Grav.
**2013**, 30, 235004. [Google Scholar] [CrossRef] [Green Version] - Genç, O. Some Aspects of Morris-Thorne Wormhole in Scalar Tensor Theory. arXiv
**2017**, arXiv:1709.06431. [Google Scholar] [CrossRef] - Jusufi, K.; Banerjee, A.; Ghosh, S.G. Wormholes in 4D Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C
**2020**, 80, 698. [Google Scholar] [CrossRef] - Sushkov, S.V. Wormholes supported by a phantom energy. Phys. Rev. D
**2005**, 71, 043520. [Google Scholar] [CrossRef] [Green Version] - Wang, D.; Meng, X.H. Wormholes supported by phantom energy from Shan–Chen cosmological fluids. Eur. Phys. J. C
**2016**, 76, 171. [Google Scholar] [CrossRef] [Green Version] - Sahoo, P.K.; Moraes, P.H.R.S.; Sahoo, P.; Ribeiro, G. Phantom fluid supporting traversable wormholes in alternative gravity with extra material terms. Int. J. Mod. Phys. D
**2018**, 27, 1950004. [Google Scholar] [CrossRef] [Green Version] - Lobo, F.S.N. Phantom energy traversable wormholes. Phys. Rev. D
**2005**, 71, 084011. [Google Scholar] [CrossRef] [Green Version] - Shweta, A.K.M.; Sharma, U.K. Traversable wormhole modelling with exponential and hyperbolic shape functions in F(R,T) framework. Int. J. Mod. Phys. A
**2020**, 35, 2050149. [Google Scholar] [CrossRef] - Moraes, P.H.R.S.; Sahoo, P.K. Modelling wormholes in f(R,T) gravity. Phys. Rev. D
**2017**, 96, 044038. [Google Scholar] [CrossRef] [Green Version] - Sahoo, P.K.; Moraes, P.H.R.S.; Sahoo, P. Wormholes in R
^{2}-gravity within the f(R, T) formalism. Eur. Phys. J. C**2018**, 78, 46. [Google Scholar] [CrossRef] [Green Version] - Zubair, M.; Waheed, S.; Mustafa, G.; Ur Rehman, H. Noncommutative inspired wormholes admitting conformal motion involving minimal coupling. Int. J. Mod. Phys. D
**2019**, 28, 1950067. [Google Scholar] [CrossRef] [Green Version] - Godani, N.; Samanta, G.C. Gravitational lensing effect in traversable wormholes. Ann. Phys.
**2021**, 429, 168460. [Google Scholar] [CrossRef] - Sharma, U.K.; Mishra, A.K. Wormholes Within the Framework of f(R,T) = R + αR
^{2}+ λT Gravity. Found. Phys.**2021**, 51, 50. [Google Scholar] [CrossRef] - Mishra, A.K.; Sharma, U.K. Wormhole models in R
^{2}-gravity for f(R,T) theory with a hybrid shape function. Can. J. Phys.**2021**, 99, 481–489. [Google Scholar] [CrossRef] - Godani, N.; Samanta, G.C. Deflection angle for charged wormhole in f(R,T) gravity. Int. J. Geom. Meth. Mod. Phys.
**2021**, 18, 2150193. [Google Scholar] [CrossRef] - Dixit, A.; Chawla, C.; Pradhan, A. Traversable wormholes with logarithmic shape function in f(R, T) gravity. Int. J. Geom. Meth. Mod. Phys.
**2021**, 18, 2150064. [Google Scholar] [CrossRef] - Mustafa, G.; Tie-Cheng, X.; Ahmad, M.; Shamir, M.F. Anisotropic spheres via embedding approach in R+βR2 gravity with matter coupling. Phys. Dark Univ.
**2021**, 31, 100747. [Google Scholar] [CrossRef] - Sushkov, S.V.; Kozyrev, S.M. Composite vacuum Brans-Dicke wormholes. Phys. Rev. D
**2011**, 84, 124026. [Google Scholar] [CrossRef] [Green Version] - Godani, N.; Singh, D.V.; Samanta, G.C. Stability of thin-shell wormhole in 4D Einstein–Gauss–Bonnet gravity. Phys. Dark Univ.
**2022**, 35, 100952. [Google Scholar] [CrossRef] - Moraes, P.H.R.S.; Sahoo, P.K. Wormholes in exponential f(R,T) gravity. Eur. Phys. J. C
**2019**, 79, 677. [Google Scholar] [CrossRef] [Green Version] - Yousaf, Z.; Bhatti, M.Z.; Naseer, T. New definition of complexity factor in f(R,T,R
_{μν}T^{μν}) gravity. Phys. Dark Univ.**2020**, 28, 100535. [Google Scholar] [CrossRef] [Green Version] - Samanta, G.C.; Godani, N.; Bamba, K. Traversable wormholes with exponential shape function in modified gravity and general relativity: A comparative study. Int. J. Mod. Phys. D
**2020**, 29, 2050068. [Google Scholar] [CrossRef] - Bhatti, M.Z.; Yousaf, Z.; Yousaf, M. Stability of self-gravitating anisotropic fluids in f(R,T) gravity. Phys. Dark Univ.
**2020**, 28, 100501. [Google Scholar] [CrossRef] - Rosa, J.L.; Kull, P.M. Non-exotic traversable wormhole solutions in linear f(R,T) gravity. Eur. Phys. J. C
**2022**, 82, 1154. [Google Scholar] [CrossRef] - Bhatti, M.Z.; Yousaf, Z.; Yousaf, M. Effects of non-minimally coupled f(R, T) gravity on the stability of a self-gravitating spherically symmetric fluid. Int. J. Geom. Meth. Mod. Phys.
**2022**, 19, 2250120. [Google Scholar] [CrossRef] - Bhatti, M.Z.; Yousaf, Z.; Yousaf, M. Study of nonstatic anisotropic axial structures through perturbation. Int. J. Mod. Phys. D
**2022**, 31, 2250116. [Google Scholar] [CrossRef] - Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D
**2012**, 86, 127504. [Google Scholar] [CrossRef] [Green Version] - De Falco, V.; Battista, E.; Capozziello, S.; De Laurentis, M. Reconstructing wormhole solutions in curvature based Extended Theories of Gravity. Eur. Phys. J. C
**2021**, 81, 157. [Google Scholar] [CrossRef] - Mustafa, G.; Ahmad, M.; Övgün, A.; Shamir, M.F.; Hussain, I. Traversable Wormholes in the Extended Teleparallel Theory of Gravity with Matter Coupling. Fortsch. Phys.
**2021**, 69, 2100048. [Google Scholar] [CrossRef] - Singh, K.N.; Banerjee, A.; Rahaman, F.; Jasim, M.K. Conformally symmetric traversable wormholes in modified teleparallel gravity. Phys. Rev. D
**2020**, 101, 084012. [Google Scholar] [CrossRef] [Green Version] - Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Wormhole geometries in modified teleparralel gravity and the energy conditions. Phys. Rev. D
**2012**, 85, 044033. [Google Scholar] [CrossRef] [Green Version] - Sengupta, R.; Ghosh, S.; Kalam, M. Lorentzian wormholes supported by tachyon matter. Ann. Phys.
**2022**, 439, 168778. [Google Scholar] [CrossRef] - Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction, 13th ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. D
**2018**, 98, 044048. [Google Scholar] [CrossRef] [Green Version] - Lazkoz, R.; Lobo, F.S.N.; Ortiz-Baños, M.; Salzano, V. Observational constraints of f(Q) gravity. Phys. Rev. D
**2019**, 100, 104027. [Google Scholar] [CrossRef] [Green Version] - Ayuso, I.; Lazkoz, R.; Salzano, V. Observational constraints on cosmological solutions of f(Q) theories. Phys. Rev. D
**2021**, 103, 063505. [Google Scholar] [CrossRef] - de Andrade, V.C.; Guillen, L.C.T.; Pereira, J.G. Gravitational energy momentum density in teleparallel gravity. Phys. Rev. Lett.
**2000**, 84, 4533–4536. [Google Scholar] [CrossRef] [Green Version] - Mandal, S.; Sahoo, P.K.; Santos, J.R.L. Energy conditions in f(Q) gravity. Phys. Rev. D
**2020**, 102, 024057. [Google Scholar] [CrossRef] - Mandal, S.; Wang, D.; Sahoo, P.K. Cosmography in f(Q) gravity. Phys. Rev. D
**2020**, 102, 124029. [Google Scholar] [CrossRef] - Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. Coupling matter in modified Q gravity. Phys. Rev. D
**2018**, 98, 084043. [Google Scholar] [CrossRef] [Green Version] - Hassan, Z.; Mandal, S.; Sahoo, P.K. Traversable Wormhole Geometries in f(Q) Gravity. Fortsch. Phys.
**2021**, 69, 2100023. [Google Scholar] [CrossRef] - Hassan, Z.; Mustafa, G.; Sahoo, P.K. Wormhole Solutions in Symmetric Teleparallel Gravity with Noncommutative Geometry. Symmetry
**2021**, 13, 1260. [Google Scholar] [CrossRef] - Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys.
**2013**, 525, 339–357. [Google Scholar] [CrossRef] - Sokoliuk, O.; Hassan, Z.; Sahoo, P.K.; Baransky, A. Traversable wormholes with charge and non-commutative geometry in the f(Q) gravity. Ann. Phys.
**2022**, 443, 168968. [Google Scholar] [CrossRef] - Mustafa, G.; Hassan, Z.; Sahoo, P.K. Traversable wormhole inspired by non-commutative geometries in f(Q) gravity with conformal symmetry. Ann. Phys.
**2022**, 437, 168751. [Google Scholar] [CrossRef] - Sharma, U.K.; Shweta; Mishra, A.K. Traversable wormhole solutions with non-exotic fluid in framework of f(Q) gravity. Int. J. Geom. Meth. Mod. Phys.
**2022**, 19, 2250019. [Google Scholar] [CrossRef] - Plunien, G.; Muller, B.; Greiner, W. The Casimir Effect. Phys. Rep.
**1986**, 134, 87–193. [Google Scholar] [CrossRef] - Sparnaay, M. Attractive forces between flat plates. Nature
**1957**, 180, 334. [Google Scholar] [CrossRef] - Sparnaay, M. Measurement of attractive forces between flat plates. Physica
**1958**, 24, 751. [Google Scholar] [CrossRef] - Lamoreaux, S.K. Demonstration of the Casimir force in the 0.6 to 6 micrometers range. Phys. Rev. Lett.
**1998**, 78, 5–8, Erratum in Phys. Rev. Lett.**1998**, 81, 5475–5476. [Google Scholar] [CrossRef] [Green Version] - Bressi, G.; Carugno, G.; Onofrio, R.; Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett.
**2002**, 88, 041804. [Google Scholar] [CrossRef] [Green Version] - Tripathy, S.K. Modelling Casimir wormholes in extended gravity. Phys. Dark Univ.
**2021**, 31, 100757. [Google Scholar] [CrossRef] - Garattini, R. Casimir Wormholes. Eur. Phys. J. C
**2019**, 79, 951. [Google Scholar] [CrossRef] - Garattini, R. Yukawa–Casimir wormholes. Eur. Phys. J. C
**2021**, 81, 824. [Google Scholar] [CrossRef] - Banerjee, A.; Pradhan, A.; Tangphati, T.; Rahaman, F. Wormhole geometries in f(Q) gravity and the energy conditions. Eur. Phys. J. C
**2021**, 81, 1031. [Google Scholar] [CrossRef] - Hassan, Z.; Ghosh, S.; Sahoo, P.K.; Bamba, K. Casimir wormholes in modified symmetric teleparallel gravity. Eur. Phys. J. C
**2022**, 82, 1116. [Google Scholar] [CrossRef] - Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys.
**2010**, 82, 451–497. [Google Scholar] [CrossRef] [Green Version] - Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S.; Pekar, S. Cosmology in f(Q) geometry. Phys. Rev. D
**2020**, 101, 103507. [Google Scholar] [CrossRef] - Oliveira, P.H.F.; Alencar, G.; Jardim, I.C.; Landim, R.R. Traversable Casimir Wormholes in D Dimensions. arXiv
**2021**, arXiv:2107.00605. [Google Scholar] [CrossRef] - Garattini, R. Generalized Absurdly Benign Traversable Wormholes powered by Casimir Energy. Eur. Phys. J. C
**2020**, 80, 1172. [Google Scholar] [CrossRef] - Kontou, E.A.; Sanders, K. Energy conditions in general relativity and quantum field theory. Class. Quant. Grav.
**2020**, 37, 193001. [Google Scholar] [CrossRef] - Garattini, R. Self sustained traversable wormholes? Class. Quant. Grav.
**2005**, 22, 1105–1118. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Plots: (

**a**) Energy density ($\rho $) and (

**b**) Radial NEC ($\rho +{p}_{r}$) with throat radius ${r}_{0}=1$ and $\alpha =1$ in $f\left(Q\right)=\alpha Q$ gravity.

**Figure 2.**Plots: (

**a**) Tangential NEC ($\rho +{p}_{t}$) and (

**b**) SEC ($\rho +{p}_{r}+2{p}_{t}$) with throat radius ${r}_{0}=1$ and $\alpha =1$ in $f\left(Q\right)=\alpha Q$ gravity.

**Figure 3.**Plots: (

**a**) Radial DEC ($\rho -|{p}_{r}\left|\right)$ and (

**b**) Tangential DEC ($\rho -|{p}_{t}|$) with throat radius ${r}_{0}=1$ and $\alpha =1$ in $f\left(Q\right)=\alpha Q$ gravity.

**Figure 4.**Plots: (

**a**) Energy density ($\rho $) and (

**b**) radial NEC ($\rho +{p}_{r}$) with throat radius ${r}_{0}=1$, $\alpha =1$, and $\beta =2$ in $f\left(Q\right)=\alpha {Q}^{2}+\beta $ gravity.

**Figure 5.**Plots: (

**a**) Tangential NEC ($\rho +{p}_{t}$) and (

**b**) SEC ($\rho +{p}_{r}+2{p}_{t}$) with throat radius ${r}_{0}=1$, $\alpha =1$, and $\beta =2$ in $f\left(Q\right)=\alpha {Q}^{2}+\beta $ gravity.

**Figure 6.**Plots: (

**a**) Radial DEC ($\rho -|{p}_{r}\left|\right)$, and (

**b**) Tangential DEC ($\rho -|{p}_{t}|$) with throat radius ${r}_{0}=1$, $\alpha =1$, and $\beta =2$ in $f\left(Q\right)=\alpha {Q}^{2}+\beta $ gravity.

**Figure 7.**Plots: (

**a**) Energy density ($\rho $) and (

**b**) Radial NEC ($\rho +{p}_{r}$) with throat radius ${r}_{0}=1$, $\alpha =1$, $\beta =1$, and $\gamma =2$ in $f\left(Q\right)=\alpha {Q}^{2}+\beta Q+\gamma $ gravity.

**Figure 8.**Plots: (

**a**) Tangential NEC ($\rho +{p}_{t}$) and (

**b**) SEC ($\rho +{p}_{r}+2{p}_{t}$) with throat radius ${r}_{0}=1$, $\alpha =1$, $\beta =1$, and $\gamma =2$ in $f\left(Q\right)=\alpha {Q}^{2}+\beta Q+\gamma $ gravity.

**Figure 9.**Plots: (

**a**) Radial DEC ($\rho -|{p}_{r}\left|\right)$, and (

**b**) Tangential DEC ($\rho -|{p}_{t}|$) with throat radius ${r}_{0}=1$, $\alpha =1$, $\beta =1$, and $\gamma =2$ in $f\left(Q\right)=\alpha {Q}^{2}+\beta Q+\gamma $ gravity.

**Figure 10.**Plots: (

**a**) Energy density ($\rho $) and (

**b**) Radial NEC ($\rho +{p}_{r}$) with throat radius ${r}_{0}=1$ and $\alpha =-0.1$ in $f\left(Q\right)=Q+\frac{\alpha}{Q}$ gravity.

**Figure 11.**Plots: (

**a**) Tangential NEC ($\rho +{p}_{t}$) and (

**b**) SEC ($\rho +{p}_{r}+2{p}_{t}$) with throat radius ${r}_{0}=1$ and $\alpha =-0.1$ in $f\left(Q\right)=Q+\frac{\alpha}{Q}$ gravity.

**Figure 12.**Plots: (

**a**) Radial DEC ($\rho -|{p}_{r}\left|\right)$, and (

**b**) Tangential DEC ($\rho -|{p}_{t}|$) with throat radius ${r}_{0}=1$ and $\alpha =-0.1$ in $f\left(Q\right)=Q+\frac{\alpha}{Q}$ gravity.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mishra, A.K.; Shweta; Sharma, U.K.
Yukawa–Casimir Wormholes in *f*(*Q*) Gravity. *Universe* **2023**, *9*, 161.
https://doi.org/10.3390/universe9040161

**AMA Style**

Mishra AK, Shweta, Sharma UK.
Yukawa–Casimir Wormholes in *f*(*Q*) Gravity. *Universe*. 2023; 9(4):161.
https://doi.org/10.3390/universe9040161

**Chicago/Turabian Style**

Mishra, Ambuj Kumar, Shweta, and Umesh Kumar Sharma.
2023. "Yukawa–Casimir Wormholes in *f*(*Q*) Gravity" *Universe* 9, no. 4: 161.
https://doi.org/10.3390/universe9040161