Schrödinger Symmetry in Gravitational Mini-Superspaces
Abstract
:1. Introduction
2. Symmetries from Field Space Geometry
2.1. Gravitational Mini-Superspaces and Super-Metric
- flat FRW cosmology filled with a scalar field: This model contains two dynamical fields . The former plays the role of the scale factor in the metric
- Schwarzschild black hole mechanics: The geometry contains two dynamical fields denoted and the line element reads
2.2. Symmetries from Field Space Killing Vectors
2.3. Eisenhart–Duval Lift: Back to Null Geodesics
2.4. On Conformal Killing Vectors
3. Flat FRW Cosmology
3.1. Action and Phase Space
3.2. Schrödinger Observables
3.2.1. Charge Algebra
3.2.2. Symmetry Transformations
3.2.3. Integration of the Dynamics
3.3. Symmetry Generators from the Eisenhart–Duval Lift
4. Schwarzschild Black Hole Mechanics
4.1. Action and Phase Space
4.2. Schrödinger Observables
4.2.1. Charge Algebra
4.2.2. Symmetry Transformations
4.2.3. Integrating the Dynamics
5. Superspace Conformal Isometries and Witt Charges
5.1. Witt Charges for FRW Cosmology
5.2. Witt Charges for Schwarzschild Mechanics
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Eisenhart–Duval Lift of FRW Cosmology
Appendix B. Eisenhart–Duval Lift of Schwarzschild Mechanics
1 | Although the terminology of superspace is well rooted in the study of gravitational models and was introduced to describe the configuration space and phase space of general relativity, we acknowledge that it potentially clashes with the notion of supersymmetry manifolds or supermanifolds, which are sometimes also nicknamed superspaces. In the context of general relativity, the prefix “super-” in superspace refers to the structures of the space of metrics over a manifold, which is the structure on a level above considering a space-time with a specific metric. It allows to study the dynamics of general relativity beyond the kinematics of matter fields evolving in one given space-time metric. To avoid any confusion, the present work does not deal with supergravity or supersymmetric theories, but focuses on mini-superspace models, that is, gravitational models for cosmology and astrophysics obtained by reducing the space of metrics to a finite-dimensional space of parameters describing the geometry of space-time). |
2 | They are also known as chrono-projective vector fields. See [53] for more details. |
3 | The potential cannot depends on the w-coordinate as it would breaks the Killing isometry under the vector . |
4 | Notice that if we had kept the constant term in the action, the ED lift would have been given by
One can see that the potential term being constant, is still a Killing vector. Moreover, one can show that this additional term does not spoil the conformally flatness of the lift such that this alternative version admits, again, fifteen CKVs. While the form of these CKVs is slightly different starting from this lift, the conserved charges one builds from the CKVs are the same. |
References
- Pioline, B.; Waldron, A. Quantum cosmology and conformal invariance. Phys. Rev. Lett. 2003, 90, 031302. [Google Scholar] [CrossRef] [PubMed]
- Ben Achour, J.; Livine, E.R. Cosmology as a CFT1. JHEP 2019, 12, 031. [Google Scholar] [CrossRef]
- Ben Achour, J.; Livine, E.R. Conformal structure of FRW cosmology: Spinorial representation and the algebra of observables. JHEP 2020, 3, 067. [Google Scholar] [CrossRef]
- Ben Achour, J. Proper time reparametrization in cosmology: Möbius symmetry and Kodama charges. JCAP 2021, 12, 005. [Google Scholar] [CrossRef]
- Geiller, M.; Livine, E.R.; Sartini, F. Symmetries of the black hole interior and singularity regularization. SciPost Phys. 2021, 10, 022. [Google Scholar] [CrossRef]
- Ben Achour, J.; Livine, E.R. Symmetries and conformal bridge in Schwarzschild-(A)dS black hole mechanics. JHEP 2021, 12, 152. [Google Scholar] [CrossRef]
- Christodoulakis, T.; Dimakis, N.; Terzis, P.A. Lie point and variational symmetries in minisuperspace Einstein gravity. J. Phys. A 2014, 47, 095202. [Google Scholar] [CrossRef]
- Dimakis, N.; Terzis, P.A.; Christodoulakis, T. Contact symmetries of constrained systems and the associated integrals of motion. J. Phys. Conf. Ser. 2015, 633, 012040. [Google Scholar] [CrossRef]
- Terzis, P.A.; Dimakis, N.; Christodoulakis, T.; Paliathanasis, A.; Tsamparlis, M. Variational contact symmetries of constrained Lagrangians. J. Geom. Phys. 2016, 101, 52–64. [Google Scholar] [CrossRef]
- Christodoulakis, T.; Karagiorgos, A.; Zampeli, A. Symmetries in Classical and Quantum Treatment of Einstein’s Cosmological Equations and Mini-Superspace Actions. Symmetry 2018, 10, 70. [Google Scholar] [CrossRef]
- Christodoulakis, T.; Dimakis, N.; Terzis, P.A.; Doulis, G.; Grammenos, T.; Melas, E.; Spanou, A. Conditional Symmetries and the Canonical Quantization of Constrained Minisuperspace Actions: The Schwarzschild case. J. Geom. Phys. 2013, 71, 127–138. [Google Scholar] [CrossRef]
- Christodoulakis, T.; Dimakis, N.; Terzis, P.A.; Vakili, B.; Melas, E.; Grammenos, T. Minisuperspace canonical quantization of the Reissner-Nordström black hole via conditional symmetries. Phys. Rev. D 2014, 89, 044031. [Google Scholar] [CrossRef]
- Geiller, M.; Livine, E.R.; Sartini, F. Dynamical symmetries of homogeneous minisuperspace models. Phys. Rev. D 2022, 106, 064013. [Google Scholar] [CrossRef]
- Greensite, J. Field theory as free fall. Class. Quant. Grav. 1996, 13, 1339–1352. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Dynamical trajectories and geodesics. Ann. Math. 1928, 30, 591–606. [Google Scholar] [CrossRef]
- Cariglia, M.; Alves, F.K. The Eisenhart lift: A didactical introduction of modern geometrical concepts from Hamiltonian dynamics. Eur. J. Phys. 2015, 36, 025018. [Google Scholar] [CrossRef]
- Cariglia, M.; Gibbons, G.W.; van Holten, J.W.; Horvathy, P.A.; Zhang, P.M. Conformal Killing Tensors and covariant Hamiltonian Dynamics. J. Math. Phys. 2014, 55, 122702. [Google Scholar] [CrossRef]
- Duval, C.; Gibbons, G.W.; Horvathy, P. Celestial mechanics, conformal structures and gravitational waves. Phys. Rev. D 1991, 43, 3907–3922. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Pope, C.N. Kohn’s Theorem, Larmor’s Equivalence Principle and the Newton-Hooke Group. Ann. Phys. 2011, 326, 1760–1774. [Google Scholar] [CrossRef]
- Cariglia, M.; Gibbons, G. Generalised Eisenhart lift of the Toda chain. J. Math. Phys. 2014, 55, 022701. [Google Scholar] [CrossRef]
- Cariglia, M.; Duval, C.; Gibbons, G.W.; Horvathy, P.A. Eisenhart lifts and symmetries of time-dependent systems. Ann. Phys. 2016, 373, 631–654. [Google Scholar] [CrossRef]
- Cariglia, M.; Galajinsky, A.; Gibbons, G.W.; Horvathy, P.A. Cosmological aspects of the Eisenhart–Duval lift. Eur. Phys. J. C 2018, 78, 314. [Google Scholar] [CrossRef]
- Gibbons, G.W. Lifting the Eisenhart-Duval Lift to a Minimal Brane. arXiv 2020, arXiv:2003.06179. [Google Scholar]
- Dhasmana, S.; Sen, A.; Silagadze, Z.K. Equivalence of a harmonic oscillator to a free particle and Eisenhart lift. Ann. Phys. 2021, 434, 168623. [Google Scholar] [CrossRef]
- Fordy, A.P.; Galajinsky, A. Eisenhart Lift of 2-Dimensional Mechanics. Eur. Phys. J. C 2019, 79, 301. [Google Scholar] [CrossRef]
- Finn, K.; Karamitsos, S.; Pilaftsis, A. Quantizing the Eisenhart Lift. Phys. Rev. D 2021, 103, 065004. [Google Scholar] [CrossRef]
- Sen, A.; Parida, B.K.; Dhasmana, S.; Silagadze, Z.K. Eisenhart lift of Koopman-von Neumann mechanics. J. Geom. Phys. 2023, 185, 104732. [Google Scholar] [CrossRef]
- Dunajski, M.; Penrose, R. Quantum state reduction, and Newtonian twistor theory. Ann. Phys. 2023, 451, 169243. [Google Scholar] [CrossRef]
- Bekaert, X.; Morand, K. Embedding nonrelativistic physics inside a gravitational wave. Phys. Rev. D 2013, 88, 063008. [Google Scholar] [CrossRef]
- Morand, K. Embedding Galilean and Carrollian geometries I. Gravitational waves. J. Math. Phys. 2020, 61, 082502. [Google Scholar] [CrossRef]
- Duval, C.; Horvathy, P.A. Non-relativistic conformal symmetries and Newton-Cartan structures. J. Phys. A 2009, 42, 465206. [Google Scholar] [CrossRef]
- Duval, C.; Lazzarini, S. Schrödinger Manifolds. J. Phys. A 2012, 45, 395203. [Google Scholar] [CrossRef]
- Niederer, U. The maximal kinematical symmetry group of the free Schrödinger equation. Helv. Phys. Acta 1972, 45, 802. [Google Scholar]
- Horvathy, P.A.; Zhang, P.M. Non-relativistic conformal symmetries in fluid mechanics. Eur. Phys. J. C 2010, 65, 607–614. [Google Scholar]
- Son, D.T. Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. Phys. Rev. D 2008, 78, 046003. [Google Scholar] [CrossRef]
- Balasubramanian, K.; McGreevy, J. Gravity duals for non-relativistic CFTs. Phys. Rev. Lett. 2008, 101, 061601. [Google Scholar] [CrossRef]
- Taylor, M. Non-relativistic holography. arXiv 2008, arXiv:0812.0530. [Google Scholar]
- Goldberger, W.D. AdS/CFT duality for non-relativistic field theory. J. High Energy Phys. 2009, 3, 069. [Google Scholar] [CrossRef]
- Duval, C.; Hassaine, M.; Horvathy, P.A. The Geometry of Schrodinger symmetry in gravity background/non-relativistic CFT. Ann. Phys. 2009, 324, 1158–1167. [Google Scholar] [CrossRef]
- Horvathy, P.A.; Yera, J.C. The non-linear Schrodinger equation and the conformal properties of non-relativistic space-time. Int. J. Theor. Phys. 2009, 48, 3139–3146. [Google Scholar] [CrossRef]
- Ghosh, P.K. Conformal symmetry and the nonlinear Schrodinger equation. Phys. Rev. A 2002, 65, 012103. [Google Scholar] [CrossRef]
- Hassaine, M.; Horvathy, P.A. Symmetries of fluid dynamics with polytropic exponent. Phys. Lett. A 2001, 279, 215–222. [Google Scholar] [CrossRef]
- Hassaine, M.; Horvathy, P.A. Field dependent symmetries of a nonrelativistic fluid model. Ann. Phys. 2000, 282, 218–246. [Google Scholar] [CrossRef]
- Hawkins, R.M.; Lidsey, J.E. The Ermakov-Pinney equation in scalar field cosmologies. Phys. Rev. D 2002, 66, 023523. [Google Scholar] [CrossRef]
- Lidsey, J.E. Scalar Field Cosmologies Hidden Within the Nonlinear Schrodinger Equation. arXiv 2013, arXiv:1309.7181. [Google Scholar]
- Lidsey, J.E. Inflationary Cosmology, Diffeomorphism Group of the Line and Virasoro Coadjoint Orbits. arXiv 2018, arXiv:1802.09186. [Google Scholar]
- Rangamani, M.; Ross, S.F.; Son, D.T.; Thompson, E.G. Conformal non-relativistic hydrodynamics from gravity. J. High Energy Phys. 2009, 1, 075. [Google Scholar] [CrossRef]
- Dobrev, V.K. Non-Relativistic Holography—A Group-Theoretical Perspective. Int. J. Mod. Phys. A 2014, 29, 1430001. [Google Scholar] [CrossRef]
- Henkel, M.; Pleimling, M.; Godreche, C.; Luck, J.M. Aging and conformal invariance. Phys. Rev. Lett. 2001, 87, 265701. [Google Scholar] [CrossRef]
- Minic, D.; Pleimling, M. Non-relativistic AdS/CFT and Aging/Gravity Duality. Phys. Rev. E 2008, 78, 061108. [Google Scholar] [CrossRef]
- Jottar, J.I.; Leigh, R.G.; Minic, D.; Zayas, L.A.P. Aging and Holography. JHEP 2010, 11, 034. [Google Scholar] [CrossRef]
- Bojowald, M. Canonical Gravity and Applications Cosmology, Black Holes, and Quantum Gravity; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Zhang, P.M.; Cariglia, M.; Elbistan, M.; Horvathy, P.A. Scaling and conformal symmetries for plane gravitational waves. J. Math. Phys. 2020, 61, 022502. [Google Scholar] [CrossRef]
- Ben Achour, J.; Livine, E.R.; Mukohyama, S.; Uzan, J.P. Hidden symmetry of the static response of black holes: Applications to Love numbers. J. High Energy Phys. 2022, 2022, 1–31. [Google Scholar]
- Batista, C. On Spaces with the Maximal Number of Conformal Killing Vectors. arXiv 2017, arXiv:1711.01337. [Google Scholar] [CrossRef]
- Bojowald, M.; Brahma, S. Minisuperspace models as infrared contributions. Phys. Rev. D 2016, 93, 125001. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Haneder, F. A note on coarse graining and group representations. Class. Quant. Grav. 2021, 38, 137001. [Google Scholar] [CrossRef]
- Mele, F.M.; Münch, J. The Physical Relevance of the Fiducial Cell in Loop Quantum Cosmology. Phys. Rev. D 2023, 108, 106004. [Google Scholar] [CrossRef]
- Perroud, M. Projective representations of the Schrödinger Group. Helv. Phys. Acta 1977, 50, 233–252. [Google Scholar]
- Vinet, L.; Zhedanov, A. Representations of the Schrödinger group and Matrix orthogonal polynomials. J. Phys. A Math. Theor. 2011, 44, 355201. [Google Scholar] [CrossRef]
- Roger, C.; Unterberger, J. The Schrodinger-Virasoro Lie group and algebra: From geometry to representation theory. Ann. Henri Poincare 2006, 7, 1477–1529. [Google Scholar] [CrossRef]
- Alshammari, F.; Isaac, P.S.; Marquette, I. A differential operator realisation approach for constructing Casimir operators of non-semisimple Lie algebras. J. Phys. A 2018, 51, 065206. [Google Scholar] [CrossRef]
- Jordan Maclay, G. Dynamical symmetries of the H Atom, One of the most Important Tools of Modern Physics: SO(4) to SO(4,2), Background, Theory and Use in Calculating Radiative Shifts. Symmetry 2020, 12, 1323. [Google Scholar] [CrossRef]
- Di Francesco, P.; Mathieu, P.; Senechal, D. Conformal Field Theory; Springer: Berlin/Heidelberg, Germany, 1997; SBN 978-0-387-94785-3, 978-1-4612-7475-9. [Google Scholar] [CrossRef]
- Dimakis, N. Hidden symmetries from distortions of the conformal structure. arXiv 2022, arXiv:2205.14973. [Google Scholar] [CrossRef]
- Gielen, S.; Oriti, D.; Sindoni, L. Homogeneous cosmologies as group field theory condensates. JHEP 2014, 06, 013. [Google Scholar] [CrossRef]
- Oriti, D.; Sindoni, L.; Wilson-Ewing, E. Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates. Class. Quant. Grav. 2016, 33, 224001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Achour, J.; Livine, E.R.; Oriti, D.; Piani, G. Schrödinger Symmetry in Gravitational Mini-Superspaces. Universe 2023, 9, 503. https://doi.org/10.3390/universe9120503
Ben Achour J, Livine ER, Oriti D, Piani G. Schrödinger Symmetry in Gravitational Mini-Superspaces. Universe. 2023; 9(12):503. https://doi.org/10.3390/universe9120503
Chicago/Turabian StyleBen Achour, Jibril, Etera R. Livine, Daniele Oriti, and Goffredo Piani. 2023. "Schrödinger Symmetry in Gravitational Mini-Superspaces" Universe 9, no. 12: 503. https://doi.org/10.3390/universe9120503
APA StyleBen Achour, J., Livine, E. R., Oriti, D., & Piani, G. (2023). Schrödinger Symmetry in Gravitational Mini-Superspaces. Universe, 9(12), 503. https://doi.org/10.3390/universe9120503