An Effective Sign Switching Dark Energy: Lotka–Volterra Model of Two Interacting Fluids
Abstract
:1. Introduction: Cosmology with Sign Switching Dark Energy
2. The Unfair Competition Model
3. The Fair Competition Model
4. The Conversion Model
5. Discussion: Sign Switching Dark Energy and Naturalness
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | |
2 | Here sgn is the sign function (i.e., it is for positive argument and for negative argument). |
3 | |
4 | One can check that in the units in which the speed of light , and have physical dimension , while has dimension ; while and are dimensionless. |
5 | In the cosmological case, AdS spacetime has , which is the same as dS spactime. Unlike dS spacetime, however, in AdS spacetime the negative cosmological constant corresponds to a negative energy density but with a positive pressure. Cosmological evolution with negative energy densities was previously studied in details in [73]. |
6 | This phantom crossing is achieved by exhibiting a pole/singularity in their equation of state parameter, which is quite different from the more well-known quintom models. |
References
- Bernal, J.L.; Verde, L.; Riess, A.G. The Trouble With H0. arXiv 2016, arXiv:1607.05617. [Google Scholar]
- Verde, L.; Treu, T.; Riess, A.G. Tensions Between the Early and Late Universe. Nat. Astron. 2019, 3, 891–895. [Google Scholar] [CrossRef]
- Valentino, E.D.; Anchordoqui, L.A.; Akarsu, O.; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M.; Ballardini, M.; Basilakos, S.; Battistelli, E.; et al. Snowmass2021—Letter of Interest Cosmology Intertwined II: The Hubble Constant Tension. Astropart. Phys. 2021, 131, 102605. [Google Scholar]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the Realm of the Hubble Tension—A Review of Solutions. Class. Quantum Grav. 2021, 38, 153001. [Google Scholar]
- Battye, R.A.; Charnock, T.; Moss, A. Tension Between the Power Spectrum of Density Perturbations Measured on Large and Small Scales. Phys. Rev. D 2015, 91, 103508. [Google Scholar] [CrossRef]
- Benisty, D. Quantifying the S8 Tension With the Redshift Space Distortion Data Set. Phys. Dark Univ. 2021, 1, 100766. [Google Scholar]
- Di Valentino, E.; Anchordoqui, L.A.; Akarsu, Ö.; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M.; Ballardini, M.; Basilakos, S.; Battistelli, E.; et al. Cosmology Intertwined III: fσ8 and S8. Astropart. Phys. 2021, 131, 102604. [Google Scholar]
- Knox, L.; Millea, M. The Hubble Hunter’s Guide. Phys. Rev. D 2020, 101, 043533. [Google Scholar] [CrossRef]
- Rameez, M.; Sarkar, S. Is There Really a Hubble Tension? Class. Quantum Grav. 2021, 38, 154005. [Google Scholar]
- Vagnozzi, S. New Physics in Light of the H0 Tension: An Alternative View. Phys. Rev. D 2020, 102, 023518. [Google Scholar] [CrossRef]
- Benevento, G.; Hu, W.; Raver, M. Can Late Dark Energy Transitions Raise the Hubble Constant? Phys. Rev. D 2020, 101, 103517. [Google Scholar] [CrossRef]
- Colgáin, E.Ó.; Sheikh-Jabbari, M.M.; Solomon, R.; Bargiacchi, G.; Capozziello, S.; Dainotti, M.G.; Stojkovic, D. Revealing Intrinsic Flat ΛCDM Biases with Standardizable Candles. Phys. Rev. D 2022, 106, L041301. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, Ö.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar]
- Mazo, B.Y.D.V.; Romano, A.E.; Quintero, M.A.C. H0 Tension or M Overestimation? Eur. Phys. J. C 2022, 82, 610. [Google Scholar] [CrossRef]
- Escudero, H.G.; Kuo, J.L.; Keeley, R.E.; Abazajian, K.N. Early or Phantom Dark Energy, Self-Interacting, Extra, or Massive Neutrinos, Primordial Magnetic Fields, or a Curved Universe: An Exploration of Possible Solutions to the H0 and σ8 Problems. Phys. Rev. D 2022, 106, 103517. [Google Scholar] [CrossRef]
- de Sá, R.; Benetti, M.; Graef, L.L. An Empirical Investigation Into Cosmological Tensions. Eur. Phys. J. Plus 2022, 137, 1129. [Google Scholar] [CrossRef]
- Schöneberg, N.; Verde, L.; Gil-Marín, H.; Brieden, S. BAO+BBN Revisited—Growing the Hubble Tension With a 0.7km/s/Mpc Constraint. J. Cosmol. Astropart. Phys. 2022, 11, 039. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An Update. New Astron. Rev. 2022, 95, 101659. [Google Scholar]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark Energy Cosmology: The Equivalent Description via Different Theoretical Models and Cosmography Tests. Astrophys. Space Sci. 2012, 342, 155. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Simone, B.D.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G. On the Hubble Constant Tension in the SNe IA Pantheon Sample. Astrophys. J. 2021, 912, 150. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Simone, B.D.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G.; Bogdan, M.; Ugale, S. On the Evolution of the Hubble Constant With the SNe IA Pantheon Sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030. Galaxies 2022, 10, 24. [Google Scholar] [CrossRef]
- Colgáin, E.Ó.; Sheikh-Jabbari, M.M.; Solomon, R.; Dainotti, M.G.; Stojkovic, D. Putting Flat ΛCDM In The (Redshift) Bin. arXiv 2022, arXiv:2206.11447. [Google Scholar]
- Colgáin, E.Ó.; Sheikh-Jabbari, M.M.; Solomon, R. High Redshift ΛCDM Cosmology: To Bin or not to Bin? Phys. Dark Univ. 2023, 40, 101216. [Google Scholar] [CrossRef]
- Jia, X.D.; Hu, J.P.; Wang, F.Y. The Evidence for a Decreasing Trend of Hubble Constant. Astron. Astrophys. 2023, 674, A45. [Google Scholar] [CrossRef]
- Dutta, K.; Ruchika; Roy, A.; Sen, A.A.; Sheikh-Jabbari, M.M. Beyond ΛCDM with Low and High Redshift Data: Implications for Dark Energy. Gen. Rel. Grav. 2020, 52, 15. [Google Scholar] [CrossRef]
- Peracaula, J.S.; Gomez-Valent, A.; Perez, J.D. Signs of Dynamical Dark Energy in Current Observations. Phys. Dark Univ. 2019, 25, 100311. [Google Scholar] [CrossRef]
- Visinelli, L.; Vagnozzi, S.; Danielsson, U. Revisiting a Negative Cosmological Constant From Low-Redshift Data. Symmetry 2019, 11, 1035. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Barrow, J.D.; Escamilla, L.A.; Vazquez, J.A. Graduated Dark Energy: Observational Hints of a Spontaneous Sign Switch in the Cosmological Constant. Phys. Rev. D 2020, 101, 063528. [Google Scholar] [CrossRef]
- Ye, G.; Piao, Y.-S. Is the Hubble Tension a Hint of AdS Phase Around Recombination? Phys. Rev. D 2020, 101, 083507. [Google Scholar] [CrossRef]
- Valentino, E.D.; Linder, E.V.; Melchiorri, A. H0 Ex Machina: Vacuum Metamorphosis and Beyond H0. Phys. Dark Univ. 2020, 30, 100733. [Google Scholar] [CrossRef]
- Calderón, R.; Gannouji, R.; L’Huillier, B.; Polarski, D. Negative Cosmological Constant in the Dark Sector? Phys. Rev. D 2021, 103, 023526. [Google Scholar] [CrossRef]
- Lin, W.; Chen, X.; Mack, K.J. Early Universe-Physics Insensitive and Uncalibrated Cosmic Standards: Constraints on ΩM and Implications for the Hubble Tension. Astrophys. J. 2021, 920, 159. [Google Scholar] [CrossRef]
- Cai, R.-G.; Guo, Z.-K.; Wang, S.-J.; Yu, W.-W.; Zhou, Y. No-Go Guide for the Hubble Tension: Late-Time Solutions. Phys. Rev. D 2022, 105, L021301. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Kumar, S.; Ozulker, E.; Vazquez, J.A. Relaxing Cosmological Tensions With a Sign Switching Cosmological Constant. Phys. Rev. D 2021, 104, 123512. [Google Scholar] [CrossRef]
- Sen, A.A.; Adil, S.A.; Sen, S. Do Cosmological Observations Allow a Negative Λ? Mon. Not. R. Astron. Soc. 2022, 518, 1098. [Google Scholar] [CrossRef]
- Cai, R.-G.; Guo, Z.-K.; Wang, S.-J.; Yu, W.-W.; Zhou, Y. No-Go Guide for Late-Time Solutions to the Hubble Tension: Matter Perturbations. Phys. Rev. D 2022, 106, 063519. [Google Scholar] [CrossRef]
- Hu, J.-P.; Wang, F. Revealing the Late-Time Transition of H0: Relieve the Hubble Crisis. Mon. Not. R. Astron. Soc. 2022, 517, 576–581. [Google Scholar] [CrossRef]
- Gennaro, S.D.; Ong, Y.C. Sign Switching Dark Energy from a Running Barrow Entropy. Universe 2022, 8, 541. [Google Scholar] [CrossRef]
- Moshafi, H.; Firouzjahi, H.; Talebian, A. Multiple Transitions in Vacuum Dark Energy and H0 Tension. Astrophys. J. 2022, 940, 2–121. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Kumar, S.; Ozulker, E.; Vazquez, J.A.; Yadav, A. Relaxing Cosmological Tensions With a Sign Switching Cosmological Constant: Improved Results With Planck, BAO and Pantheon Data. Phys. Rev. D 2023, 108, 023513. [Google Scholar] [CrossRef]
- Antonini, S.; Simidzija, P.; Swingle, B.; Raamsdonk, M.V.; Waddell, C. Accelerating Cosmology From Λ<0 Gravitational Effective Field Theory. J. High Energy Phys. 2023, 2023, 203. [Google Scholar]
- Kallosh, R.; Kratochvil, J.; Linde, A.; Linder, E.V.; Shmakova, M. Observational Bounds on Cosmic Doomsday. J. Cosmol. Astropart. Phys. 2003, 2003, 015. [Google Scholar] [CrossRef]
- McInnes, B. Quintessential Maldacena-Maoz Cosmologies. J. High Energy Phys. 2004, 2004, 036. [Google Scholar] [CrossRef]
- Prokopec, T. Negative Energy Cosmology and the Cosmological Constant. arXiv 2011, arXiv:1105.0078. [Google Scholar]
- Biswas, T.; Koivisto, T.; Mazumdar, A. Could Our Universe Have Begun With Negative Lambda? arXiv 2011, arXiv:1105.2636. [Google Scholar]
- Banerjee, S.; Danielsson, U.; Dibitetto, G.; Giri, S.; Schillo, M. Emergent de Sitter Cosmology from Decaying AdS. Phys. Rev. Lett. 2018, 121, 261301. [Google Scholar] [CrossRef] [PubMed]
- Raamsdonk, M.V. Cosmology Without Time-Dependent Scalars Is Like Quantum Field Theory Without RG Flow. arXiv 2022, arXiv:2211.12611. [Google Scholar]
- Delubac, T. et al. [BOSS Collaboration] Baryon Acoustic Oscillations in the Lyα Forest of Boss DR11 Quasars. Astron. Astrophys. 2015, 574, A59. [Google Scholar] [CrossRef]
- Bacon, D.J. et al. [SKA Collaboration] Cosmology With Phase 1 of the Square Kilometre Array Red Book 2018: Technical Specifications and Performance Forecasts. Publ. Astron. Soc. Austral. 2020, 37, e007. [Google Scholar]
- Abdalla, E. et al. [BINGO Collaboration] The BINGO Project I: Baryon Acoustic Oscillations from Integrated Neutral Gas Observations. Astron. Astrophys. 2022, 664, A14. [Google Scholar] [CrossRef]
- Costa, A.A. et al. [BINGO Collaboration] The BINGO Project VII: Cosmological Forecasts from 21cm Intensity Mapping. Astron. Astrophys. 2022, 664, A20. [Google Scholar] [CrossRef]
- Amendola, L.; Appleby, S.; Avgoustidis, A.; Bacon, D.; Baker, T.; Baldi, M.; Bartolo, N.; Blanchard, A.; Bonvin, C.; Borgani, S.; et al. Cosmology and Fundamental Physics with the Euclid Satellite. Living Rev. Rel. 2018, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Malekjani, M.; Conville, R.M.; Colgáin, E.Ó.; Pourojaghi, S.; Sheikh-Jabbari, M.M. Negative Dark Energy Density from High Redshift Pantheon+ Supernovae. arXiv 2023, arXiv:2301.12725. [Google Scholar]
- Acquaviva, G.; Akarsu, O.; Katirci, N.; Vazquez, J.A. Simple-Graduated Dark Energy and Spatial Curvature. Phys. Rev. D 2021, 104, 023505. [Google Scholar] [CrossRef]
- Lee, B.-H.; Lee, W.; Colgáin, E.Ó.; Sheikh-Jabbari, M.M.; Thakur, S. Is Local H0 At Odds With Dark Energy EFT? J. Cosmol. Astropart. Phys. 2022, 2022, 004. [Google Scholar] [CrossRef]
- Barrow, J.D. The Area of a Rough Black Hole. Phys. Letts. B 2020, 808, 135643. [Google Scholar] [CrossRef]
- Farooq, M.U.; Jamil, M.; Debnath, U. Dynamics of Interacting Phantom and Quintessence Dark Energies. Astrophys. Space Sci. 2011, 334, 243. [Google Scholar] [CrossRef]
- Velten, H.E.S.; von Marttens, R.; Zimdahl, W. Aspects of the Cosmological ‘Coincidence Problem’. Eur. Phys. J. C 2014, 74, 3160. [Google Scholar] [CrossRef]
- Gonzalez, T.; Quiros, I. Exact Models With Non-minimal Interaction Between Dark Matter and (Either Phantom or Quintessence) Dark Energy. Class. Quant. Grav. 2008, 25, 175019. [Google Scholar] [CrossRef]
- Pu, B.-Y.; Xu, X.-D.; Wang, B.; Abdalla, E. Early Dark Energy and Its Interaction With Dark Matter. Phys. Rev. D 2015, 92, 123537. [Google Scholar] [CrossRef]
- Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavon, D. Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures. Rept. Prog. Phys. 2016, 79, 096901. [Google Scholar] [CrossRef]
- Wang, H.; Piao, Y.-S. A Fraction of Dark Matter Faded With Early Dark Energy? arXiv 2022, arXiv:2209.09685. [Google Scholar]
- Yang, W.; Pan, S.; Mena, O.; Valentino, E.D. On the Dynamics of a Dark Sector Coupling. arXiv 2022, arXiv:2209.14816. [Google Scholar] [CrossRef]
- Bernui, A.; Valentino, E.D.; Giarè, W.; Kumar, S.; Nunes, R.C. Exploring the H0 Tension and the Evidence for Dark Sector Interactions From 2D BAO Measurements. Phys. Rev. D 2023, 107, 103531. [Google Scholar] [CrossRef]
- Perez, J.; Füzfa, A.; Carletti, T.; Mélot, L.; Guedezounme, L. The Jungle Universe. Gen. Rel. Grav. 2014, 46, 1753. [Google Scholar] [CrossRef]
- Aydiner, E. Chaotic Universe Model. Sci. Rep. 2018, 8, 721. [Google Scholar] [CrossRef]
- Simon-Petit, A.; Yap, H.-H.; Perez, J. Refinements in the Jungle Universes. arXiv 2016, arXiv:1603.02267. [Google Scholar]
- Haba, Z.; Stachowski, A.; Szydlowski, M. Dynamics of the Diffusive DM–DE Interaction–Dynamical System Approach. J. Cosmol. Astropart. Phys. 2016, 2016, 024. [Google Scholar] [CrossRef]
- Gariazzo, S.; Valentino, E.D.; Mena, O.; Nunes, R.C. Late Time Interacting Cosmologies and the Hubble Constant Tension. Phys. Rev. D 2022, 106, 023530. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Alam, U.; Pandey, K.L.; Das, S.; Pal, S. Are H0 and σ8 Tensions Generic to Present Cosmological Data? Astrophys. J. 2019, 876, 143. [Google Scholar] [CrossRef]
- Mawas, E.; Street, L.; Gass, R.; Wijewardhana, L.C.R. Interacting Dark Energy Axions in Light of the Hubble Tension. arXiv 2021, arXiv:2108.13317. [Google Scholar]
- Cruz, M.; Lepe, S.; Morales-Navarrete, G. Qualitative Description of the Universe in the Interacting Fluids Scheme. Nucl. Phys. B 2019, 943, 114623. [Google Scholar] [CrossRef]
- Saharian, A.A.; Avagyan, R.M.; de Mello, E.R.B.; Kotanjyan, V.K.; Petrosyan, T.A.; Babujyan, H.G. Cosmological Evolution With Negative Energy Densities. Astrophysics 2022, 65, 427. [Google Scholar] [CrossRef]
- Heisenberg, L.; Villarrubia-Rojo, H.; Zosso, J. Simultaneously Solving the H0 and σ8 Tensions With Late Dark Energy. Phys. Dark Univ. 2023, 39, 101163. [Google Scholar] [CrossRef]
- Heisenberg, L.; Villarrubia-Rojo, H.; Zosso, J. Can Late-Time Extensions Solve the H0 and σ8 Tensions? Phys. Rev. D 2022, 106, 043503. [Google Scholar] [CrossRef]
- Valentino, E.D.; Mukherjee, A.; Sen, A.A. Dark Energy With Phantom Crossing and the H0 Tension. Entropy 2021, 23, 404. [Google Scholar] [CrossRef] [PubMed]
- Ozulker, E. Is the Dark Energy Equation of State Parameter Singular? Phys. Rev. D 2022, 106, 063509. [Google Scholar] [CrossRef]
- Bianchi, E.; Rovelli, C. Why All These Prejudices Against a Constant? arXiv 2010, arXiv:1002.3966. [Google Scholar]
- Ananda, K.N.; Bruni, M. Cosmo-Dynamics and Dark Energy With Non-linear Equation of State: A Quadratic Model. Phys. Rev. D 2006, 74, 023523. [Google Scholar] [CrossRef]
- Visser, M. Jerk, Snap, and the Cosmological Equation of State. Class. Quant. Grav. 2004, 21, 2603. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Cheng, H.C.; Luty, M.A.; Mukohyama, S.; Wiseman, T. Dynamics of Gravity in a Higgs Phase. J. High Energy Phys. 2007, 2007, 036. [Google Scholar] [CrossRef]
- Bhattacharya, G.; Mukherjee, P.; Saha, A. On the Self-Interaction of Dark Energy in a Ghost-Condensate Model. arXiv 2013, arXiv:1301.4746. [Google Scholar]
- Boyle, L.; Turok, N. Thermodynamic Solution of the Homogeneity, Isotropy and Flatness Puzzles (And a Clue to the Cosmological Constant). arXiv 2022, arXiv:2210.01142. [Google Scholar]
- Quartin, M.; Calvao, M.O.; Joras, S.E.; Reis, R.R.R.; Waga, I. Dark Interactions and Cosmological Fine-Tuning. J. Cosmol. Astropart. Phys. 2008, 2008, 007. [Google Scholar] [CrossRef]
- Marra, V. Coupling Dark Energy to Dark Matter Inhomogeneities. Phys. Dark Univ. 2016, 13, 25. [Google Scholar] [CrossRef]
- Grande, J.; Sola, J.; Stefancic, H. LXCDM: A Cosmon Model Solution to the Cosmological Coincidence Problem? J. Cosmol. Astropart. Phys. 2006, 2006, 011. [Google Scholar] [CrossRef]
- Grande, J.; Pelinson, A.; Sola, J. Dark Energy Perturbations and Cosmic Coincidence. Phys. Rev. D 2009, 79, 043006. [Google Scholar] [CrossRef]
- Peracaula, J.S. The Cosmological Constant Problem and Running Vacuum in the Expanding Universe. Philos. Trans. R. Soc. Lond. A 2022, 380, 20210182. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Trodden, M. Field Theories and Fluids for an Interacting Dark Sector. Phys. Rev. D 2018, 97, 043508, Erratum in Phys. Rev. D 2020, 101, 089901. [Google Scholar] [CrossRef]
- Panpanich, S.; Burikham, P.; Ponglertsakul, S.; Tannukij, L. Resolving Hubble Tension with Quintom Dark Energy Model. Chin. Phys. C 2021, 45, 015108. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, S.N. Cosmological Evolution of Interacting Phantom (Quintessence) Model in Loop Quantum Gravity. J. Cosmol. Astropart. Phys. 2008, 2008, 007. [Google Scholar] [CrossRef]
- Bouali, A.; Albarran, I.; Bouhmadi-Lopez, M.; Errahmani, A.; Ouali, T. Cosmological Constraints of Interacting Phantom Dark Energy Models. Phys. Dark Univ. 2021, 34, 100907. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, Y.C. An Effective Sign Switching Dark Energy: Lotka–Volterra Model of Two Interacting Fluids. Universe 2023, 9, 437. https://doi.org/10.3390/universe9100437
Ong YC. An Effective Sign Switching Dark Energy: Lotka–Volterra Model of Two Interacting Fluids. Universe. 2023; 9(10):437. https://doi.org/10.3390/universe9100437
Chicago/Turabian StyleOng, Yen Chin. 2023. "An Effective Sign Switching Dark Energy: Lotka–Volterra Model of Two Interacting Fluids" Universe 9, no. 10: 437. https://doi.org/10.3390/universe9100437
APA StyleOng, Y. C. (2023). An Effective Sign Switching Dark Energy: Lotka–Volterra Model of Two Interacting Fluids. Universe, 9(10), 437. https://doi.org/10.3390/universe9100437